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Outline

computing modular forms
m history
modular symbols
algebraic modular forms (after Gross)

m previous work by others
m connection with class groups of lattices

A lattice methods

m isometry class enumeration using p-neighbours (after Kneser)
m isomorphism testing — Plesken & Souvignier

H p-neighbours and Hecke operators
@ to-do list
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Introduction

Enumeration of automorphic forms has been an active domain since

the 1970s.

Wada (1972) — T, on Sy(q), g < 1000 prime, 128 pages
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The Antwerp tables (1972)

tables of elliptic curves, Mordell-Weil generators, Hecke eigenvalues,
curves with conductor 223, dimensions of rational eigenspaces of the
Hecke algebra, supersingluar j-invariants

Table 3: Hecke eigenvalues (Vélu)
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Modular symbol algorithm

modular symbols: formalism for studying the Hecke action on the
homology of modular curves; introduced by Manin; reduction theory

via continued fractions; algorithmic aspects developed by Merel and
Cremona

Cremona’s tables (1992-present)

e,

i

remona

TIEARARRREAD
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Why compute spaces of automorphic forms?

m initially: testing the Shimura-Taniyama conjecture, i.e., the
modularity of elliptic curves

m finding interesting number fields via Galois representations
associated to modular forms

m Theorem. (Dembélé, Dembélé-G-Voight, Skoruppa)
There exist nonsolvable number fields unramified away
from p for p € {2,3,5,7}.

m The proof of the theorem uses explicit computations of
Hilbert and Siegel modular forms.

m gathering evidence for various conjectures that comprise the
Langlands program
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Dembélé’s field

A non-solvable Galois extension of Q ramified at 2 only

Lassina Dembélé

A la mémoire de ma seeur jumelle Fatouma. Déja vingt ans que tu es partie

Abstract

In this paper, we show the existence of a non-solvable Galois extension of () which
is unramified outside 2. The extension K we construct has degree 2251731094732800 =
219(3.5-17-257)2 and has root discriminant dx < 2% = 58.68..., and is totally complex.

Résumé

Dans cet article, nous démontrons l'existence d'une extension galoisienne non réso-
luble de @) ramifiée seulement en 2. L’extension K que nous construisons est de degré
2251731004732800 = 2!9(3-5-17-257)2 et de discriminant normalisé dx < 2% = 58,68...,
et est totalement complexe.
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Roberts’ polynomial

NONSOLVABLE POLYNOMIALS WITH FIELD DISCRIMINANT 54

DAVID P. ROBERTS

ABsSTRACT. We present the first explicitly known polynomials in Z[z] with nonsolvable
Galois group and field discriminant of the form +p® for p < 7 a prime. Our main polyno-
mial has degree 25, Galois group of the form PSL2(5)5.10, and field discriminant 559, A
closely related polynomial has degree 120, Galois group of the form SL2(5)5.20, and field
diseriminant 5311, We completely describe 5-adic behavior, finding in particular that the
root discriminant of both splitting fields is 125- 5—1/12500 - 194 984 and the class number
of the latter field is divisible by 5%.

gas(z) =
2 — 25222 4 252 + 1102 — 62529 + 125028 — 3625217 + 2175058
—572002'% 4 1125002 — 2406252 + 448125212 — 11262502 + 1744825210
—1006875z” — 7050002% + 426912527 — 355100028 + 9496252° — 79250024
+13037502° — 89975022 + 291625z — 36535
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Magma and Sage implementations (Stein)

m implementations of modular symbol
packages in Magma, Sage

m data about [o(N)-newforms of
conductor < 10000

Researchers can experiment!

> S := NewSubspace (CuspidalSubspace (ModularSymbols(353,2,+1)));
> S;
Modular symbols space for Gamma_0(353) of weight 2 and dimension
29 over Rational Field
> Decomposition(S,5);
[

Modular symbols space for Gamma_0(353) of weight 2

and dimension 1 over Rational Field,

Modular symbols space for Gamma_0(353) of weight 2

and dimension 3 over Rational Field,

Modular symbols space for Gamma_0(353) of weight 2

and dimension 11 over Rational Field,

Modular symbols space for Gamma_0(353) of weight 2

and dimension 14 over Rational Field
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m High level languages like Magma and Sage have lots of carefully
implemented, optimized algebraic and number theoretic
functionality built in.

