
Torsion, Rank and Integer Points on Elliptic Curves

Gary Walsh, University of Ottawa

June 2011

1



Overview

0. Introductory Remarks

2



Overview

0. Introductory Remarks

I. Torsion

3



Overview

0. Introductory Remarks

I. Torsion

II. Rank

4



Overview

0. Introductory Remarks

I. Torsion

II. Rank

III. Integer Points

5



Generalities

An elliptic curve defined over Q:

6



Generalities

An elliptic curve defined over Q:

y2 = x3 +Ax+B,

A,B ∈ Z, x3 +Ax+B has only simple roots.

(short Weierstrass model)
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Other Models of Elliptic Curves

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(general Weierstrass equation)
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Other Models of Elliptic Curves

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(general Weierstrass equation)

ax3 + by3 = c (general taxicab equation)

aX4 − bY 2 = c (quartic equations)

ax2 − by2 = c, dx2 − ez2 = f

(simultaneous Pell equations)
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Other Models of Elliptic Curves

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(general Weierstrass equation)

ax3 + by3 = c (general taxicab equation)

aX4 − bY 2 = c (quartic equations)

ax2 − by2 = c, dx2 − ez2 = f

(simultaneous Pell equations)

x2 + y2 = c2(1 + dx2y2) (Edwards Curves)

F (x, y) = 0 (F = 0 is a curve of genus 1)
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Primary Objects of Study

E(Q) = {(x, y) ∈ (Q)2; y2 = x3+Ax+B}
⋃
{∞},

the group of rational points on E.
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Primary Objects of Study

•E(Q) = {(x, y) ∈ Q2; y2 = x3 +Ax+B}∪{∞},

the group of rational points on E.

E(Q) ∼= T ⊕ Zr.

T is the torsion subgroup of E(Q), consist-

ing of the points on E of finite order, and

r = Rank(E).

•E(Z) = {(x, y) ∈ Z2;F (x, y) = 0},

where F (x, y) = 0 is a curve of genus 1.
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Effective Results

Wishlist:

Torsion: description of all possible groups, an
algorithm to compute torsion, specific values
for families of curves

Rank: finiteness, boundedness, upper bounds,
computational algorithm, connection to L-functions
(BSD)

Integral Points: finiteness, upper bounds, al-
gorithm to compute all points, specific results
for families of curves
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let T denote the subgroup of E(Q) consisting
of the points of finite order.

Then T has one of the following two forms
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I.1 Torsion - group structure

Mazur’s Theorem

Let E be an elliptic curve defined over Q, and
let T denote the subgroup of E(Q) consisting
of the points of finite order.

Then T has one of the following two forms

i. A cyclic group of order N with 1 ≤ N ≤ 10
or N = 12.

ii. The product of a cyclic group of order 2 and
a cyclic group of order 2N , with 1 ≤ N ≤ 4.
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I.1 Torsion - group structure

Kamienny’s Theorem

Let K be a quadratic field, and let E be an el-
liptic curve defined over K. Let T denote the
subgroup of E(K) consisting of the points of
finite order.

Then T has one of the following forms
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I.1 Torsion - group structure

Kamienny’s Theorem

Let K be a quadratic field, and let E be an

elliptic curve defined over K. Let T denote

the subgroup of E(K) consisting of the points

of finite order. Then T has one of the follow-

ing forms

i. A cyclic group of order N with 1 ≤ N ≤ 16

or N = 18.

ii. The product of a cyclic group of order 2

and a cyclic group of order 2N , with 1 ≤ N ≤ 6.

iii. The product of a cyclic group of order 3

and a cyclic group of order 2N , with 1 ≤ N ≤ 2.

iv. The product of two cyclic groups of or-

der 4.
27
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Merel’s Theorem
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I.1 Torsion - group structure

Merel’s Theorem

Let K be a number field of degree d > 1, and

let E be an elliptic curve defined over K. Let

T denote the subgroup of E(K) consisting of

the points of finite order.

If T contains a point of prime order p, then

p < d3d2
.
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I.1 Torsion - group structure

Merel’s Theorem

Let K be a number field of degree d > 1, and
let E be an elliptic curve defined over K. Let
T denote the subgroup of E(K) consisting of
the points of finite order.

If T contains a point of prime order p, then

p < d3d2

Corollary Let d be a positive integer. There is
a real number B(d) with the property that for
any elliptic curves E, defined over any number
field K of degree d, every torsion point in E(K)
has order bounded by B(d).
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I.2 Torsion - computation

Theorem (Nagell-1936,Lutz-1937)
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I.2 Torsion - computation

Theorem (Nagell-1936,Lutz-1937)

Let E be the elliptic curve defined by

y2 = f(x) = x3 + ax2 + bx+ c,

where f(x) is a nonsingular cubic curve with
integer coefficients a, b, c, and let

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

represent the discrimininant of f .
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integer coefficients a, b, c, and let

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

represent the discrimininant of f .

If P = (x, y) is a point of finite order on E,

then x and y are integers, and either

i. y = 0 (in which case P has order 2), or

ii. y divides D. (in fact y2 divides D)
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I.2 Torsion - computation

Theorem (Nagell-1936,Lutz-1937)

Let E be the elliptic curve defined by

y2 = f(x) = x3 + ax2 + bx+ c,

where f(x) is a nonsingular cubic curve with

integer coefficients a, b, c, and let

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

represent the discrimininant of f .

If P = (x, y) is a point of finite order on E,

then x and y are integers, and either

i. y = 0 (in which case P has order 2), or

ii. y divides D. (in fact y2 divides D)

This is an extremely useful computational tool.
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Computing Rational Torsion

• Put E into Weierstrass form:

E : y2 = f(x) = x3 + ax2 + bx+ c.

