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Reverse refinement order.

Let I = (i,...yin),d = (j1,---,Jk), || = || then [ is greater

in the reverse refinement order (or, simply, finer) than J,
I>J

if every part of J can be obtained by summing some

consecutive parts of /:
J:(il+"‘+iP17"'7ip5_1+1+'*~+ip57-”7ipk_1+1+*~'+in)
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Definitions of Quasi-Symmetric Functions.

For every composition | = (i,..., k), the quasi-symmetric
monomial is defined

_ i1 ik
M, = g Xgy o+ Xt
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For every composition | = (i,..., k), the quasi-symmetric

monomial is defined

g x’1 ..

51<...<Sk

and quasi-symmetric fundamental
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Monomials:

2 2 2
Mio(x1,x2,X3) = X135 + X1X3 + XoX3

2 2 2
Mo1(x1, X2, x3) = x{ X2 + X X3 + X3 X3

Lenny Tevlin Intro to NSym and QSym.



Intro to
NSym and
QSym.

Lenny Tevlin

Quasi-
Symmetric
Functions.

Examples of Quasi-Symmetric Functions

Monomials:
M _ 2 2 2
12(x1, X2, X3) = x1X5 + x1X3 + X253
2 2 2
Mo1(x1, X2, x3) = x{ X2 + X X3 + X3 X3

So that
mo1 = Moy + My
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Examples of Quasi-Symmetric Functions

Monomials:
Mia(x1, x2, x3) = X1X22 + X1X32 + X2X32
Ma1(x1,x2,x3) = x2x2 + x2x3 + X3x3
So that
mp1 = Ma1 + Mo
In general,
my = Z M/
I: &(1)=X
Fundamental:

Lip = Myo + Mys

L1z = M3 + My2p + Mio1 + My
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Expansion of Schur Functions in Quasi-Symmetric
Fundamental.

Consider a standard (skew-)tableau. A descent of SYT T is
an integer / such that / 4+ 1 appears in a row of T above i. The
descent set of T, Des(T) — is the set of all descents of T.
Example: (desents are marked in bold)

[1]4 [2]4 [2]3 13[4 [1]3
2[3] 1]3] 1]4] 112] 2[4]
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Expansion of Schur Functions in Quasi-Symmetric
Fundamental.

Consider a standard (skew-)tableau. A descent of SYT T is
an integer / such that / 4+ 1 appears in a row of T above i. The
descent set of T, Des(T) — is the set of all descents of T.
Example: (desents are marked in bold)

1[4 2[4 213 3l4 113
213] i3] 14] 1[2] 214]
S\/u = > Lpes()

T: SYT of shape A\/u
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Expansion of Schur Functions in Quasi-Symmetric
Fundamental.

Consider a standard (skew-)tableau. A descent of SYT T is
an integer / such that / + 1 appears in a row of T above i. The
descent set of T, Des(T) — is the set of all descents of T.
Example: (desents are marked in bold)

1[4 [2]4 2]3 3[4 [1[3
2]3] 113] 114] 112] 214]
Sx/p = Z LDes(T)

T: SYT of shape A\/u

Example continues:

s32/1 = Lza+ Lip1+ L1z + 2L
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nowroto The backsteps of a permutation w = (wy, wa, ..., w,) € S,
Qsym. are BS(w) ={i | i+ 1is to the left of i in w}.

EURN  Denote the reading word (left to right, top to bottom) of T —

w(T). Then

Des(T) = BS(w(T))
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Backsteps.

The backsteps of a permutation w = (wy, wa, ..., w,) € S,
are BS(w) ={i | i+ 1is to the left of i in w}.
Denote the reading word (left to right, top to bottom) of T —
w(T). Then

Des(T) = BS(w(T))

(1[4 [2]4 [2]3 [3]4 [1[3
2]3] 1]3] 1/4] 1]2] 2]4]

So, equivalently, one can look at the reading words of these
tableaux: 1423,2413,2314,3412,1324 and record their
backsteps.

