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Finite Cyclic Groups

G = ⟨g⟩

, δ(g i) = i distance of g i

1 g g2
g3

gm

g2m
g3m

∅ = |G|

Baby Step: g i → g i+1 = g i ∗ g
δ(g i+1) = i + 1 = δ(g i) + 1

Giant Step: (g i ,g j)→ g i ∗ g j = g i+j

δ(g i ∗ g j) = i + j = δ(g i) + δ(g j)

To find ∣G ∣ = ord(g):

▸ Dumb way: baby steps g ,g2, . . . ,g ∣G ∣ — O(∣G ∣) ops

▸ Smarter way — O(
√

∣G ∣) ops

▸ baby steps 1,g ,g2, . . .gm, m ≈
√

∣G ∣
▸ giant steps g2m,g3m, . . . ,gkm, k ≈

√
∣G ∣

▸ gkm = g i (a baby step) Ô⇒ ∣G ∣ = ∣km − i ∣

Similar technique solves discrete logarithm/distance problem):
given g i , find δ(g i) = i
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Infrastructures

R = {f0, f1, . . . , fs}

,

δ(fi) ≈ i distance of fi

circumference R

f0

∅ = R

f1 f2
f3

fm

f2m

f3m

Baby Step: fi → fi+1

δ(fi+1) ≈ i + 1 ≈ δ(fi) + 1

Giant Step: (fi , fj) = fi ∗ fj
δ(fi ∗ fj) ≈ i + j ≈ δ(fi) + δ(fj)

“Errors” are known and of order log(R)

Can use a similar baby step giant step technique to

▸ find circumference R of R
▸ solve distance problem
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Example 1 – Indefinite Binary Quadratic Forms
(Shanks 1971)

f (x , y) = Ax2 +Bxy + Cy2 ∈ Z[x , y]

, D = B2 − 4AC > 0

Roots of f (x ,1) = Ax2 +Bx + C ∶ τ± =
B ±

√
D

2A
∈ R

f is reduced if 0 < −τ− < 1 < τ+ (0 <
√
D −B < 2A <

√
D +B)

Infrastructure R = {f ∼ f0 reduced}, δ(fi+1) = δ(fi) + log(τ+,i)

Baby Step: (A,B,C)→ (C − qB + q2A, 2qA −B, A), q = ⌊τ⌋
(Continued fraction algorithm applied to τ+)

Giant Step:

▸ Composition (Gauß): (A′,B ′,C ′) ○ (A′′,B ′′,C ′′) = (A,B,C)
where (assuming gcd(A′,A′′, (B ′ +B ′′)/2) = 1):

A = A′A′′, B ≡
⎧⎪⎪⎨⎪⎪⎩

2A′ (mod B ′),
2A′′ (mod B ′′),

C = B2 −D

4A

▸ followed by approximately log(D)/2 baby steps
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Example 2 – Ideals of Real Quadratic Orders
(H. Williams 1987, . . . )

Let OD be a quadratic order of discriminant D > 0

Ideals in OD : a = [A,B] = ZA⊕Z
B +

√
D

2
, 4A ∣ B2 −D

Theorem a = [A,B] is an OD -ideal ⇐⇒ f = (A,B, (B2 −D)/4A) is a
binary quadratic form of discriminant D

Properties of infrastructure R = {a reduced and principal}:

▸ R is closed under giant steps

▸ giant steps are commutative

▸ OD is the identity under giant steps

▸ a = [A,B] is the inverse under giant steps of a = [A,B] where
B ≡ −B (mod 2A); δ(a) = R + log(A) − δ(a)

▸ R is “almost” associative under giant steps, in the sense that
(a ∗ b) ∗ c and a ∗ (b ∗ c) are very close to each other in R. So R is
“almost” an abelian group under giant steps!

