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This mini-course will take 6 hours (4 times 1.5 hours), spread over Wed-Sat.



Organization

This mini-course will take 6 hours (4 times 1.5 hours), spread over Wed-Sat.

Structure:

? What are Lévy processes? What can you use them for?

? What is a queue with Lévy input? Why are they relevant?

? Results on stationary and transient behavior of Lévy-driven queues;

? Asymptotics;

? Variants of the standard queue;

? Lévy-driven networks (multiple queues).



PART I:

WHAT ARE LÉVY PROCESSES?



What are Lévy processes?

Definition:

Lévy processes are stochastic processes with stationary independent increments.



What are Lévy processes?

Definition:

Lévy processes are stochastic processes with stationary independent increments.

Lévy process (Xt)t, in continuous time (i.e., t ∈ R):

? Stationary increments: distribution of Xt+s −Xt only depends on s (length of the interval),

and not on t (position of the interval).

? Independent increments: Xt+s −Xt does not depend on Xt, for all s ≥ 0.
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Brownian motion: (Xt)t is Normally distributed with mean µt and variance σ2t.

Ee−αXt =

∫ ∞
−∞

e−αx
1√

2πσt
exp

(
−(x− µt)2
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dx.



Lévy processes: examples

Brownian motion: (Xt)t is Normally distributed with mean µt and variance σ2t.

Ee−αXt =

∫ ∞
−∞

e−αx
1√

2πσt
exp

(
−(x− µt)2

2σ2

)
dx.

Easier though: Xt
d
= µt + σ

√
t U , with U standard Normal!

Hence: Ee−αXt = e−αµt Ee−ασ
√
tU , and

Ee−αU =

∫ ∞
−∞

e−αx
1√
2π

exp

(
−x

2

2

)
dx

= eα
2/2

∫ ∞
−∞

1√
2π

exp

(
−(x + α)2

2

)
dx = eα

2/2.



Lévy processes: examples

Brownian motion: (Xt)t is Normally distributed with mean µt and variance σ2t.

Ee−αXt =

∫ ∞
−∞

e−αx
1√

2πσt
exp

(
−(x− µt)2

2σ2

)
dx.

Easier though: Xt
d
= µt + σ

√
t U , with U standard Normal!

Hence: Ee−αXt = e−αµt Ee−ασ
√
tU , and

Ee−αU =

∫ ∞
−∞

e−αx
1√
2π

exp

(
−x

2

2

)
dx

= eα
2/2

∫ ∞
−∞

1√
2π

exp

(
−(x + α)2

2

)
dx = eα

2/2.

Conclude:

Ee−αXt = e−αµt eα
2σ2t.



Lévy processes: examples

Brownian motion:

Ee−αXt = e−αµt eα
2σ2t.

This can be rewritten as:

Ee−αXt = eϕ(α)t,

with

ϕ(α) := −αµ +
1

2
α2σ2.

We write: X ∈ Bm(µ, σ2).



Lévy processes: examples

Compound Poisson with drift!

Sample path:
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Lévy processes: examples

Compound Poisson with drift:

? Jobs arrive according to a Poisson process with rate λ;

? The jobs are i.i.d. samples from a (nonnegative) distribution B, with Laplace transform

b(α) := Ee−αB.

? the storage system is depleted at rate r.



Lévy processes: examples

Compound Poisson with drift:

Ee−αXt can be computed by conditioning on Nt, i.e., the number of jumps in [0, t]:

P(Nt = k) = e−λt
(λt)k

k!
.

Hence,

Ee−αXt = erαt
∞∑
k=0

e−λt
(λt)k

k!
(b(α))k = erαt exp(−λt(1− b(α)).



Lévy processes: examples

Compound Poisson with drift:

Ee−αXt = erαt ·
∞∑
k=0

e−λt
(λt)k

k!
(b(α))k = erαt exp(−λt(1− b(α)).

Note that we again have that

Ee−αXt = eϕ(α)t,

but now with

ϕ(α) := rα− λ + λb(α).

We write: X ∈ CP(r, λ, b(·)).



Sample paths

Observe:

? There are continuous Lévy processes (Brownian motion),

? but also processes with jumps.



Sample paths

Observe:

? There are continuous Lévy processes (Brownian motion),

? but also processes with jumps.

The class of Lévy processes is broad and versatile.



Infinite divisibility

Xt is, for any t, infinitely divisible:

we have the distributional equality, with X
(i)
t i.i.d. copies of Xt:

Xt
d
=

n∑
i=1

X
(i)
t/n,

for any n ∈ N.