SAlu = > Les(w(T)
T: SYT of shape A/
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Classical Symmetric Functions as Determinats.

Recall that in Sym there is a number of identities expressing
one type of function (elementary, complete, Schur) as a
determinant of other (power sums, complete, etc.). For

instance,
P1 1 ce 0 0
o 1 ... O 0
i
ep = —
Pn-1 ... ... p1 n—1
Pn . . P2 p1
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Lenny Tevin Consider an almost-triangular matrix with noncommutative
entries a;; and commutative off-diagonal entries b;. Its
quasideterminant (with respect to the bottom left element) is a
sum of all weighted paths starting at the bottom row, ending
at the first column, taking northward until encoutering
commutative off-diagonal entry and then turning east.

all b1 0
Noncommutati ari a2 b2 = as1

Symmetric
Functions. 332 333

_332811 as33azl a33da24i11

by by b1 by
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Intra . . .
NsQ%: and Define elementary symmetric functions A,:
ym.
Lenny Tevlin Wl 1 O
-1 n—1 .
NG i I
n \Un—l \Un_g e ... n—1
Vo1 oer . Wy
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(-1t : : : :
Np= —>—
n \Un—l \Un_g e ... n—1
Vo1 oo .. W

and complete symmetric functions Sp:

Noncommutati

\Ul —(n— 1) 0

Symmetric 1

Functions. 5 -
n

n
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Noncommutative Monomials.

oo to Define noncommutative monomial symmetric function
ym an . .. . .
Qsym. corresponding to a composition / = (iy,...,i,) as a
Lenny Tevlin quasideterminant of an n by n matrix:
v 1 0o ... 0 0
v g Vi 2 L 0 0
(71)n—1
M = : : : : : :
. . : . . . .
W,‘2+m+,'n . el e \U,'2 n—1
O

Noncommutati Where n = e(l)

Symmetric
Functions.
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Noncommutative Monomials.

Define noncommutative monomial symmetric function

corresponding to a composition / = (iy,...,i,) as a
quasideterminant of an n by n matrix:

v, 1 0 ... 0
e Vi e Wi, 2 ... 0
M = : : : : :
; : Lo
wi2+...+i,, \U,'2

R

where n = ¢(1). In particular
MY = A,

where A, is an elementary symmetric function.
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Noncommutative Monomials.

Define noncommutative monomial symmetric function

corresponding to a composition | = (iy,...,ip) as a
quasideterminant of an n by n matrix:
Vi, 1 0o ... 0 0
(71),7_1 \Uin—1+in wi,,_l 2 “ e 0 0
n ' : : : : :
wf2+~-.+i,, e e \|Jl-2 n—1

where n = ¢(/). If one were to allow power sums to commute,
say x(Vx) = pk, Vk, i.e. projecting from NSym to Sym, then

ma= Y. x(M')

I: 6(H=X

Lenny Tevlin Intro to NSym and QSym.
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Noncommutative Fundamental and Ribbon Schur
Functions.

Define noncommutative fundamental symmetric functions
mimicing the definition in QSym

LI:ZMJ

I

and ribbon Schur functions by Jacobi-Trudi formula using
quasi-determinants:

s 1 0o ...
5in+in71 Sinfl 1 0
RI _ (_1)€(l)—1 : : :
Sivteti  Sipatoti -+ Sp 1
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oo to The G-backsteps of a permutation w = (wy, wa, ..., w,) € S,
QSym. are positions of GBS(w) = {i | i+ 1 is to the left of / in w}
Lenny Tevlin minus 1.
Example
[1]4 [2]4 [2]3 3[4 [1]3
23] (3] 1[4] 112] 214]
GBS(1423) = {3}
S GBS(2413) = {2,3}
e GBS(2314) = {2}
GBS(3412) = {3}
GBS(1324) = {2}
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T: SYT of shape /
Example:
1[4 2[4 2[3 3[4 [1[3
2[3] 1[3] 1[4] 1]2] 2
Noncommutati
Symmetric
Functions. R272 — 2L371 + L27171 + 2L272
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