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T he homomorphic property

Basic RSA:
Homomorphic with respect to multiplication....

Ersa(m) =m® (mod n) (n = pq)

and

Ersa(ab) = (ab)® = a“b® = Ersa(a)-Ersa(b) (mod n),

...but not with respect to addition:

(a+b)°¢Z£a®4+b* (mod n).



Fully homomorphic encryption

A fully homomorphic encryption scheme is

a scheme E = (KeyGeng, Encryptg, Decryptg)
with an additional efficient algorithm Evaluateg
that,

for any valid public key pk,

and for any circuit C

(not just a circuit consisting of multiplication gates
as in RSA),

and any ciphertexts

c; +— Encryptg(pk, m;),

outputs

c < Evaluateg(pk,C,cq,...,ct),
a valid encryption of C(m1,...,m:) under pk.
Valid, i.e.

Decryptg(sk,c) = C(m1,...,m¢).

Note: this definition allows the trivial solution......
SO we also require circuit privacy and compact-
ness.



wWhy homomorphic cryptosystems??
Encryption schemes:

e Searching an encrypted database on a remote
server.

e Compute on encrypted data.
e Spam filtering of encrypted emails.

e Outsource any kind of private computation.

Signature schemes:

e Signatures for network coding
(only linear functions needed).

e Computing on signed data.

(Necessary to shape new security notions.)
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Gentry’s Breakthrough (2009):
Use an ideal lattice, J.
That is, J is a lattice that is also an ideal.

Easy to construct a somewhat homomorphic sys-
tem.

“somewhat’ ...because of “noise’:

Plaintext: m € {0, 1}.
Ciphertext:
c= 35+ 2r+m where 5 € J and r small.
Decrypt: retrieve e = 2r + m.
T his works if e is small enough.
Then find m = e mod 2.

Now, when adding or multiplying ciphertexts, the
noise e increases.....

....until it becomes too large and decryption is
not correct.



Bootstrapping

Noise increases while computing on encrypted data.

So, need to ‘refresh” the ciphertext every once
in a while.

This is easy if secret key is available:
decrypt, then encrypt again.

Without secret key: “bootstrapping’.



Bootstrapping

Noise increases while computing on encrypted data.

So, need to ‘refresh” the ciphertext every once
in a while.

This is easy if secret key is available:
decrypt, then encrypt again.

Without secret key: “bootstrapping’.

Bootstrap?

to bootstrap:
to better oneself by one’'s own unaided efforts.

bootstrapping:
a series of selfsustaining processes that proceed
without external help.



Bootstrapping (cont.)

Assume our somewhat homomorphic system can
handle circuits up to a certain depth, say D.

If the so-called “augmented’ decrypt circuit has
depth < D, then the system is “bootstrappable”.

If we can bootstrap, then we can refresh cipher-
texts, via recryption.



Recryption — refreshing ciphertexts:
(simplified)

The idea:
Take two public-secret key pairs

(sk1,pk1) and  (sko,pko).

That is:

Decryptp(sky, Encryptp(pki,m)) = m

for any message m.
Ditto for the second pair.

Assume the scheme E is homomorphic with re-
spect to the decryption circuit.



Take an encryption of ski1 under the public key
pko:

Encryptp(pko, sk1).

Also, take an encryption of the initial ciphertext
under the public key pk»:

Encryptg(pks, Encryptg(pki, m)).

Consider

Decg(Encg(pka, sk1), Encg(pka, Enci(pky, m)).



Decg(Encg(pka, sk1), Encg(pko, Encg(pky, m))

= Encryptg(pko,m).

(Well, you need to do this bit-wise, really....)

S0, one can remove the inner encryption......
..... creating a newly encrypted (under pk>) cipher-
text.

Now assume the scheme E can homomorphically
evaluate

Decryptg(sk,c1) + Decryptp(sk, cp)
and

Decryptg(sk,cr) - Decryptg(sk, co).

Then we say E is bootstrappable.



Gentry (2009):
E bootstrappable

= fully homomorphic encryption scheme FE.

The new scheme inherits semantic security against
chosen plaintext attacks from FE.



Back to ideal lattices:

Why they are good:

e VVery low circuit complexity of decrypt al-
gorithm.
(Compare with RSA, ElIGamal).

e Natural Add/Mult. operations. (Think of
ideals in polynomial rings.)

e Security can be based on standard problems
over ideal lattices, that seem to be as hard
as standard well-studied problems over gen-
eral lattices.

But, problem:

e Decryption circuit is not shallow enough!
I.e., its depth is larger than what Evaluateg
function can handle.



The problem:

Evaluategp function can handle a certain set C of
circuits.

But C does not contain (augmented) decryption
circuit.

Solution 1:

e Modify the scheme to enlarge C.

e But this possibly complexifies Decryptpg.

Solution 2: Squash the decryption circuit:

e \While encrypting, include extra data to help
decrypter for decryption
(think of server-aided cryptography...).

e EXxtra data = secret-key info, presented as
subset sum problem.



Some math, at last
Smart-Vercauteren (PKC 2010):
Let n =29, f(z) =z"+ 1.

R = Z[z]/(f(x)) = 22",

Consider the principal ideal J = (v) generated by
v € R.

