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1. Introduction

Let f ∈ Z[x1, . . . , xn] be a non-constant polynomial and let p ∈ Z>0 be a prime.
We define

Sm = {a ∈ (Z/pm+1Z) : f(a) ≡ 0 (mod pm+1)}
and put Nm = |Sm|.

The generating series for the integers Nm,

P p
f (T ) =

∑

m≥0

NmTm ∈ Z[[T ]],

is called the Poincaré series associated to f and p. A closely related object is
the p-adic zeta function Zp

f (s), which is entirely determined by Pf,p(p−s). It is a
meromorphic function on the complex plane. Igusa’s p-adic monodromy conjecture
predicts in a precise way how the singularities of the complex hypersurface V (f) ⊂
An
C influence the poles of Zp

f (s) and thus the asymptotic behaviour of the integers
Nm as m tends to infinity. The conjecture states that, when p is sufficiently large,
poles of Zp

f (s) should correspond to local monodromy eigenvalues of the polynomial
map Cn → C defined by f .

In the mid-nineties, J. Denef and F. Loeser developed the theory of motivic
integration, and constructed a motivic object Zmot

f (s) that interpolates the p-adic
zeta functions Zp

f (s) for p À 0 and captures their geometric essence. Denef and
Loeser also formulated a motivic upgrade of the monodromy conjecture.

It is the purpose of this talk to present joint work with J. Nicaise (cf. [4] [5] [6]
[7]), where we introduce and study a global version of Denef and Loeser’s motivic
zeta functions. More precisely, I will explain how we associate a motivic generating
series to any Calabi-Yau variety X defind over a complete discretely valued field K.
This series encodes information concerning degenerations of X and the behaviour of
certain invariants of X under tamely ramified extensions K ′/K, and has properties
analogous to Denef and Loeser’s zeta function.

The link between Denef and Loeser’s motivic zeta function Zmot
f (s) and

our global variant is an alternative interpretation of Zmot
f (s) in terms of non-

archimedean geometry, due to J. Sebag and J. Nicaise [9]. This interpretation
is based on the theory of motivic integration on rigid varieties developed by F.
Loeser and J. Sebag [8].

This is joint work with J. Nicaise.
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2. Calabi-Yau varieties and weak Néron models

2.1. Notation. We let R denote a complete discrete valuation ring and fix a
uniformizer π ∈ R. We put K = Frac(R) and k = k = R/(π), and denote by
p the characteristic exponent of k.

We fix a separable closure Ks of K. For any d ∈ N such that p does not divide
d, we put K(d) = K(π1/d). The union of the fields K(d) is a subfield of Ks, called
the tame closure Kt of K. It is a procyclic group, and we call every topological
generator of G(Kt/K) a tame monodromy operator.

Throughout, X/K will denote a smooth, proper and geometrically connected
variety of dimension g. We assume that X(K) 6= ∅. Moreover, we assume that X
is Calabi-Yau, by which we mean that Ωg

X
∼= OX . A gauge form for X is a nowhere

vanishing form ω ∈ Ωg
X(X).

Finally, we put X(d) = X ⊗K K(d) and we let ω(d) denote the pullback of ω to
X(d) for every d not divisible by p.

2.2. We will associate to X a motivic generating series ZX(T ) ∈Mk[[T ]]. Here

Mk = K0(V ark)[L−1],

where K0(V ark) is the Grothendieck ring of k-varieties and L = [A1
k] ∈ K0(V ark).

Remark 2.2.1. Taking the class [V ] ∈ K0(V ark) should be considered the most
general way to measure the size of a k-variety V . In particular, it generalizes the
procedure of counting rational points that we encountered in Section 1.

The construction of ZX(T ) is based on the motivic integration in the sense of
Loeser and Sebag (cf. [8]). They developed a theory of motivic integration in the
context of rigid varieties and formal schemes. We will next explain their main
result, which doesn’t require going into details concerning rigid/formal geometry.