Infinite divisibility

Xt is, for any t, infinitely divisible:

we have the distributional equality, with X
(i)
t i.i.d. copies of Xt:

Xt
d
=

n∑
i=1

X
(i)
t/n,

for any n ∈ N.

Each Lévy process can be associated with an infinitely divisible distribution, and vice versa.
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Alternatively, for any value of t,

log EesXt = t log EesX1,

where s ∈ C.



Characteristic triplet

Alternatively, for any value of t,

log EesXt = t log EesX1,

where s ∈ C.

More specific characterization of Lévy processes:

the so-called Lévy exponent log EesX1 is necessarily of the form

log EesX1 = sd +
1

2
s2σ2 +

∫ ∞
−∞

(esx − 1− sx1[0,1)(|x|))Π(dx),

where (d, σ2,Π) is commonly referred to as the characteristic triplet.
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∫ ∞
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Characteristic triplet

log EesX1 = sd +
1

2
s2σ2 +

∫ ∞
−∞

(esx − 1− sx1[0,1)(|x|))Π(dx).

Suppose X ∈ Bm(µ, σ2).

Then d = µ, σ2 = σ2, and Π ≡ 0.

Suppose X ∈ CP(r, λ, b(·)).

Then

d = −r + λ

∫ 1

0

xΠ(dx),

σ2 = 0, and Π(dx) = λ dP(B ≤ x) on [0,∞).



Spectrally one-sided Lévy processes

Let (Xt)t≥0 be a Lévy process, with drift EX1 < 0.

Two special cases:

(A) (Xt)t≥0 has no negative jumps, or is spectrally positive;

(B) (Xt)t≥0 has no positive jumps, or is spectrally negative.



Spectrally positive Lévy processes

(Xt)t≥0 has no negative jumps, or is spectrally positive; we write X ∈ S+.
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(Xt)t≥0 has no negative jumps, or is spectrally positive; we write X ∈ S+.

Then the Laplace exponent is given by the function ϕ(·) : [0,∞) 7→ [0,∞), i.e.,

ϕ(α) := log Ee−αX1.

It is known that ϕ(·) is increasing and convex on [0,∞), with slope

ϕ′(0) = lim
α↓0

E(−X1e
−αX1)

Ee−αX1
= −EX1 > 0

in the origin.
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Spectrally positive Lévy processes

(Xt)t≥0 has no negative jumps, or is spectrally positive; we write X ∈ S+.

Then the Laplace exponent is given by the function ϕ(·) : [0,∞) 7→ [0,∞), i.e.,

ϕ(α) := log Ee−αX1.

It is known that ϕ(·) is increasing and convex on [0,∞), with slope

ϕ′(0) = lim
α↓0

E(−X1e
−αX1)

Ee−αX1
= −EX1 > 0

in the origin.

Therefore the inverse ψ(·) of ϕ(·) is well-defined on [0,∞).

(Technical note: In the sequel we also require that Xt is not a subordinator, i.e., a monotone process;

thus X1 has probability mass on the positive half-line, which implies that limα→−∞ ϕ(α) =∞.)



Spectrally positive Lévy processes

6

-

α

ϕ(α) 6

-

ϑ

ψ(ϑ)
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(Xt)t≥0 has no positive jumps, or is spectrally negative; we write X ∈ S−.

Now we define Φ(β) := log EeβX1, which is well-defined for any β ≥ 0.

Realize that

Φ′(0) = lim
β↓0

E(X1e
βX1)

EeβX1
= EX1 < 0;

hence Φ(β) is no bijection on [0,∞).



Spectrally negative Lévy processes

(Xt)t≥0 has no positive jumps, or is spectrally negative; we write X ∈ S−.

Now we define Φ(β) := log EeβX1, which is well-defined for any β ≥ 0.

Realize that

Φ′(0) = lim
β↓0

E(X1e
βX1)

EeβX1
= EX1 < 0;

hence Φ(β) is no bijection on [0,∞).

Define the right inverse through Ψ(q) := sup{β ≥ 0 : Φ(β) = q). Realize that β0 := Ψ(0) > 0.



Spectrally negative Lévy processes

6

-

β

Φ(β)

β0

6

-

q

Ψ(q)

β0 = Ψ(0)



Spectrally one-sided Lévy processes

Brownian motion:

Bm(µ, σ2) ⊂ S+, but also Bm(µ, σ2) ⊂ S−.

Compound Poisson:

CP(r, λ, b(·)) ⊂ S+.