m lattice algorithms, group theory, fast linear algebra, ...

m This facilitates experimentation for those of us who don't know
anything about serious computer programming.
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Computing M(To(N))

m Each £ € My(I'o(N)) has a Fourier expansion:

f(z) =) an(f)a", q=e&""

n>0

m a,(f) = an(g) V n < B(N) ~ &[lo(1) : To(N)] = f =g.
m To represent M,(Io(NV)) on a computer, we could store the first
B(N) Fourier coefficients of a basis of My(I'o(N)).
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Computing My(T'g(N)) as a Hecke-module

m M,(Io(N)) admits the action of a commutative algebra of
Hecke operators

T = (T, : p prime) C Endc Mr(To(N)),

EESSERT .
GIAORE Of( ! )+pf(p)

a—
m Suppose f is a T-eigenvector.
m If a9 # 0, then

fITp,=ap(f)f, ap(f)=p+1
m If ag =0 and a; = 1, then

fITp = ap(f)f, lapl <2y/p
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Modular symbols (Manin, Mazur, Merel, . ..)

= A = DivPY(Q), A° := DiV’ P (Q)
] MSN = MSN(C) = Homro(N)(AO,C),

MS}, = MS{(C) i= {p € MSy
e D)y =) x) =w({y} - {X})} C MSy

m The Hecke operators act on MSy and MSE

GIT( ) — D) pz‘} ((2)y)—{(*3)])
(D (P i)
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m Theorem. The Hecke-modules My(o(N)) and MS}; are
isomorphic.

m If e: [o(N)\P(Q) — C, define the boundary symbol
pe({y} —{x}) == e(y) —e(x), BSn:={such g} C MSy.

m Define the Eichler-Shimura map ES™ : S,([o(N)) — MS™ by

s (- o =i ([ + [ ) ez

m Theorem. The induced map
EST : Sy(Mo(N)) — MS™ /BS

is an isomorphism.
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Computing MSy

m Theorem. A° = Div’ P}(Q) is a finitely generated
Z[To(N)]-module.

m If
A° = Z[To(N)]D; + - - - + Z[[o(N)] D;,
then ¢ € MS is determined by the h numbers ¢(D;).
m We must enumerate generators D;

m We need a reduction theory: Given D € A°, find
w; € Z[lo(N)] such that

D= W1D1—|-"'WhDh.
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Enumeration and reduction

m Wesay x =(a:c)and y = (b: d) are adjacent if
ad — bc = 1.
m The action of Io(N) on A° preserves adjacency the natural map
Fo(N)\{adjacent pairs} — P*(Z/NZ)

is an isomorphism.
m For (b: d) € PY(Z/NZ), define

Dp.ay=A{(b:d)} —{(a: )}, ad — bc = £1.
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Dpay=1{(b:d)} —{(a: c)}, ad — bc = +1.

m Enumeration: {D,z)} generates A° as a [o(V)-module.

m If x,y € P}(Q), there is a sequence

X =X0,X1,.---,Xn =Y, XJ:(pJqJ)7

such that p;_1q; — qj—1p; = 1 are adjacent.

m Reduction: We may take p;/q; to be the j-th convergent in the
continued fraction expansion of x.

m Thus, the reduction theory is just the continued fraction
algorithm.
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m All approaches to computing spaces of automorphic forms
involve enumeration and reduction steps.
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Adelic automorphic forms

m Let F be a totally real number field and set G = GL,,.
m Define adele rings

A=< x¢€ H F,: x, € Of, for almost all v |

vioo

Foo:HFva

v|oo

@F - H OF,V

vioo
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m Set
G = G(Fy).

m Let Kr C G(@F) be an open subgroup, e.g.,
Kr = Ko(N) = {(gg) € G(OF): ¢ GN@F}, N C Of.

m Let K be a maximal compact, connected subgroup of G(R).
(Koo = SO(n))

m Define the Shimura manifold of level Kg:

Y(Kr) = GO\ (G(Ar)/Kr x Guo/KusZo ).
9
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Y(K) = GO\(G(A)/Kr x ).

m Theorem: h(Kr) := |G(F)\G(Ar)/Kr| < o0
m Sorting out the diagonal action,

h(Kr)

H [ \$

where

h(Kr)
GAr) = [ G(F)xKr, Ty = G(F)NxiKex;*

i=1
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] G:GLl, Kf:1+NOF,
D ~ ray class group
X(Ke) = A7 [F*(1+ NOF) = of conductor N/
m F=Q, G =Gly, Kr = Ko(N),
det : G(Q)\G(Ar)/Kr —> A /Q*Z* = CI(Q) = {1},

[=KeNGL(Q) =TE(N),  $=h*

Y(Kr) = T3 (N)\b* = To(N)\h = Yo(N).