Definition 2.2.2. A smooth R-scheme Y of finite type is a Weak Néron Model of
X if the following properties hold:

(1) Y ×R K = X, and
(2) The natural restriction map Y(R) → X(K) is a bijection.

Remark 2.2.3. In the situation considered in this talk, there always exists a Weak
Néron Model (WNM). However, such a model is usually neither proper nor unique.

Theorem 2.2.4 (Loeser-Sebag [8]). Let X/K be a Calabi-Yau variety and let ω be
a gauge form. Let Y be a WNM of X. Then∫

X

|ω| = L−g
∑

C∈π0(Ys)

[C]L−ordC(ω) ∈Mk.

To interpret this theorem, one should think of Xan(K) (Xan being the rigid
analytification of X) as a family of open balls parametrized by Ys. The volume of
each ball is renormalized by ω so that the total volume is independent of the choice
Y.

2.3. Definition of the motivic zeta function.

Proposition 2.3.1 ([7]). Let X be a Calabi-Yau variety over K, and let ω be a
gauge form on X. Then for every weak Néron model Y of X, the value

ord(X, ω) := min {ordC(ω) |C ∈ π0(Ys)} ∈ Z
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only depends on the pair (X, ω), and not on Y.

Definition 2.3.2. Let X be a Calabi-Yau variety over K. A distinguished gauge
form on X is a gauge form ω such that ord(X, ω) = 0.

Thus, a distinguished gauge form on X extends to a relative differential form
on every weak Néron model, in a “minimal” way. One can show that X admits a
distinguished gauge form since X has a K-rational point. Moreover, a distinguished
gauge form is unique up to multiplication with a unit in R.

Definition 2.3.3. Let X/K be a Calabi-Yau variety, and let ω be a distinguished
gauge form on X. We define the motivic zeta function ZX(T ) of X to be the
generating series

ZX(T ) = Lg ·
∑

d

(
∫

X(d)

|ω(d)|)T d ∈Mk[[T ]].

It is easily seen that our definition of ZX(T ) is independent of the choice of
distinguished gauge form, hence it is an invariant of X.

3. Properties of ZX(T )

In this section we assume that char(k) = 0. By embedded resolution of
singularities, we can find an sncd-model X for X, i.e., a regular proper R-model
such that Xs =

∑
i∈I NiEi is a divisor with strict normal crossings. For every i ∈ I,

we define the order µi = ordEiω of ω along Ei as in [9, 6.8]. These values do not
depend on the choice of distinguished gauge form ω.

One can deduce from [9, 7.7] that the motivic zeta function ZX(T ) can be
expressed in the form

(3.1) ZX(T ) =
∑

∅6=J⊂I

(L− 1)|J|−1[Ẽo
J ]

∏

j∈J

L−µj TNj

1− L−µj TNj
∈Mk[[T ]]

where Ẽo
J is a certain finite étale cover of EJ := ∩j∈JEj (see [7] for further details).

In particular, one sees from (3.1) that ZX(T ) is a rational function and that
every pole of ZX(L−s) is of the form s = −µi/Ni for some i ∈ I. Every irreducible
component Ei of the special fiber yields in this way a “candidate pole” −µi/Ni of
the zeta function. Since the expression in (3.1) is independent of the chosen normal
crossings model X , one expects in general that not all of these candidate poles are
actual poles of ZX(T ). But even candidate poles that appear in every model will
not always be actual poles. To explain this phenomenon, we propose in Section 4
a version of Denef and Loeser’s Monodromy Conjecture for Calabi-Yau varieties.

Example 3.0.4. Let X/K be an elliptic curve, with reduction type IV ∗ over R.
Then one computes that s = 2/3 is the only pole of ZX(L−s). Hence, there is
a unique component in the special fiber of the minimal regular model of X that
corresponds to a pole of the zeta function.