• Compute all possible torsion points P = (x, y)

by y2 | D(E), and Cardano’s formula for x.
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Computing Rational Torsion

• Put E into Weierstrass form:

E : y2 = f(x) = x3 + ax2 + bx+ c.

• Compute all possible torsion points P = (x, y)

by y2 | D(E), and Cardano’s formula for x.

• Compute mP for m ≤ 12 to determine finite-

ness of the order of P , and list off all torsion

points.
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Computing Rational Torsion

• Put E into Weierstrass form:

E : y2 = f(x) = x3 + ax2 + bx+ c.

• Compute all possible torsion points P = (x, y)

by y2 | D(E), and Cardano’s formula for x.

• Compute mP for m ≤ 12 to determine finite-

ness of the order of P , and list off all torsion

points.

• Finally, determine cyclicity of the case

|T | = 4k by

T = C4k iff f(x) = 0 has 3 integer roots

T = C2 × C2k iff f(x) = 0 has 1 integer root.

40



A Simple Example

41



A Simple Example

E : y2 = x3 + 1
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A Simple Example

E : y2 = x3 + 1

D(E) = 27, and so for (x, y) ∈ T (E), N-L im-
plies y ∈ {0,±1,±,3}, and
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A Simple Example

E : y2 = x3 + 1

D(E) = 27, and so for (x, y) ∈ T (E), N-L im-
plies y ∈ {0,±1,±,3}, and

T (E) ⊆ {∞, (−1,0), (0,1), (0,−1), (2,3), (2,−3)}.
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A Simple Example

E : y2 = x3 + 1

D(E) = 27, and so for (x, y) ∈ T (E), N-L im-
plies y ∈ {0,±1,±,3}, and

T (E) ⊆ {∞, (−1,0), (0,1), (0,−1), (2,3), (2,−3)}.

Let P = (2,3), then

2P = (0,1),3P = (−1,0),2(−1,0) =∞,
and so
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A Simple Example

E : y2 = x3 + 1

D(E) = 27, and so for (x, y) ∈ T (E), N-L im-
plies y ∈ {0,±1,±,3}, and

T (E) ⊆ {∞, (−1,0), (0,1), (0,−1), (2,3), (2,−3)}.

Let P = (2,3), then

2P = (0,1),3P = (−1,0),2(−1,0) =∞,
and so

T (E) ∼= C6.
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A Family of Curves

Ek : y2 = x3 + k, p6 6 |k
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A Family of Curves

Ek : y2 = x3 + k, p6 6 |k

All nontrivial torsion points are as follows:

1. If k = C2, then (0,±C) are of order 3.

2. If k = D3, then (−D,0) is of order 2.

3. If k = 1, then (2,±3) are of order 6.

4. If k = −432, then (12,±36) are of order 3.
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A Family of Curves

Ek : y2 = x3 + k, p6 6 |k

All nontrivial torsion points are as follows:

1. If k = C2, then (0,±C) are of order 3.

2. If k = D3, then (−D,0) is of order 2.

3. If k = 1, then (2,±3) are of order 6.

4. If k = −432, then (12,±36) are of order 3.

Proof: First observe that x2P = (w − 2)xP ,

where w = 9x3
P/4y2

P . Then use the Nagell-

Lutz theorem to show that w ∈ Z, and that for

|w − 2| > 1, P cannot have odd order.
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Another Family of Curves

EA : y2 = x3 +Ax, p4 6 |A
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Another Family of Curves

EA : y2 = x3 +Ax, p4 6 |A

Remark. EA is related to Diophantine equa-

tions of the form u2 − dy4 = k with A = kd.
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Another Family of Curves

EA : y2 = x3 +Ax, p4 6 |A

Remark. EA is related to Diophantine equa-
tions of the form u2 − dy4 = k with A = kd.

The nontrivial torsion points on EA are:

1. (0,0) is a point of order 2.
2. If A = 4, then (2,±4) are of order 4.
3. If A = −C2, then (±C,0) is of order 2.
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Another Family of Curves

EA : y2 = x3 +Ax, p4 6 |A

Remark. EA is related to Diophantine equa-
tions of the form u2 − dy4 = k with A = kd.

The nontrivial torsion points on EA are:

1. (0,0) is a point of order 2.
2. If A = 4, then (2,±4) are of order 4.
3. If A = −C2, then (±C,0) is of order 2.

Proof. First observe that x2P = (x2
P−A)2/4y2

P ,
then a detailed elementary 2-adic analysis shows
that if P is of odd order, then 24 divides A.
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Williams Curves

Em : y2 = x3−(3m4+24m)x+(−2m6+40m3+16)
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Williams Curves

Em : y2 = x3−(3m4+24m)x+(−2m6+40m3+16)

Remark. Em is related to the existence of a
pure cubic unit with rational summand x = m.
((x+ yD1/3 + zD2/3)/3.

55



Williams Curves

Em : y2 = x3−(3m4+24m)x+(−2m6+40m3+16)

Remark. Em is related to the existence of a
pure cubic unit with rational summand x = m.
((x+ yD1/3 + zD2/3)/3.

Remark Pm = (3m2,4(m3 − 1)) is of order 3
on Em.
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Williams Curves

Em : y2 = x3−(3m4+24m)x+(−2m6+40m3+16)

Remark. Em is related to the existence of a
pure cubic unit with rational summand x = m.
((x+ yD1/3 + zD2/3)/3.

Remark Pm = (3m2,4(m3 − 1)) is of order 3
on Em.