▸ R is the regulator of OD
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Example 3 – Divisors of Real Hyperelliptic Curves
(Stein 1992/2009; Jacobson, S. & Stein 2007, . . . )

C ∶ y2 = D(x) ∈ Fq[x] monic, square-free, of degree 2g + 2 (q odd)

Regulator R = ord([∞−∞]) ≈ qg (∞, ∞ the poles of x)

A degree 0 divisor D = Dx − deg(Dx)∞+ δ(D)(∞−∞) is reduced if

▸ D is defined over Fq (i.e. invariant under Frobenius)

▸ ∞,∞ ∉ supp(Dx), vP(D) ≥ 0 for all P ∈ supp(Dx)
▸ P = (a,b) ∈ supp(Dx)⇒ P = (a,−b) ∉ supp(Dx)
▸ P = P ∈ supp(Dx)⇒ vP(D) = 1

▸ deg(Dx) ≤ g and 0 ≤ δ(D) < R

Remark The Mumford coefficients A,B of D correspond to a reduced
Fq[x , y]-ideal a = [A,B]
Properties of the infrastructure R = {D reduced and principal}

Baby steps: δ(0) = 0, δ(D1) = g + 1, 1 ≤ δ(Di+1) − δ(Di) ≤ g
Giant steps: δ(D ′ ∗D ′′) = δ(D ′) + δ(D ′′) − d , 0 ≤ d ≤ 2g

divisor addition, followed by at most ⌈g/2⌉ baby steps

R is embeddable into the cyclic group ⟨[∞−∞]⟩ of order R (Fontein 2008)
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Example 4 – Global Cubic Fields

The distinguished fractional ideals of a complex cubic number field form
an infrastructure:

▸ Baby steps: Voronoi’s algorithm

▸ Giant steps: Ideal multiplication, followed by Voronoi baby steps

(Voronoi 1896, Delone & Fadeev 1964, Williams et al 1970/80s)

The distinguished divisors of a cubic extension of Fq(x) with two poles at
x form an infrastructure:

▸ Baby steps and giant steps analogous to cubic number fields

(S. & Stein 1998/2000, S. 2001, Landquist 2009, research ongoing)

So for what global fields to (circle) infrastructures arise?
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Infrastructure from the Unit Lattice
(Fontein 2011)

k = Q or Fq(x), A = Z or Fq[x], µ ⊂ K∗ roots of unity

K a finite algebraic extension of k of degree n

O the integral closure of A in K (Dedekind domain) k
A

K ⊃ μ
O

n

S =
⎧⎪⎪⎨⎪⎪⎩

set of conjugate mappings (archimedian places) if k = Q
set of poles of x (infinite places) if k = Fq(x)

For the unit group O∗ of O: O∗/µ ≅ Zr with r = ∣S ∣ − 1

For α ∈ K∗, define φ(α) = (vp(α)deg(p) ∣ p ∈ S)

φ maps O∗/µ into the unit lattice L in

⎧⎪⎪⎨⎪⎪⎩

Rr if k = Q,
Zr if K = Fq(x)

Regulator R = det(L)

Infrastructure R ∶= { Rr /L if K = Q
Zr /L if K = Fq(x)

} r -dimensional torus
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Circle Infrastructures
∣S ∣ = 1 ⇒ r = 0 ⇒ no infrastructure
∣S ∣ = 2 ⇒ r = 1 ⇒ circle infrastructure

Number Fields:
r1: number of real embeddings
r2: number of pairs of complex embeddings

r = r1 + r2 − 1, n = r1 + 2r2, r1 ≥ 0, r2 ≥ 0

Solutions for r = 0:
r1 = 1, r2 = 0, n = 1 — Q
r1 = 0, r2 = 1, n = 2 — imaginary quadratic

Solutions for r = 1:
r1 = 2, r2 = 0, n = 2 — real quadratic
r1 = 1, r2 = 1, n = 3 — complex cubic
r1 = 0, r2 = 2, n = 2 — totally complex quartic

Function Fields: for any r , n ≥ r can be anything!
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Boxes

Write S = {∞1, . . . ,∞r+1}, with respective ramification indices ei

For α ∈ K , write ∣α∣i = q−v∞i
(α). Then the values ∣α∣1/eii form a box:

| · |1/e2
2

| · |1/e1
1

.......................... .................

α

0

Length function on K : B(α) = max
1≤i≤r+1

∣α∣1/eii
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Successive Minima of Fractional Ideals
(Minkowski 1910, Mahler 1986, Tang 2011)

First successive minimum of f: M1(f) = min{B(α) ∣ 0 ≠ α ∈ f}

i-th successive minimum of L:

Let ω1, . . . , ωi ∈ f be Fq[x]-linearly independent.