α-stable Lévy motion

A random variable Y has a stable distribution if for any a, b > 0 there are a c > 0 and d ∈ R such

that

aY ′ + bY ′′
d
= cY + d,

where Y ′ and Y ′′ are independent copies of Y .



α-stable Lévy motion

A random variable Y has a stable distribution if for any a, b > 0 there are a c > 0 and d ∈ R such

that

aY ′ + bY ′′
d
= cY + d,

where Y ′ and Y ′′ are independent copies of Y .

It turns out that the characteristic function of Y now necessarily looks like

log EeiθY =

{
−σα|θ|α(1− iβsign(θ) tan(πα/2) + imθ α 6= 1;

−σ|θ|(1 + iβπ/2sign(θ) log |θ| + imθ α = 1,

where α ∈ (0, 2], β ∈ [−1, 1], σ ∈ [0,∞), m ∈ R, and sign(x) = 1(0,∞)(x)− 1(−∞,0)(x).



α-stable Lévy motion

A random variable Y has a stable distribution if for any a, b > 0 there are a c > 0 and d ∈ R such

that

aY ′ + bY ′′
d
= cY + d,

where Y ′ and Y ′′ are independent copies of Y .

It turns out that the characteristic function of Y now necessarily looks like

log EeiθY =

{
−σα|θ|α(1− iβsign(θ) tan(πα/2) + imθ α 6= 1;

−σ|θ|(1 + iβπ/2sign(θ) log |θ| + imθ α = 1,

where α ∈ (0, 2], β ∈ [−1, 1], σ ∈ [0,∞), m ∈ R, and sign(x) = 1(0,∞)(x)− 1(−∞,0)(x).

Write: Y is distributed Sα(σ, β,m).



α-stable Lévy motion

Meaning of the parameters:

• α: index of stability; directly related to the ‘heaviness’ of the tail.

In particular, if α ∈ (0, 1], then E|Y | =∞ (for α = 1 we have the Cauchy distribution).

If α = 2 we obtain the Normal distribution.

• β: skewness. The extreme cases are β = 1, corresponding to a random variable with nonnegative

support, and β = −1, in which case the support is nonpositive.

Choosing β = 0 and m = 0 leads to a symmetric distribution.

• σ: scale parameter.

• For α ∈ (1, 2], we have that EY = m. This explains why m is called the shift parameter.



α-stable Lévy motion

Asymptotics:

Let Y
d
= Sα(σ, β,m). Then, as u→∞,

P(Y > u)uα → Cα,σ

(
1 + β

2

)
,

where

Cα,σ :=

{
σα(1− α)/ (Γ(2− α) cos(πα/2)) α 6= 1;

2σ/π α = 1.



α-stable Lévy motion

Having defined stable distribution, we now introduce α-stable Lévy motions.

Xt is an α-stable Lévy motion if (Xt)t has stationary independent increments such that

Xt
d
= Sα(t1/α, β,m);

we write X ∈ S(α, β,m).

If β = ±1, then X ∈ S±.



α-stable Lévy motion

One could say that α-stable Lévy motions are self-similar:

Picking m = 0, and writing (X
(α)
t )t to stress the dependence on α, one has

X
(α)
Mt

d
= M 1/αX

(α)
t

(unless α = 1, β 6= 0).

In other words: when zooming in, one essentially sees the same pattern, given that one adjusts the

axes in a suitable fashion.



Application areas

? Financial models;

? Communication networks.



Application areas

Financial models:

Lévy processes have turned out to accurately match all kinds of financial processes.

Applications in option pricing, credit risk, etc. (useful: Lévy processes allow jumps).

Compound Poisson with drift is a classical model in ruin and insurance theory.



Application areas

Communication networks:

Under very general conditions, the input process of a broad class of (short-range dependent) queueing

systems converges to Brownian motion (cf. functional Central Limit Theorem) —

see e.g. book by Whitt.

If input traffic has heavy-tailed characteristics (e.g. on-off sources with heavy-tailed on-times), then

there is convergence to α-stable Lévy motion —

see e.g. Taqqu et al., Mikosch et al.



A useful lemma

Consider X ∈ S+, and let

τ (x) := inf{t ≥ 0 : Xt ≤ −x}.

Observe that e−ϕ(α)t Ee−αXt is a mean-1 martingale.
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A useful lemma

Consider X ∈ S+, and let

τ (x) := inf{t ≥ 0 : Xt ≤ −x}.

Observe that e−ϕ(α)t Ee−αXt is a mean-1 martingale.