Theorem (Herrmann-W, 2003)
For all integers m 6= 1,

T (Em) ∼= C3.

Note: E1 is singular
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(Start of) Proof. Because Em has a point of

order 3, Mazur’s theorem implies T (Em) is one

of

C3, C6, C9, C12, C2 × C6.
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(Start of) Proof. Because Em has a point of

order 3, Mazur’s theorem implies T (Em) is one

of

C3, C6, C9, C12, C2 × C6.

Point: need to rule out the existence of points

of order 2 and 9.
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C3, C6, C9, C12, C2 × C6.

Point: need to rule out the existence of points

of order 2 and 9.

P = (x, y) of order 2 on Em satisfies

F (x,m) = 0, x,m ∈ Z

where
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(Start of) Proof. Because Em has a point of

order 3, Mazur’s theorem implies T (Em) is one

of

C3, C6, C9, C12, C2 × C6.

Point: need to rule out the existence of points

of order 2 and 9.

P = (x, y) of order 2 on Em satisfies

F (x,m) = 0, x,m ∈ Z

where

F (X,Y ) = X3−(3Y 4+24Y )X+(−2Y 6+40Y 3+16).
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(Start of) Proof. Because Em has a point of

order 3, Mazur’s theorem implies T (Em) is one

of

C3, C6, C9, C12, C2 × C6.

Point: need to rule out the existence of points

of order 2 and 9.

P = (x, y) of order 2 on Em satisfies

F (x,m) = 0, x,m ∈ Z

where

F (X,Y ) = X3−(3Y 4+24Y )X+(−2Y 6+40Y 3+16).

F = 0 is a curve of genus 0, leading to

t(t2 − 3m) = 2, t ∈ Z

and eventually to m = 1.
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If there is a point P = (x, y) on Em of order 9,

then there is such a point which satisfies

3P = Pm = (3m2,4(m3 − 1)),
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If there is a point P = (x, y) on Em of order 9,

then there is such a point which satisfies

3P = Pm = (3m2,4(m3 − 1)),

which translates into

f(x,m) = 0, x,m ∈ Z

where

f(X,Y ) = X9 + a8(Y )X8 + · · ·+ a0(Y ),

with
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If there is a point P = (x, y) on Em of order 9,

then there is such a point which satisfies

3P = Pm = (3m2,4(m3 − 1)),

which translates into

f(x,m) = 0, x,m ∈ Z

where

f(X,Y ) = X9 + a8(Y )X8 + · · ·+ a0(Y ),

with

a8 = −27Y 2

a7 = 36Y 4 + 288Y

a6 = 516Y 6 − 1248Y 3 − 1536

a5 = 702Y 8 − 4320Y 5 + 13284Y 2

a4 = −954Y 10 − 11232Y 7 − 27648Y 4 + 9216Y

a3 = −3372Y 12 + 96Y 9 + 322560Y 6 − 270336Y 3 + 12288

a2 = −3564Y 14 + 49248Y 11 − 622080Y 8 + 165888Y 5 + 331776Y 2

a1 = −1719Y 16 + 65376Y 13 + 548352Y 10 − 589824Y 7 + 626688Y 4 − 589824Y

a0 = −323Y 18 + 24672Y 15 − 823296Y 12 + 1586176Y 9 − 1265664Y 6 + 196608Y 3 + 262144.
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Part II: The Rank of E
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Part II: The Rank of E

The Mordell-Weil Theorem The group E(Q)

is finitely generated.
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Part II: The Rank of E

The Mordell-Weil Theorem The group E(Q)

is finitely generated.

Proof

• properties of height functions on E

• [E : 2E] is finite

• Descent theorem
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Computing the Rank of y2 = x3 +Ax
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Computing the Rank of y2 = x3 +Ax

E(Q) ∼= Z× · · · × Z× Z/pn1
1 Z× Z/pnkk Z

r is the number of copies of Z.
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Computing the Rank of y2 = x3 +Ax

E(Q) ∼= Z× · · · × Z× Z/pn1
1 Z× Z/pnkk Z

r is the number of copies of Z.

If G = Z/pnii Z, then

[G : 2G] =

{
2 if p = 2,
1 otherwise,
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Computing the Rank of y2 = x3 +Ax

E(Q) ∼= Z× · · · × Z× Z/pn1
1 Z× Z/pnkk Z

r is the number of copies of Z.

If G = Z/pnii Z, then

[G : 2G] =

{
2 if p = 2,
1 otherwise,

therefore

[E(Q) : 2E(Q)] = 2r · 2q,
where q is the number of i with pi = 2.
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Computing the Rank of y2 = x3 +Ax

E(Q) ∼= Z× · · · × Z× Z/pn1
1 Z× Z/pnkk Z

r is the number of copies of Z.

If G = Z/pnii Z, then

[G : 2G] =

{
2 if p = 2,
1 otherwise,

therefore

[E(Q) : 2E(Q)] = 2r · 2q,
where q is the number of i with pi = 2.

Need to understand [2] : E → E.
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Some Maps

Given E : y2 = x3 +Ax, define

E : y2 = x3 − 4Ax.

Notice that E is given by y2 = x3 + 24Ax, and

ψ : E → E, given by

ψ(x, y) = (x/4, y/8),

is an isomorphism.
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Some Maps

Given E : y2 = x3 +Ax, define

E : y2 = x3 − 4Ax.

Notice that E is given by y2 = x3 + 24Ax, and

ψ : E → E, given by

ψ(x, y) = (x/4, y/8),

is an isomorphism.

Lemma For P = (x, y) ∈ E, define

φ(P ) =

{
OE if P = O, P = (0,0),

(x+A/x, y/x(x−A/x)) otherwise.