Note: Coefficient vectors associated to the ele-
ments of J form a lattice with rotation basis

v, = {0 x ' mod f(z) : i € [0,n — 1]},

We call J = (¥) an ideal lattice.



Smart-Vercauteren: no lattice talk!

Let K be the number field Q(O),
where © is a root of f(x) = 2™ + 1.

Take v(x) € Z[x], deg(v) =n — 1,
v(z) =1 mod 2, ||v]leoc < n such that

p = Resultant(v(x), f(x))
IS prime.

J = (v(©®)) is a degree-one prime ideal in Z[O].
Let » be the common root of v(x), f(xz) mod p.

Two-element representation of J: (p,© —r).
(p,r) is the public key.

n .
Let 2(z) = Y 2z be the scaled inverse of v(z):
i=0
z(x)v(z) =p (mod f(z)) .
Let w =29 (mod 2p).
(p,w) is the secret key.



Encryption:

Let m € {0, 1}.
Take u(x) € ZJx], deg(u) =n — 1, ||[ullco < u/2.

c < Encrypt((p,7),m) = (m 4+ 2u(r)) (mod p).

(This is reduction of m 4+ 2u(®©) modulo J.)

Decryption:

Decrypt((p,w),c) =c— |c-w/p|] (mMmod 2).



Why this works:

m+2u(®) —ce J.
Let ¢q(©) € Z[©] such that

m—+ 2u(©®) — c = q(©)v(O).

Som-—c=gqg (mod 2).
(Remember, v(xz) =1 mod 2.)

Recall, z(z)v(x) =p (mod f(x)) and f(©) = 0,
so devide by v(©):

(m 4+ 2u(©))z(©) B cz(©)

= q(9),
p
_(m + 2u(©))z(©) 4 g() = _cz(@).
p p
Thus, g9 = —|c- zo/p], IF
(m+2u@)x@)| 1
p o 2




Putting things together:

m = c+qg (mMmod 2)

g0 = —lc-20/p]
20 (mod Qp)

w

Som=c—|c-z9/p|] (mMmod 2).



Summary:

J = (v(©)) where v(zx) € Zlz], ||v|]lcoc < 7.

Encrypt: ¢+ (m 4 2u(r)) (mod p)
(lulloo < p/2).

Decrypt: m <+ c— |c-w/p] (mod 2)

This works if

H_ (m 4+ 2u(z))z(x)
p

<1
>

' @,

The latter holds if (after some calculation.....):

Ui
lm 4+ 2u(z)|loo < N



So to decrypt correctly, one needs:
m+ 2u(@)leo < 5

Now consider computing on encrypted data:

Add:

c1+co = (m1+m2)+2(u1(r) +ux(r)) (mod p).

Multiply:

c1-co = (m1-m2)+2(myua(r)+mouy (r)+4uy(r)ux(r)).

(mod p).
“Noise"” increases.......:

Initially,

m 4+ 2u(@)|oo < 1+ 1.

Do some calculations..... and obtain:



After executing a circuit with multiplicative depth
D, obtain ciphertext ¢ = m/ 4 2u/(r) with

1 (2)|loo <T where T = (np)?P.

Recall: to decrypt correctly, one needs:

Im 4 2u(z)]loo < —— .

2y/n

More calculation:
The output of a circuit of depth D can be cor-
rectly decrypted if
Dlog?2 < loglog L/ log log(nu).
2/n

n

With n =211 n=12vn ;=2
this allows for D = 1.7.



Need p with 92681 bits for that (for security rea-
sons). This is the largest circuit depth that could
be achieved...... not enough for bootstrapping to
work, even with squashed decryption circuit.

So SV2010 scheme cannot be implemented.

Gentry-Halevi (2011):
generalize Smart-Vercauteren constructions:

e Switch back to lattice presentation.
e Choose v such that detv odd and square-free.

e Algorithm to compute zg only, not all of z(x).



Security — underlying problems

e Small principal ideal problem (SV 2010).
To recover the private key.

e Bounded distance decoding problem / Clos-
est vector problem (G 2009, SV 2010).
To recover the message from a given cipher-
text.

e Polynomial coset problem (SV 2010) / Ideal
coset problem (G 2009).
To break semantic security.

e Sparse subset sum problem.
To recover secret key from additional data
due to squashing the decryption circuit.

e Approximate integer GCD (DGHYV 2010).



More work has been done.......
(all in 2011)

Groth, Smart-Vercauteren, Gu (x5), Boneh-Segev-
Waters, Armknecht-Augot-Perret-Sadeghi, Gen-
try, Gentry-Halevi, ....

....and more work is being done

Ideal lattices easier than general lattices?
Improve efficiency of key generation.

Improve efficiency of encrypt and decrypt,
and reducing key length and ciphertext size.

Improve squashing mechanism/get rid of squash-
ing mechanism.

Get rid of bootstrapping.

Find new applications.



Thank you!



Security

e IND-CCA2 security (i.e., indistinguishability
of ciphertexts under adaptive chosen cipher-
text attack):
impossible, due to the malleability of cipher-
texts.

e IND-CCAI1 security (non-adaptive): open prob-
lem.

e Indistinguishability against chosen plaintext at-
tacks: Yes.

— security of the somewhat homomorphic scheme.

— security after addition of the secret key
hint to the public key.