? Only positive jumps: Xτ(x) = −x;

? assuming that EX1 < 0, it holds that τ (x) <∞ almost surely.

Then ‘optional sampling’ implies

1 = Ee−ϕ(α)τ(x) Ee−αXτ(x) = e−αx Ee−ϕ(α)τ(x).

Hence:

Lemma: Let X ∈ S+, and EX1 < 0. Then

Ee−ϑτ(x) = e−ψ(ϑ)x.



PART II:

WHAT ARE LÉVY-DRIVEN QUEUES?

STATIONARY BEHAVIOR



Queues in continuous time

Lévy-driven queue: continuous-time counterpart of the classical discrete-time queue.

In discrete time, a queue can be described through the well-known Lindley recursion: with Q0 = x,

Qn+1 = max{Qn + Yn, 0}.

Iterating: Qn+1 = max{Qn−1 + Yn−1 + Yn, Yn, 0}.

With Xn :=
∑n

i=0 Yi, this eventually leads to

Qn = Xn + max

{
x, max

0≤i≤n
−Xi

}
.



Queues in continuous time

Discrete time:

Qn = Xn + max

{
x, max

0≤i≤n
−Xi

}
.

Take continuous-time counterpart:

Qt = Xt + max{x, Lt}, t ≥ 0,

with

Lt := sup
0≤s≤t

−Xu = − inf
0≤s≤t

Xu;

this increasing process Lt is often referred to as local time.



Queues in continuous time

Assuming queue started at −∞, one can alternatively write

Qt = sup
s≤t

(Xt −Xs);

assume EX1 < 0 to ensure stability.



Queues in continuous time

Assuming queue started at −∞, one can alternatively write

Qt = sup
s≤t

(Xt −Xs);

assume EX1 < 0 to ensure stability.

As the input process Xt is reversible:

Q
d
= sup

t≥0
Xt

(Reich).



Queues in continuous time

Remarkably, steady-state distribution of reflected process is distributed as supremum of free process!

Hence: close relation between queueing probabilities and ruin probabilities!



Queues in continuous time

Alternative: solution of a so-called Skorokhod problem; then (Qt)t is reflection of (Xt)t at 0.



Queues in continuous time

Alternative: solution of a so-called Skorokhod problem; then (Qt)t is reflection of (Xt)t at 0.

Let (L?t )t be a nondecreasing right-continuous process such that

(A) (Qt)t, given by Q0 = x and Qt = Xt + L?t , is non-negative for all t ≥ 0;

(B) L?t can only increase when Qt = 0, that is∫ T

0

QtdL
?
t = 0, for all T > 0.

Natural conditions for a queueing process!



Queues in continuous time

Alternative: solution of a so-called Skorokhod problem; then (Qt)t is reflection of (Xt)t at 0.

Let (L?t )t be a nondecreasing right-continuous process such that

(A) (Qt)t, given by Q0 = x and Qt = Xt + L?t , is non-negative for all t ≥ 0;

(B) L?t can only increase when Qt = 0, that is∫ T

0

QtdL
?
t = 0, for all T > 0.

Natural conditions for a queueing process!

Then it can be proven that the only process satisfying these conditions is L?t = max{x, Lt}, so that

Qt = Xt + max{x, Lt}

for t ≥ 0, with Lt as before.



Stationary workload

Can stationary workload be determined?



Stationary workload

Can stationary workload be determined?

Cumbersome in general, but . . .

. . . nice expressions in spectrally one-sided case!



Stationary workload: spectrally-positive case



Stationary workload: spectrally-positive case

We consider compound Poisson input and constant depletion rate r; assume λEB < r.

fQ(·) density of the steady-state workload.

For any x > 0, due to rate conservation

rfQ(x) = λ

(∫
(0,x)

fQ(y)P(B > x− y)dy + p0P(B > x)

)
,

with p0 := P(Q = 0)



Stationary workload: spectrally-positive case

Now

rfQ(x) = λ

(∫
(0,x)

fQ(y)P(B > x− y)dy + p0P(B > x)

)
implies

κ̄(α) :=

∫
(0,∞)

e−αxfQ(x)dx

=
1

r

∫
(0,∞)

e−αxλ

(∫
(0,x)

fQ(y)P(B > x− y)dy + p0P(B > x)

)
dx,

which after elementary calculus reduces to

rκ̄(α) = λ (κ̄(α) + p0)
1− b(α)

α
.