22 /55



Hilbert modular varieties

m G = GL,, F totally real, Y(Ky) is a Hilbert modular variety.

m If F has narrow class number one and Kr = GLZ(@F), then

Y(K:) = SL(OF)\B”  (dimg Y(K;) = 2n).

m Computational challenge: Compute the systems of Hecke
eigenvalues occurring in

H'(Y(Kr), C)

m Most interesting: i = n; as H'(Y(K¢),C) = 0 for i > 2n,
we call n the middle dimension.
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Approaches to computing with
Hilbert modular varieties

m Hybrid geometric/arithmetic methods, nice resolutions — the
Sharbly complex

m Gunnells, Yasaki

m Automorphic methods using functoriality, Jacquet-Langlands
correspondence
m Find systems of Hecke-eigenvalues occurring in the cohomology
of Hilbert modular varieties with systems occurring in spaces of
algebraic modular forms.
m Démbele, Donnelly, G, Voight
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Algebraic modular forms

m introduced by Gross (Israel J. Math., 1999)

m a class of automorphic forms particularly well-suited to
calculation

Setting

m G/Q connected, reductive algebraic group, G(R) compact
m e.g., definite orthogonal groups, definite unitary groups

m Kr C G(Af) compact open subgroup

m Since G(R) is compact, we take K, = G(R).
Y(Kr) = G(Q)\G(Ar)/Ks (finite, size h(K¥))
m O-dimensional Shimura variety
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m Let V be a finite-dimensional, algebraic representation of Gq.

Space of algebraic modular forms, level K, weight V
M(V,Ke) = {f : G(Ar)/Kr — V : f(vg) = 7f(g), 7 € G(Q)} J

m Suppose
h

G(Ar) = [ [(Kn) G(Q@)xiK:

i=1
m f € M(V,K) determined by {f(x;)}
m If we can represent elements of V/, we can represent elements of

M(V, K) — provided we can find representatives {x;}. We need
an enumeration algorithm.
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The Jacquet-Langlands correspondence

m Let F be a totally real field of even degree n, let B be the
quaternion F-algebra ramified at the infinite places of F. Let R
be a maximal order of B.

m Let G = B* and let Kr = (R ® OF)*.

Theorem:
The same systems of Hecke eigenvalues occur in the two modules

HE (Y(GLy(OF)),C)  and  M(Kp, Vi)

cusp

The multiplicities of these systems in Hc"usp(Y(GL2((5F)), C)
and M(Ks, Vinv) are 2" and 1, respectively.

m We can compute Hilbert modular forms via algebraic modular
forms!
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Hecke operators

feM(\V,K)+— {f(g),....f(gn)}

m pprime, w € G(Qp) = G(Af), KrwKr = ][, wiKr
u Define T(w) : M(V, K¢) — M(V, Kf) by

(| T (@) (xKs) = fow,Kf

Knowing {f(g;)}, how do we compute (f|T(w))(g)?
m gw;Kr = 7ij8k(ij)Kr for some ;; € G(Q)
m G(Q)-equivariance of f = (f|T(w))(gi) = f(&k(ij))-
m To compute v;j, gk(ij), we need a reduction algorithm.
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Previous work

m Lansky & Pollack = G = G, over
= key fact: Go(Q)Ga(Z) = Gy(Af)

m Dembélé, Dembélé & Donnelly — F/Q totally real, B/F totally
definite quaternion algebra, G = B*

m principal ideal testing/ideal principalization
m Cunningham, Dembélé - B = H ® Q(v/5), G = GUy(B)
m Loeffler — U(3) relative to Q(+/—7)/Q

m some clever “ad-hoc” methods
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My goal

m Develop unified approach, systematic algorithms for computing
with algebraic modular forms based on lattice algorithms.

m Implement them.