Mi(f) = min{B(α) ∣ α ∈ f and ω1, . . . , ωi−1, α

are Fq[x]-linearly independent}

Successive minima depend only on f, not on ω1, . . . , ωn, α
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Distinguished Ideals

A fractional O-ideal f is distinguished if for all α ∈ f

B(α) ≤ 1 Ô⇒ α ∈ Fq

| · |1/e2
2

| · |1/e1
1

......... .........

1

1

1

0

Properties: Suppose M1(f) = B(α) with α ∈ f
▸ M1(α−1f) = 1

▸ f distinguished ⇐⇒ α ∈ F∗q (so M1(f) = 1) and M2(f) > 1
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Neighbours

i-neighbour of 1 in f — next lattice point from 1 in ∣ ⋅ ∣i -direction
without increasing all the other dimensions of the box

| · |1/e2
2

| · |1/e1
1

......... .........

1

2-neighbour of 1

1

1

0

Takes on M2(f)

Obtained via a 0-reduced B-ordered Fq[x]-basis of f

▸ very technical definition (Schörnig 1996, A. Lenstra 1985)

▸ computationally highly useful

▸ takes on the n successive minima of f

▸ efficiently computable for r = 1, e1 = 1, e2 = n − 1 (Tang 2011)
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Infrastructure, Ideal-Theoretic Description
(Tang 2011)

r = 1, e1 = 1, e2 = n − 1

Infrastructure R = {f ∼ f0 distinguished}

Baby step f→ g:

1. g = η−1f with η the 2-neighbour of 1 in f

δ(g) = δ(f) − v∞2(η)

Giant step f′ ∗ f′′:

1. Compute ideal product f′f′′, 0-reduce & B-order resulting basis

2. Divide by ω where B(ω) =M1(f), 0-reduce & B-order resulting basis

3. Apply one baby step
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Infrastructure, Divisor-Theoretic Description

Distinguished fractional ideal f of distance δ(f)
↕

Distinguished integral ideal a = denom(f)f of distance δ(a) = δ(f)
↕

Distinguished degree 0 divisor D = Dx − deg(Dx)∞1 + δ(D)(∞2 −∞1)
with δ(D) = δ(a)

Properties:

▸ Baby steps: δ(0) = 0, δ(D1) ≤ g + 1, 1 ≤ δ(Di+1) − δ(Di) ≤ g

▸ Giant steps: δ(D ′ ∗D ′′) = δ(D ′) + δ(D ′′) − d , 0 ≤ d ≤ 2g

▸ Baby steps and giant steps are efficiently computable

▸ Run time ratio giant steps/baby steps proportional to n2
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Higher-Dimensional Infrastructures

r = 2, purely cubic extensions K = k( 3
√
D)

▸ Number fields: H. C. Williams et al (1970s and 80s), Buchmann
(1980s)

▸ Function fields: Lee, S. & Yarrish (2003); Fontein, Landquist & S.
(in progress)

Arbitrary r :

▸ Number Fields: Buchmann (Habilitationsschrift 1987)

▸ Number fields in function field language (Arakelov theory): Schoof
(2008)

▸ Global Fields: Fontein (2011, ongoing)
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Wrap-Up
▸ There are better regulator/class number algorithm than

straightforward baby step giant step that use truncated Euler
products — O(∣D ∣1/5) = O(R2/5)

▸ Real quadratic number fields: Lenstra 1982, Schoof 1982
▸ Real hyperelliptic curves: Stein & Williams 1999, Stein &

Teske 2002/2005
▸ Cubic function fields: S. & Stein 2007
▸ Arbitrary function fields (in principle): S. & Stein 2010

▸ In function fields, infrastructure arithmetic can be advantageous
over divisor class group arithmetic due to the much faster baby step
operation (real hyperelliptic: Stein & Teske 2005; cubic: Landquist
2007-ongoing; used for cryptography in Jacobson, S. & Stein 2007)

▸ Lots left to do:
▸ Improvements to and implementation of Tang’s algorithms
▸ Other signatures (splitting of infinite place of Fq(x))
▸ Low degree extensions with special arithmetic (cubics?

quartics?)
▸ . . .
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∗ ∗ ∗ Thank You! — Questions (or Answers)? ∗ ∗ ∗