Realize that κ(α) := Ee−αQ = p0 + κ̄(α) and κ(α)→ 1 as α ↓ 0.



Stationary workload: spectrally-positive case

Theorem: [Pollaczek-Khintchine] Let X ∈ CP(r, λ, b(·)). For α ≥ 0,

Ee−αQ =
rαp0

rα− λ(1− b(α))
=

α(r − λEB)

rα− λ(1− b(α))
.



Stationary workload: spectrally-positive case

Let Bres
1 , Bres

2 , . . . be i.i.d. samples from the residual lifetime distribution of B, that is

P(Bres ≤ x) =
1

EB

∫ x

0

P(B > y)dy.

Realizing that bres(α) := Ee−αBres
= (1− b(α))/(αEB), Pollaczeck-Khinchine can alternatively be

written as

Ee−αQ =

(
1− λEB

r

) ∞∑
n=0

(
λEB
r

)n
(bres(α))n .

As a consequence, with % := λEB/r,

P(Q ≤ x) = P

(
N∑
n=1

Bres
n ≤ x

)
,

where P(N = n) = (1− %)%n.

Steady-state workload Q can be interpreted as a geometric number of residuals of the job size B.



Stationary workload: spectrally-positive case

Now we have solved the compound Poisson case;

idea: approximate spectrally positive by compound Poisson!



Stationary workload: spectrally-positive case

Now we have solved the compound Poisson case;

idea: approximate spectrally positive by compound Poisson!

For X ∈ S+, there are d, σ2 ≥ 0, and measure Πϕ(·) such that
∫

(0,∞) min{1, x2}Πϕ(dx) <∞, that

the Laplace exponent reads,

ϕ(α) = αd +
1

2
α2σ2 +

∫
(0,∞)

(e−αx − 1 + αx 1(0,1)(x))Πϕ(dx).

Now define, with εn → 0,

ϕn(α) :=

(
d +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)
α +

σ2

ε2
n

(
e−αεn − 1

)
+

∫ ∞
εn

(e−αx − 1)Πϕ(dx).



Stationary workload: spectrally-positive case

ϕ(α) = αd +
1

2
α2σ2 +

∫
(0,∞)

(e−αx − 1 + αx 1(0,1)(x))Πϕ(dx)

and

ϕn(α) :=

(
d +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)
α +

σ2

ε2
n

(
e−αεn − 1

)
+

∫ ∞
εn

(e−αx − 1)Πϕ(dx).

We have: ϕn(s)→ ϕ(s) as n→∞, whereas, for all n ∈ N, ϕ′n(0) = ϕ′(0).



Stationary workload: spectrally-positive case

Important: ϕn(α) is the Laplace exponent of a compound Poisson process!
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? The drift term of this compound Poisson process is

dn := d +

∫ 1

εn

xΠϕ(dx) +
σ2

εn
> 0.
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Important: ϕn(α) is the Laplace exponent of a compound Poisson process!

? The drift term of this compound Poisson process is

dn := d +

∫ 1

εn

xΠϕ(dx) +
σ2

εn
> 0.

? Then, the term σ2/ε2
n · (e−αεn − 1) can be interpreted as the contribution of a Poisson stream

(arrival rate λ1,n := σ2/ε2
n) of jobs of deterministic size β1,n := εn.



Stationary workload: spectrally-positive case

Important: ϕn(α) is the Laplace exponent of a compound Poisson process!

? The drift term of this compound Poisson process is

dn := d +

∫ 1

εn

xΠϕ(dx) +
σ2

εn
> 0.

? Then, the term σ2/ε2
n · (e−αεn − 1) can be interpreted as the contribution of a Poisson stream

(arrival rate λ1,n := σ2/ε2
n) of jobs of deterministic size β1,n := εn.

? Finally,∫ ∞
εn

(e−αx − 1)Πϕ(dx) = Πϕ([εn,∞))

∫ ∞
εn

(e−αx − 1)
Πϕ(dx)

Πϕ([εn,∞))
,

which is the contribution of a Poisson stream (arrival rate λ2,n := Πϕ([εn,∞))) of jobs, whose sizes

are i.i.d. samples from a ‘truncated distribution’ with density Πϕ(dx)/Πϕ([εn,∞)), for x ≥ εn,

and mean

β2,n :=

∫ ∞
εn

x
Πϕ(dx)

Πϕ([εn,∞))
.



Stationary workload: spectrally-positive case

Qn: steady state workload if input were compound Poisson process with Laplace exponent ϕn(α).