Then φ is a homomorphism from E to E with

Ker(φ) = {O, (0,0)}.
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Some Maps

Given E : y2 = x3 +Ax, define

E : y2 = x3 − 4Ax.

Notice that E is given by y2 = x3 + 24Ax, and

ψ : E → E, given by

ψ(x, y) = (x/4, y/8),

is an isomorphism.

Lemma For P = (x, y) ∈ E, define

φ(P ) =

{
OE if P = O, P = (0,0),

(x+A/x, y/x(x−A/x)) otherwise.

Then φ is a homomorphism from E to E with

Ker(φ) = {O, (0,0)}.

φ : E → E is similarly defined.
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Factoring [2]

Lemma For all P ∈ E,

[2]P = ψφφ(P ).
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Factoring [2]

Lemma For all P ∈ E,

[2]P = ψφφ(P ).

Lemma

2r+2 = [E(Q) : φ(E(Q))] · [E(Q) : φ(E(Q))]
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One More Map
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One More Map

For x ∈ Q∗, let [x] denote the coset of x in
Q∗/Q∗2.

For example [9/8] = 1/2.
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One More Map

For x ∈ Q∗, let [x] denote the coset of x in

Q∗/Q∗2.

For example [9/8] = 1/2.

Define α : E(Q)→ Q∗/Q∗2 by

α(O) = 1, α((0,0)) = [A],

and for P = (x, y) with x 6= 0,

α(P ) = [x].
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One More Map

For x ∈ Q∗, let [x] denote the coset of x in

Q∗/Q∗2.

For example [9/8] = 1/2.

Define α : E(Q)→ Q∗/Q∗2 by

α(O) = 1, α((0,0)) = [A],

and for P = (x, y) with x 6= 0,

α(P ) = [x].

Lemma α(E(Q)) ∼= E(Q)/φ(E(Q)).
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A Computational Tool for the Rank

E = EA : y2 = x3 +Ax
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A Computational Tool for the Rank

E = EA : y2 = x3 +Ax

Corollary 2r+2 = |α(E(Q))| · |α(E(Q))|.
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A Computational Tool for the Rank

E = EA : y2 = x3 +Ax

Corollary 2r+2 = |α(E(Q))| · |α(E(Q))|.

Theorem The group α(E) consists of 1, [A],±[x]

(if −A = x2 for some x ∈ N), and those [d] such

that d is a (positive or negative) divisor of A

(d 6= 1, A) with the property that

dS4 + (A/d)T4 = U2

is solvable in positive integers S, T, U , with gcd(A/d, S) =

1.

A similar statement holds for α(E).
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An Example:

E : y2 = x3 − 17x and E : y2 = x3 + 68x.
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E : y2 = x3 − 17x and E : y2 = x3 + 68x.

1,−17 ∈ α(E), and we need only check −1,17:
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1,−17 ∈ α(E), and we need only check −1,17:

−S4 + 17T4 = U2, 17S4 − T4 = U2

are solvable in positive integers, so

|α(E)| = 4.
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An Example:

E : y2 = x3 − 17x and E : y2 = x3 + 68x.

1,−17 ∈ α(E), and we need only check −1,17:

−S4 + 17T4 = U2, 17S4 − T4 = U2

are solvable in positive integers, so

|α(E)| = 4.

1,17 ∈ α(E), and we need only check 2,34:
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An Example:

E : y2 = x3 − 17x and E : y2 = x3 + 68x.

1,−17 ∈ α(E), and we need only check −1,17:

−S4 + 17T4 = U2, 17S4 − T4 = U2

are solvable in positive integers, so

|α(E)| = 4.

1,17 ∈ α(E), and we need only check 2,34:

2S4 + 34T4 = U2, 34S4 + 2T4 = U2

are solvable in positive integers, so

|α(E)| = 4.

91



An Example:

E : y2 = x3 − 17x and E : y2 = x3 + 68x.

1,−17 ∈ α(E), and we need only check −1,17:

−S4 + 17T4 = U2, 17S4 − T4 = U2

are solvable in positive integers, so

|α(E)| = 4.

1,17 ∈ α(E), and we need only check 2,34:

2S4 + 34T4 = U2, 34S4 + 2T4 = U2

are solvable in positive integers, so

|α(E)| = 4.

Therefore, 2r+2 = 4 · 4 = 16, hence r = 2.
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A Theorem of Blair Spearman
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A Theorem of Blair Spearman

Theorem If p is a rational prime of the form

p = u4 + v4, then the rank over Q of

Ep : y2 = x3 − px

is equal to 2.
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A Theorem of Blair Spearman

Theorem If p is a rational prime of the form

p = u4 + v4, then the rank over Q of

Ep : y2 = x3 − px

is equal to 2.

Proof Compute |α(Ep)| and |α(Ep)|.
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A Theorem of Blair Spearman

Theorem If p is a rational prime of the form

p = u4 + v4, then the rank over Q of

Ep : y2 = x3 − px

is equal to 2.

Proof Compute |α(Ep)| and |α(Ep)|.

We automatically have 1,−p ∈ α(Ep), so we

just need to show −1, p ∈ α(Ep), which means

showing that

−S4 + pT4 = U2

is solvable with gcd(S, p) = 1, and that

pS4 − T4 = U2

is solvable with gcd(S,−1) = 1.
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Put (S, T, U) = (u,1, v2) in the first case and
(S, T, U) = (1, u, v2) in the second case.
It follows that |α(Ep)| = 4.
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Put (S, T, U) = (u,1, v2) in the first case and

(S, T, U) = (1, u, v2) in the second case.