Rest of the talk:

m 'l describe some progress with orthogonal and (maybe) unitary
groups.

m For these, | can compute Hecke operators on algebraic modular
forms at split primes when K¢ = G(Z).
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Orthogonal groups

m Let
q: 72" x 71" — 7

be a positive-definite, symmetric bilinear form.
m Let Q be its matrix and, for a Z-algebra R, define
O(Q)(R) = {A € GL,(R) : AQA" = Q}.
m Since Q is positive-definite, O(Q)(R) = O(m) is compact.
m Thus, we may consider algebraic modular forms for

G :=0(Q).
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Split, even orthogonal groups (local theory)

m Suppose
q(x,x) = x? + x3, Q=1

m Suppose p =1 (mod 4) and let i € Q, be a square root of —
Setting
up = x1 + ixg, Uy = X1 — X,
we have

01
q(u,u) = 1y, Q ~q, (1 0) :

m A 2-dimensional quadratic space equipped with the quadratic
form q(u, u) = wu, is called a hyperbolic plane.

m An (even) orthogonal group associated to a direct sum of
hyperbolic planes is called split.

1.
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m Suppose G = O(Q), where

0 I
Q:(/n 0)'

m Then for any field extension E of Q,

A B AtB and C!D skew symmetric,
G(E) = {(C D> € GLan(E) : Py } |

T(E) = {(é‘ A(L) € G(E): A diagonal},

B A B _ A diagonal,
B(E) = {(O tAl) € G(E): AtB skew—symmetriC} '
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m We say that ey,...,e,,f1,...,f, is a Witt basis of V if each pair
{ei, f;} spans a hyperbolic plane.

m Theorem: (Invariant factors) Let L and M be two unimodular
lattices in Q2". Then there is

e,...,enf,... 1
of L, and integers
aza>-->a,>0,

such that
paleb ce 7panen7 pialfla SR pianfn

is a Witt basis of M.
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m Corollary: G(Q),) acts transitively on the set of unimodular
lattices L C Q,z,”.

m Let
Ky = GL2”(ZP) n G(Qp)7

AT = {diag(pala cee 7Pan,7T_al,. .. ,p_a”) tap > - 'an}
C T(Qp).

m Corollary: (p-adic Cartan decomposition)
Let g € G(Q,). Then the double coset K,gK, contains a unique
element of A™.
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Let
P = diag(p,1,...,1,p 1, 1,...,1) € AT,
The following sets are in canonical bijection:
K,PK,/Kj,,
the set of lattices in Q2" with invariant factors p,p~',1,...,1
with respect to £, = Z2".
the set of isotropic lines in £,/pL,,
@ the set of F,-rational points of the hypersurface V(q) C P2"1.
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Lattices (global theory)

Equivalence and local equivalence
Let L and M be lattices in V = Q™.

m L and M are equivalent if there is a linear isomorphism
f: L — M such that

q(f(x), f(y)) = q(x,y).

m L and M are locally equivalent if, for each p, there is a linear
isomorphism f, : L ® Z, - M ® Z, such that

a(fo(x), f(y)) = a(x, y).

m Clearly, equivalence implies local equivalence.
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The genus of a lattice

m The genus of a lattice L in V, written gen L, is the local
equivalence class of L.

m Given unimodular L, C V ® Q, for each p such that L, = Z7
for all but finitely many p, then there is a unique lattice L such
that L® Z, = L, for all p.

m If L, and M, are unimodular lattices in V ® Q,, then there is a
matrix A, € O(Q)(Qp) such that AL, = M,
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Adelic description of the genus of L, :=Z™
m genL, = G(Af)/G(Z)

m G(Q)\genL. = G(Q)\G(Ar)/G(Z)

m h(L,) = h(gen L.) := |G(Q)\G(As)/G(Z)|
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Lattice enumeration — Kneser's method

Enumeration of quadratic forms in n variables
Vol, V1I1, 1957 241
Klassenzahlen definiter quadratischer Formen