3.1. Log canonical threshold. Choose a regular proper R-model X of X such
that Xs is a strict normal crossings divisor Xs =

∑
i∈I NiEi and define the values

µi, i ∈ I as above. We put

lct(X) = min{µi/Ni | i ∈ I},
δ(X) = max{ |J | | ∅ 6= J ⊂ I, EJ 6= ∅, µj/Nj = lct(X) for all j ∈ J} − 1.
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Definition 3.1.1. We call lct(X) the log canonical threshold of X, and δ(X) the
degeneracy index of X.

The following theorem shows that these values do not depend on the chosen
model X .

Theorem 3.1.2. Let X be a Calabi-Yau variety with X(K) 6= ∅.
(1) The value s = −lct(X) is the largest pole of the motivic zeta function

ZX(L−s), and its order equals δ(X) + 1. In particular, lct(X) and δ(X)
are independent of the model X .

(2) Assume moreover that K = C((t)) and that X admits a projective model
over the ring C{t} of germs of analytic functions at the origin of the complex
plane. If we put α = lct(X), then, for every embedding of Q` in C,
exp(−2πiα) is an eigenvalue of every monodromy operator σ ∈ Gal(Ks/K)
on Hg(X ×K Ks,Q`).

For an explanation of the relation of lct(X) to the log canonical threshold in
birational geometry, and an interpretation of δ(X), we refer to [7].

4. The motivic monodromy conjecture

It is natural to wonder if there is a relation between poles of ZX(T ) and
monodromy eigenvalues for Calabi-Yau varieties X, similar to the one predicted by
Denef and Loeser’s motivic monodromy conjecture for hypersurface singularities
(cf. [3]).

Definition 4.0.3. Let X be a Calabi-Yau variety with X(K) 6= ∅. For any element
a/b ∈ Q, let τ(a/b) denote the order of a/b in Q/Z, and let σ ∈ Gal(Kt/K) be a
tame monodromy operator. We say that X satisfies the Global Monodromy Property
(GMP) if there exists a finite subset S of Z× Z>0 such that

ZX(T ) ∈Mk

[
T,

1
1− LaT b

]

(a,b)∈S
and such that for each (a, b) ∈ S, the cyclotomic polynomial Φτ(a/b)(t) divides the
characteristic polynomial of σ on Hi(X ×K Kt,Q`) for some i ∈ N.

We have, in particular, proved that abelian varieties satisfy the Global
Monodromy Property. Recall that for any abelian variety A/K, there exists a
finite separable extension K ′/K such that the Néron model A′/R′ of A×K K ′ (R′

being the integral closure of R in K ′) is a semi-abelian scheme. We say that A is
tamely ramified if the field extension K ′/K is tamely ramified.

The dimension of the maximal subtorus of A′s is called the potential toric rank
of A, and denoted tpot(A). Moreover, we denote by c(A) ∈ Q Chai’s base change
conductor (cf. [1]). This value is zero if and only if A has semi-abelian reduction
over R.

Theorem 4.0.4 (Monodromy conjecture for abelian varieties [4], [5]). Let A be
a tamely ramified abelian variety of dimension g, and let σ be a tame monodromy
operator in Gal(Kt/K).

(1) The motivic zeta function ZA(T ) belongs to the subring

Mk

[
T,

1
1− LaT b

]

(a,b)∈N×Z>0,a/b=c(A)
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of Mk[[T ]]. The zeta function ZA(L−s) has a unique pole at s = c(A), of
order tpot(A) + 1.

(2) The cyclotomic polynomial Φτ(c(A))(t) divides the characteristic polynomial
of the tame monodromy operator σ on Hg(A ×K Kt,Q`). Thus for every
embedding Q` ↪→ C, the value exp(2πc(A)i) is an eigenvalue of σ on
Hg(A×K Kt,Q`).

We have recently generalized Theorem 4.0.4 to tamely ramified semi-abelian
varieties of any dimension. Moreover, we have also investigated the case of K3-
surfaces X (in the case k = C) allowing a triple-point-free degeneration. We
managed to show that if the degeneration is of flower pot type or of cyclic type
(see [2] for this terminology) then X has the Global Monodromy Property. This
will appear soon.
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