It follows that |α(Ep)| = 4.

Similarly we have 1, p ∈ α(Ep), so we just need

to show 2,2p ∈ α(Ep), which means showing

that

2S4 + 2pT4 = U2

is solvable with gcd(S,2p) = 1 and

2pS4 + 2T4 = U2

is solvable with gcd(S,2) = 1.
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Put (S, T, U) = (u,1, v2) in the first case and

(S, T, U) = (1, u, v2) in the second case.

It follows that |α(Ep)| = 4.

Similarly we have 1, p ∈ α(Ep), so we just need

to show 2,2p ∈ α(Ep), which means showing

that

2S4 + 2pT4 = U2

is solvable with gcd(S,2p) = 1 and

2pS4 + 2T4 = U2

is solvable with gcd(S,2) = 1.

Put (S, T, U) = (u− v,1,2(u2 − uv + v2)).

(p = u4 + v4 ⇒gcd(S,2p) = (u− v,2p) = 1)
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Put (S, T, U) = (u,1, v2) in the first case and

(S, T, U) = (1, u, v2) in the second case.

It follows that |α(Ep)| = 4.

Similarly we have 1, p ∈ α(Ep), so we just need

to show 2,2p ∈ α(Ep), which means showing

that

2S4 + 2pT4 = U2

is solvable with gcd(S,2p) = 1 and

2pS4 + 2T4 = U2

is solvable with gcd(S,2) = 1.

Put (S, T, U) = (u− v,1,2(u2 − uv + v2)).

(p = u4 + v4 ⇒gcd(S,2p) = (u− v,2p) = 1)

Thus, |α(Ep)| = 4, and 2r+2 = 4 · 4 = 16,

and

rankEp = 2.
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III. Integer Points on Elliptic Curves

Theorem (Siegel, 1929) Let F ∈ Z[X,Y ]. If

the curve F (X,Y ) = 0 represents a curve of

genus 1, then there are only finitely many in-

tegers x, y for which F (x, y) = 0.
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III. Integer Points on Elliptic Curves

Theorem (Siegel, 1929) Let F ∈ Z[X,Y ]. If

the curve F (X,Y ) = 0 represents a curve of

genus 1, then there are only finitely many in-

tegers x, y for which F (x, y) = 0.

Theorem (Baker and Coates, 1970) Let

F ∈ Z[X,Y ] of total degree n and height H.

If the curve F (X,Y ) = 0 represents a curve of

genus 1, and x, y are integers satisfying F (x, y) =

0, then

max(|x|, |y|) < exp exp exp((2H)10n
10

.
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Computing All Integer Points on a Curve
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.
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• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .

2. S. David’s bound for linear forms in elliptic

logarithms to get a (large) bound for M :

P = PT + k1P1 + · · ·+ krPr

and P ∈ E(Z) implies ki < M .
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .

2. S. David’s bound for linear forms in elliptic

logarithms to get a (large) bound for M :

P = PT + k1P1 + · · ·+ krPr

and P ∈ E(Z) implies ki < M .

3. De Weger’s reduction procedure to reduce

M : M → log(M).
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .

2. S. David’s bound for linear forms in elliptic

logarithms to get a (large) bound for M :

P = PT + k1P1 + · · ·+ krPr

and P ∈ E(Z) implies ki < M .

3. De Weger’s reduction procedure to reduce

M : M → log(M).

4. Enumerate the remaining cases.
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .

2. S. David’s bound for linear forms in elliptic

logarithms to get a (large) bound for M :

P = PT + k1P1 + · · ·+ krPr

and P ∈ E(Z) implies ki < M .

3. De Weger’s reduction procedure to reduce

M : M → log(M).

4. Enumerate the remaining cases.

Let E : y2 = x3 + 877x. E(Q) =< P2, (u, v) >
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Computing All Integer Points on a Curve

• Packages exist which have programs to com-

pute all integer points on an elliptic curve:

MAGMA, PARI, KASH, SIMATH.

Elliptic Method

1. Compute generators for

E(Q) ∼= T⊕ < P1 > ⊕ · · ·⊕ < Pr > .

2. S. David’s bound for linear forms in elliptic

logarithms to get a (large) bound for M :

P = PT + k1P1 + · · ·+ krPr

and P ∈ E(Z) implies ki < M .

3. De Weger’s reduction procedure to reduce

M : M → log(M).

4. Enumerate the remaining cases.

Let E : y2 = x3 + 877x. E(Q) =< P2, (u, v) >

u = 375494528127162193105504069942092792346201
62159877768644257535639389356838044100

111



A Hybrid Theorem

Theorem (W, 2010) Let N denote a square-

free positive integer, and let

E : y2 = x3 −Nx.

Then there are at most

48 · 3ω(N)

integer points (X,Y ) on E with

|X| > max
D|N,D>1

6|N/D|20ε23
D

D6
,

where ω(D) is the number of prime factors of

D and εD is the fundamental unit in Q(
√
D).
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A Hybrid Theorem

Theorem (W, 2010) Let N denote a square-

free positive integer, and let

E : y2 = x3 −Nx.

Then there are at most

48 · 3ω(N)

integer points (X,Y ) on E with

|X| > max
D|N,D>1

6|N/D|20ε23
D

D6
,

where ω(D) is the number of prime factors of

D and εD is the fundamental unit in Q(
√
D).