Von Marrix Kxeser in Heidelberg

Satz 3. Die Klassenzahl h(n, d) der positiv definiten quadratischen Formen in n Ver-
inderlichen mit der Diskriminante d hat fiir d = 3, n 4- d = 17 die Werle:

n e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d=1 11 1 1 r o1 1 2 2 2 2 3 3 4 5 8
d -2 P11 1 1 1 2 2 3 3 4 4 6 711

d =3 12 2 2 2 3 3 4 5 7T 8 10 13 18

m Scharlau & Hemkemeyer, Math. Comp. (1998) — implementation
of Kneser's method as an algorithm, large scale computations
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p-neighbours

m Lattices L and M in Q2" are called p-neighbours if L N M has
index p in both L and M.

m Theorem. Suppose x € L — pL and q(v,v) € p?Z. Then

L(x):={y € L: q(x,y) € pZ} + p~'x

is a p-neighbour of L. All p-neighbours arise in this fashion, and
L(x) is completely determined by the line of class of x in L/pL.
Finally, L(x) € gen L.

m Theorem. You can compute gen L by computing p-neighbours
for enough p.
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Suppose (V, Q) is split at p. Let
P = diag(p,1,...,1,p 1, 1,...,1) € A",

The following sets are in canonical bijection:
KPK /K, where K = G(Z),
H the set of unimodular lattices in Q2" with invariant factors at p
equal to p, p~',1,...,1 with respect to Z3".

the set of isotropic lines in L, /pL.,
@ the set of F,-rational points of the hypersurface V(q) C P?"1,

H p-neighbours of L,.
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Hecke operators for G = O(q) at split p

feM(\V,K)+— {f(g),....f(gn)}

B wWE G(Qp) — G(Af), KrooKr = H’-w,'Kf
m Define T(w) : M(V, K¢) — M(V, K¢) by

(| T (@) (xKs) = fow,Kf

Knowing {f(g;)}, how do we compute (f|T(w))(g)?

m gw;Kr = 7ij8k(ij)Kr for some ;; € G(Q)
m G(Q)-equivariance of f = (f|T(w))(gi) = f(&k(ij))-
m To compute v;j, gk(ij), we need a reduction algorithm.
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Reduction

m We must be able to test lattices for isomorphism.
m algorithm due to Plesken and Souvignier
m matches up short vectors

m also used to compute automorphism group of a lattice
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Unitary groups associated to CM fields

K /Q imaginary quadratic

For simplicity, assume Oy is a PID.
For a Q-algebra A, define

G(A) = {x e GL,(K® A) : xx*

I
—_
—~

K imaginary = GL,(K ® R) = GL,(C)

G(R) = {x € GL,(C) : x&* = 1} = U(n)

G(R) = U(n) is compact
p split in K =

G(Qp) = {(x,¥) € GLo(K ® Q,) = GLs(Q,)* :

(Y5 xT) =11 = GLa(Qp),  (x,y) +—y
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Xk and Hermitian lattices

m (K", H) nondegenerate Hermitian space:

H:K"x K"= K, H(x,y)= Zx,y,

L := {Hermitian lattices in K"}
standard lattice: Lo = O} € L
G(Af) acts on L:

g - L =unique M C K" such that M, = g, L, for all v

K := stabga,) Lo is a maximal compact subgroup of G(Af).
Define the genus of Ly by gen Ly := G(Af) - Lo.

G(Af)/K <— gen L
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Equivalence of Hermitian lattices

m We write L = M if 7L = M for some v € G(Q).
m cl L := equivalence class of L

Fundmental finiteness theorem

Every genus of Hermitian lattices in K" is the union of finitely many
equivalence classes.

Xk = G(Q)\G(Ar)/K +— G(Q)\ gen Ly = {clLo,...,clLy}

m h = class number of Ly

m Enumeration problem: Find representatives Ly, ..., L, for the
equivalence classes in gen Ly
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Lattice enumeration — Kneser's method

Enumeration of quadratic forms in n variables
Vol, V1I1, 1957 241
Klassenzahlen definiter quadratischer Formen

Von Marrix Kxeser in Heidelberg

Satz 3. Die Klassenzahl h(n, d) der positiv definiten quadratischen Formen in n Ver-
inderlichen mit der Diskriminante d hat fiir d = 3, n 4- d = 17 die Werle:

n e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d=1 11 1 1 r o1 1 2 2 2 2 3 3 4 5 8
d -2 P11 1 1 1 2 2 3 3 4 4 6 711

d =3 12 2 2 2 3 3 4 5 7T 8 10 13 18

m Scharlau & Hemkemeyer, Math. Comp. (1998) — implementation
of Kneser's method as an algorithm, large scale computations
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m Hoffman, Manuscripta Math. (1991) — variant of Kneser's

method for unitary groups, calculations by hand (?)