Main Tool Siegel’s method for irrationality

measure in Diophantine Approximation applied

to algebraic numbers of degree 4.
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Integral Points on Spearman’s Curves
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Integral Points on Spearman’s Curves

Theorem (W,2009) Let p be an odd prime

and Ep : y2 = x3 − px. There exist at most 4

integral points (x, y) on Ep with y > 0, and a

complete description of those integral points is

as follows.
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Integral Points on Spearman’s Curves

Theorem (W,2009) Let p be an odd prime

and Ep : y2 = x3 − px. There exist at most 4

integral points (x, y) on Ep with y > 0, and a

complete description of those integral points is

as follows.

1. If p = 2u2 − 1 for some integer u, then

(x, y) = (u2, u(u2 − 1)) ∈ Ep.

2. If p = u4 + v2 for some integers u, v, then

(x, y) = (−u2, uv) ∈ Ep.

3. If εp = T + U
√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =

(pu2, puT ) ∈ Ep.
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Integral Points on Spearman’s Curves

Theorem (W,2009) Let p be an odd prime
and Ep : y2 = x3 − px. There exist at most 4
integral points (x, y) on Ep with y > 0, and a
complete description of those integral points is
as follows.

1. If p = 2u2 − 1 for some integer u, then
(x, y) = (u2, u(u2 − 1)) ∈ Ep.

2. If p = u4 + v2 for some integers u, v, then
(x, y) = (−u2, uv) ∈ Ep.

3. If εp = T + U
√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =
(pu2, puT ) ∈ Ep.

Proof Relies on an irrationality measure for a
class of algebraic numbers of degree 4 follow-
ing Thue’s method (Chen and Voutier, 1997).
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Integral Points on Spearman’s Curves

Theorem (W,2009) Let p be an odd prime
and Ep : y2 = x3 − px. There exist at most 4
integral points (x, y) on Ep with y > 0, and a
complete description of those integral points is
as follows.

1. If p = 2u2 − 1 for some integer u, then
(x, y) = (u2, u(u2 − 1)) ∈ Ep.

2. If p = u4 + v2 for some integers u, v, then
(x, y) = (−u2, uv) ∈ Ep.

3. If εp = T + U
√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =
(pu2, puT ) ∈ Ep.

Proof Relies on an irrationality measure for a
class of algebraic numbers of degree 4 follow-
ing Thue’s method (Chen and Voutier, 1997).
Exercise The maximum of 4 is attained!!
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An Extension of Spearman’s Theorem

Theorem (W,2010) Let p denote an odd prime,

and let Ep : y2 = x3 − px. Classify the integer

points (x, y) on Ep with y > 0 as follows:
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An Extension of Spearman’s Theorem

Theorem (W,2010) Let p denote an odd prime,

and let Ep : y2 = x3 − px. Classify the integer

points (x, y) on Ep with y > 0 as follows:

i. If p = 2u2 − 1 for some integer u, then

(x, y) = (u2, u(u2 − 1)) ∈ Ep.
ii. If p = u4 + v2 for some integers u, v, then

(x, y) = (−u2, uv) ∈ Ep.
iii. If εp = T + U

√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =

(pu2, puT ) ∈ Ep.
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An Extension of Spearman’s Theorem

Theorem (W,2010) Let p denote an odd prime,

and let Ep : y2 = x3 − px. Classify the integer

points (x, y) on Ep with y > 0 as follows:

i. If p = 2u2 − 1 for some integer u, then

(x, y) = (u2, u(u2 − 1)) ∈ Ep.
ii. If p = u4 + v2 for some integers u, v, then

(x, y) = (−u2, uv) ∈ Ep.
iii. If εp = T + U

√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =

(pu2, puT ) ∈ Ep.

If Ep contains two integer points (x, y) with

y > 0, then the rank of Ep is 2 except possibly

if the two integer points are of type ii. and iii.
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An Extension of Spearman’s Theorem

Theorem (W,2010) Let p denote an odd prime,
and let Ep : y2 = x3 − px. Classify the integer
points (x, y) on Ep with y > 0 as follows:

i. If p = 2u2 − 1 for some integer u, then
(x, y) = (u2, u(u2 − 1)) ∈ Ep.
ii. If p = u4 + v2 for some integers u, v, then
(x, y) = (−u2, uv) ∈ Ep.
iii. If εp = T + U

√
p satisfies Norm(εp) = −1

and U = u2 for some integer u, then (x, y) =
(pu2, puT ) ∈ Ep.

If Ep contains two integer points (x, y) with
y > 0, then the rank of Ep is 2 except possibly
if the two integer points are of type ii. and iii.

Example Spearman’s curves have two points
of type ii. If p = 577, Ep has one point of each
type and by the Theorem, rank(E577) = 2.

122



Reduction to a Thue Equation

All integer solutions (x, y) to

x2 − (22m + 1)y2 = −22m (∗)

arise from

x+y
√

22m + 1 = ±(±1+
√

22m + 1)(2m+
√

22m + 1)2i

for some i ≥ 0.

Put Tk + Uk

√
22m + 1 = (2m +

√
22m + 1)k

A solution (x, y) to (∗) with y = Y 2

is equivalent to

Y2 = T2k ±U2k = (Tk ± Uk)2 + (2aUk)2.
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Y 2 = (Tk ± Uk)2 + (2aUk)2,

hence there are coprime positive integers r, s

such that

Y = r2 + s2, Tk ± Uk = r2 − s2, 2aUk = 2rs,

with r even and s odd. Put R = r/a.
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Y 2 = (Tk ± Uk)2 + (2aUk)2,

hence there are coprime positive integers r, s

such that

Y = r2 + s2, Tk ± Uk = r2 − s2, 2aUk = 2rs,

with r even and s odd. Put R = r/a.

Solve for Tk, Uk, substitute (x, y) = (Tk, Uk)

into x2 − (22m + 1)y2 = ±1 :

Thue equation:
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Y 2 = (Tk ± Uk)2 + (2aUk)2,

hence there are coprime positive integers r, s

such that

Y = r2 + s2, Tk ± Uk = r2 − s2, 2aUk = 2rs,

with r even and s odd. Put R = r/a.

Solve for Tk, Uk, substitute (x, y) = (Tk, Uk)

into x2 − (22m + 1)y2 = ±1 :

Thue equation:

s4 − 2s3R− 6a2s2R2 + 2a2sR3 + a4R4 = ±1

(R = r/a and a = 2m−1).
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Akhtari’s Theorem (to appear in Acta Arith-
metica)

Let F (x, y) be an irreducible binary quartic form
with integer coefficients that splits in R. If
JF = 0, then the inequality

|F (x, y)| = 1

has at most 12 positive integer solutions (x, y).
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Akhtari’s Theorem (to appear in Acta Arith-
metica)

Let F (x, y) be an irreducible binary quartic form
with integer coefficients that splits in R. If
JF = 0, then the inequality

|F (x, y)| = 1

has at most 12 positive integer solutions (x, y).

Proof Siegel’s method (1929), elaborated by
Evertse (1983).
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Akhtari’s Theorem (to appear in Acta Arith-
metica)

Let F (x, y) be an irreducible binary quartic form
with integer coefficients that splits in R. If
JF = 0, then the inequality

|F (x, y)| = 1

has at most 12 positive integer solutions (x, y).

Proof Siegel’s method (1929), elaborated by
Evertse (1983).

Corollary∗

For all m ≥ 0, the equation

X2 − (22m + 1)Y 4 = −22m

has at most 3 solutions in coprime positive in-
tegers (X,Y ) 6= (1,1).
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Yuan’s Theorem

Let A > 0, B and N be rational integers, and

F (X,Y ) = BX4−AX3Y−6BX2Y 2+AXY 3+BY 4.

If A > 308B4, then all coprime integer solu-

tions (x, y) to the inequality

|F (x, y)| ≤ N

satisfy

x2 + y2 ≤ max

(
25A2

64B2
,
4N2

A

)
.
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Yuan’s Theorem

Let A > 0, B and N be rational integers, and

F (X,Y ) = BX4−AX3Y−6BX2Y 2+AXY 3+BY 4.

If A > 308B4, then all coprime integer solu-

tions (x, y) to the inequality

|F (x, y)| ≤ N

satisfy

x2 + y2 ≤ max

(
25A2

64B2
,
4N2

A

)
.

Proof The hypergeometric method is used to

obtain an irrationality measure for a class of al-

gebraic numbers, for approximations p/q with

p, q in an imaginary quadratic field.
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Observation 1

If (X,Y ) 6= (1,1) is a solution in coprime pos-
itive integers to

X2 − (22m + 1)Y 4 = −22m,

with Y = r2 + s2, r > s > 0, and a = 2m−1,
then

±X ± 2ai = (1 + 2ai)(s± ri)4.
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Observation 1

If (X,Y ) 6= (1,1) is a solution in coprime pos-
itive integers to

X2 − (22m + 1)Y 4 = −22m,

with Y = r2 + s2, r > s > 0, and a = 2m−1,
then

±X ± 2ai = (1 + 2ai)(s± ri)4.

proof Recall

s4 − 2s3R− 6a2s2R2 + 2a2sR3 + a4R4 = ±1.

Diagonalize this over the Gaussian integers:

(1 + 2ai)(s+ ri)4 − (1− 2ai)(s− ri)4 = ±4ai.
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Observation 1

If (X,Y ) 6= (1,1) is a solution in coprime pos-

itive integers to

X2 − (22m + 1)Y 4 = −22m,

with Y = r2 + s2, r > s > 0, and a = 2m−1,

then

±X ± 2ai = (1 + 2ai)(s± ri)4.

proof Recall

s4 − 2s3R− 6a2s2R2 + 2a2sR3 + a4R4 = ±1.

Diagonalize this over the Gaussian integers:

(1 + 2ai)(s+ ri)4 − (1− 2ai)(s− ri)4 = ±4ai.

Put X0 = (1 +2ai)(s+ri)4 +(1−2ai)(s−ri)4,

the result follows from X0 = X.

134



Observation 2 (The Gap Principle)

If (X1, Y1), (X2, Y2) sre two coprime positive in-

teger solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y2 > Y1 > 1, then Y2 > 2Y 3
1 .
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Observation 2 (The Gap Principle)

If (X1, Y1), (X2, Y2) sre two coprime positive in-

teger solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y2 > Y1 > 1, then Y2 > 2Y 3
1 .

proof For j = 1,2 and Yj = s2
j + r2

j , we have

(1+2ai)(sj+rji)
4−(1−2ai)(sj−rji)4 = ±4ai.
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Observation 2 (The Gap Principle)

If (X1, Y1), (X2, Y2) sre two coprime positive in-

teger solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y2 > Y1 > 1, then Y2 > 2Y 3
1 .

proof For j = 1,2 and Yj = s2
j + r2

j , we have

(1+2ai)(sj+rji)
4−(1−2ai)(sj−rji)4 = ±4ai.