m Schiemann, J. Symbolic Comput. (1998) — computer
implementation of unitary variant of Kneser's method, large

scale computations

Class numbers of Hermitian lattices

Table 1.
A hH ha ha ha hs he hy hs ho hio
-3 17T 1 1 1 1 2 2 3 4 6
(2 1) (2) (2 (2
-4 117 1 1 1+1 2 3 4 643 12 25
M 2 2 @@ @ @
-7 117 1 2 3 5 11 26 71 201 2225
2 (2 @ (2 (2) (2) [ CY)
-8 11 1+1 2 3+2 7 1545 38 142426
(W @ @ (2 22 2 (3@
;11 11 2 2 6 10 39 112 1027
@ o 2 @ (3) (3) (9
15 21 2 5 14 48 238 2120
2 @ @ @ (3) (4)
11(2) 2 5 14 48 240 2120
@ @ @ @ ) (4)
-9 171 2 3 12 32 290 5225
2 @ @3 3 4) )
-20 271 3 6 18+13 98 879
(2 3 69 @ @)
11(2) 142 6 21 98 7734158
me @ 2 @ (4)(4)
23 31 9 30 126 768 8895

49 /55



p-neighbours

m Suppose p splits in K, p = pp.
m M is a p-neighbour of L if there is a basis {v;} of L such that

M=pp'vi DOva @ - ® Okvy_1 ® Ok V.

Constructing p-neighbours
m Let {x;} € pL be representatives for P(pL/pL) ~ P"1(F,).
m Set
L(xi) =p~"x +{y € L: H(x;y) € p}
m The L(x;) are well defined and distinct.
m They are the p-neighbours of L.
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p-neighbour of L associated to x € pL — pL

L(x) = p_1x+;{y €L:H(x,y) e p}/

-~

Lx

Example: Let m € p — p?. Then

L=1Ly, x=(7,0,...,0), L(x)=pptooOi!

m (7/m,0,...,0) generates L(x)/LN L(x) ~ Z/pZ.
m (1,0,...,0) generates L/LN L(x) =L/L, =~ Z/pZ.
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Properties of p-neighbours
If M is a p-neighbour of L, we write L oM.

s LS MeMEL
m L5 M= Megenl
m M € gen® L (special genus) =

L=Lo~ L% S L,=M=M

m If K is a PID, then gen® L = gen L and every class [M] € gen L
can be connected to L by a chain of p-neighbours.

Enumeration algorithm

m keep generating p-neighbours, testing for (in)equivalence using
Hermitian version of Plesken-Souvignier algorithm

m Siegel-type mass formula tells you when to stop
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p-neighbours and Hecke operators

L(xi)y = (5P71V1 BOkva @ -+ B OgVp_1 @ OkVy)p
= p’lzpvl @ ZLpVn_1 D ZLpVvy.

L(x)s = (Fp'vi ® Okva @ -+ - ® Ok Vi1 D Ok vi)j
= pZLip\s @ -+ LipVn—1 D ZpVy.
If o =diag(p,1,...,1) € GL,(Q,)* = G(Q,) — G(Ar) and
L=g- Ly g€ G(Ay), then
{L(x)} +— Kg(w,'@ K/K.

It follows that
(F1T (@, '@ ))(L) =D F(L)
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A slight generalization

m Suppose X C pL — pL is such that X is a (k — 1)-plane in
P(pL/pL), 1 <k <n-—1.
m We can define a (p, k)-neighbour L(X) of L such that

{L(X)} «— Kg(=, '@ K/K,

where L=g- Lo and w = (p,...,p,0,...,0).
k k

(FIT(w, = ))(L) =D f(L).

LA

m We have:
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To-do list/questions

m Write more code!

m How do you compute Hecke operators at nonsplit primes? (Need
to understand Bruhat-Tits theory.)

m lwahori level structure at some prime? Higher level structure?

m Adapt to to other groups where the Bruhat-Tits buildings can be
described in terms of lattice chains. Exceptional lie groups?

m algorithms for testing hermitian and quaternionic lattices for
equivalence
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