Let ω = 1−2ai
1+2ai, use the fact that

| ω −
(
sj + rji

sj − rji

)4

|=
4a√

1 + 4a2Y 2
j

is very small for both j = 1,2.
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The Main Argument

Suppose that (X1, Y1), (X2, Y2), (X3, Y3) are co-
prime positive integer solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y3 > Y2 > Y1 > 1, Yj = s2
j + r2

j
(j = 1,2,3).
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The Main Argument

Suppose that (X1, Y1), (X2, Y2), (X3, Y3) are co-
prime positive integer solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y3 > Y2 > Y1 > 1, Yj = s2
j + r2

j
(j = 1,2,3). Then

X1 ± 2ai = (1± 2ai)(s1 ± r1i)
4,

X3 ± 2ai = (1± 2ai)(s3 ± r3i)
4,
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The Main Argument

Suppose that (X1, Y1), (X2, Y2), (X3, Y3) are co-
prime positive integer solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y3 > Y2 > Y1 > 1, Yj = s2
j + r2

j
(j = 1,2,3). Then

X1 ± 2ai = (1± 2ai)(s1 ± r1i)
4,

X3 ± 2ai = (1± 2ai)(s3 ± r3i)
4,

giving

(1+2ai)(s1+r1i)
4−(1−2ai)(s1−r1i)

4 = ±4ai,

(1+2ai)(s3+r3i)
4−(1−2ai)(s3−r3i)

4 = ±4ai.
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The Main Argument

Suppose that (X1, Y1), (X2, Y2), (X3, Y3) are co-
prime positive integer solutions to

X2 − (22m + 1)Y 4 = −22m,

with Y3 > Y2 > Y1 > 1, Yj = s2
j + r2

j
(j = 1,2,3). Then

X1 ± 2ai = (1± 2ai)(s1 ± r1i)
4,

X3 ± 2ai = (1± 2ai)(s3 ± r3i)
4,

giving

(1+2ai)(s1+r1i)
4−(1−2ai)(s1−r1i)

4 = ±4ai,

(1+2ai)(s3+r3i)
4−(1−2ai)(s3−r3i)

4 = ±4ai.

Using the above, the following is easy to show:
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γ − γ = ±4Y 4
1 ai,

with

γ = (X1 ± 2ai)(s1 − r1i)
4(s3 + r3i)

4.
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γ − γ = ±4Y 4
1 ai,

with

γ = (X1 ± 2ai)(s1 − r1i)
4(s3 + r3i)

4.

Define (x, y) by

x+ yi = (s1 − r1i)(s3 + r3i),

then

| (X1±2ai)(x+yi)4−(X1∓2ai)(x−yi)4 |= 4aY 4
1 ,
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γ − γ = ±4Y 4
1 ai,

with

γ = (X1 ± 2ai)(s1 − r1i)
4(s3 + r3i)

4.

Define (x, y) by

x+ yi = (s1 − r1i)(s3 + r3i),

then

| (X1±2ai)(x+yi)4−(X1∓2ai)(x−yi)4 |= 4aY 4
1 ,

i.e.

| ∓ax4−2X1x
3y±6ax2y2+2X1xy

3∓ay4 |= aY 4
1 .
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γ − γ = ±4Y 4
1 ai,

with

γ = (X1 ± 2ai)(s1 − r1i)
4(s3 + r3i)

4.

Define (x, y) by

x+ yi = (s1 − r1i)(s3 + r3i),

then

| (X1±2ai)(x+yi)4−(X1∓2ai)(x−yi)4 |= 4aY 4
1 ,

i.e.

| ∓ax4−2X1x
3y±6ax2y2+2X1xy

3∓ay4 |= aY 4
1 .

This is a Thue equation of the form in Yuan’s
theorem with

B = ±a,A = 2X1, N = aY 4
1 .
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The hypothesis in Yuan’s theorem:

A > 308B4
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The hypothesis in Yuan’s theorem:

A > 308B4

Recall

Y 2
1 = T2k ± U2k.

Similarly

X1 = (1 + 4a2)U2k ± T2k.
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The hypothesis in Yuan’s theorem:

A > 308B4

Recall

Y 2
1 = T2k ± U2k.

Similarly

X1 = (1 + 4a2)U2k ± T2k.

Assume k > 1 (regard k = 1 as an exercise).

Then

A = 2X1 ≥ 2(4a2 + 1)U4 − 2T4 =

16a(4a2+1)(8a2+1)−4(8a2+1)2 > 308a4 = 308B4.
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The conclusion of Yuan’s theorem gives

x2 + y2 ≤ max

(
100X2

1

64a2
,
4a2Y 8

1

2X1

)
,
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The conclusion of Yuan’s theorem gives

x2 + y2 ≤ max

(
100X2

1

64a2
,
4a2Y 8

1

2X1

)
,

whereas the Gap Principle gives

x2 + y2 = (r2
1 + s2

1)(r2
3 + s2

3) = Y1Y3 ≥ 16Y 10
1 .
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The conclusion of Yuan’s theorem gives

x2 + y2 ≤ max

(
100X2

1

64a2
,
4a2Y 8

1

2X1

)
,

whereas the Gap Principle gives

x2 + y2 = (r2
1 + s2

1)(r2
3 + s2

3) = Y1Y3 ≥ 16Y 10
1 .

The inequality X2
1 < (4a2 + 1)Y 4

1 is used to

derive a contradiction from these two inequal-

ities.
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Theorem For all m ≥ 0, there are at most 2

solutions in coprime positive integers (X,Y ) 6=
(1,1) to the equation

X2 − (22m + 1)Y 4 = −22m.
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Theorem For all m ≥ 0, there are at most 2

solutions in coprime positive integers (X,Y ) 6=
(1,1) to the equation

X2 − (22m + 1)Y 4 = −22m.

Conjecture For all m ≥ 3, there are NO solu-

tions in coprime positive integers (X,Y ) to the

equation

X2 − (22m + 1)Y 4 = −22m

other than (X,Y ) = (1,1).
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