Due to ϕn(α)→ ϕ(α) it is conceivable that Ee−αQn → Ee−αQ. From Pollaczek-Khinchine:

Ee−αQn = α(dn − λ1,nβ1,n − λ2,nβ2,n)

/(
dnα−

σ2

ε2
n

(
1− e−αεn

)
−
∫ ∞
εn

(1− e−αx)Πϕ(dx)

)
→ αϕ′(0)

ϕ(α)
as n→∞;

the convergence follows from straightforward algebra.



Stationary workload: spectrally-positive case

Qn: steady state workload if input were compound Poisson process with Laplace exponent ϕn(α).

Due to ϕn(α)→ ϕ(α) it is conceivable that Ee−αQn → Ee−αQ. From Pollaczek-Khinchine:

Ee−αQn = α(dn − λ1,nβ1,n − λ2,nβ2,n)

/(
dnα−

σ2

ε2
n

(
1− e−αεn

)
−
∫ ∞
εn

(1− e−αx)Πϕ(dx)

)
→ αϕ′(0)

ϕ(α)
as n→∞;

the convergence follows from straightforward algebra.

Hence, if we can prove that Ee−αQn → Ee−αQ, we have established the following result (Zolotarev).

Theorem: [generalized Pollaczek-Khintchine] Let X ∈ S+. For α ≥ 0,

Ee−αQ =
αϕ′(0)

ϕ(α)
.

The convergence Ee−αQn → Ee−αQ is a technical issue that lies beyond the scope of this survey.



Stationary workload: spectrally-positive case

Alternative proofs rely on martingale techniques, most notably the Kella-Whitt martingale.

With

Lt(x) := max{x, Lt − x} = max

{
x,− inf

0≤s≤t
Xs

}
,

it can be shown using stochastic integration theory that, for X ∈ S+,

Kt := ϕ(α)

∫ t

0

e−αQsds + e−αx − e−αQt − αLt(x)

is a martingale.



Stationary workload: spectrally-positive case

Kt := ϕ(α)

∫ t

0

e−αQsds + e−αx − e−αQt − αLt(x)

is a martingale.

Assume that the queue is in stationarity at time 0; then

0 = EK1 = ϕ(α)Ee−αQ + Ee−αQ − Ee−αQ − αEL1,

so that

Ee−αQ =
αEL1

ϕ(α)
.

Now realizing that Ee−αQ → 1 as α ↓ 0, we retrieve the generalized Pollaczek-Khintchine result.



Stationary workload: spectrally-positive case

Example: Suppose X ∈ Bm(µ, σ2) for some µ < 0. Then, with ν := −µ/σ2 > 0,

Ee−αQ =
αϕ′(0)

ϕ(α)
=

ν

ν + α
.



Stationary workload: spectrally-positive case

Example: Suppose X ∈ Bm(µ, σ2) for some µ < 0. Then, with ν := −µ/σ2 > 0,

Ee−αQ =
αϕ′(0)

ϕ(α)
=

ν

ν + α
.

Hence: steady-state workload in a Brownian queue has an exponential distribution with mean 1/ν.



Stationary workload: spectrally-positive case

Possible to obtain all moments of the steady-state queue Q!

µ := EQ = − d

dα

αϕ′(0)

ϕ(α)

∣∣∣∣
α↓0

=
ϕ′′(0)

2ϕ′(0)
,

and similarly

v := VarQ =
1

4

(
ϕ′′(0)

ϕ′(0)

)2

− 1

3

ϕ′′′(0)

ϕ′(0)
.



Stationary workload: spectrally-negative case



Stationary workload: spectrally-negative case

Way easier!



Stationary workload: spectrally-negative case

Observe that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0.



Stationary workload: spectrally-negative case

Observe that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0.

‘Optional sampling’ gives, for any positive x,

P(∃t ≥ 0 : Xt > x)eβ0x = 1

(use that, due to X ∈ S−, given a certain level x > 0 is reached, it is attained with equality).



Stationary workload: spectrally-negative case

Observe that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0.

‘Optional sampling’ gives, for any positive x,

P(∃t ≥ 0 : Xt > x)eβ0x = 1

(use that, due to X ∈ S−, given a certain level x > 0 is reached, it is attained with equality).

As Q is distributed as the supremum over t ≥ 0 of Xt (‘Reich’s identity’), we obtain:

Theorem: Let X ∈ S−. Then Q is exponentially distributed with mean 1/β0.



PART II:

TRANSIENT BEHAVIOR



Transient workload

We consider four metrics:

? transient distribution;

? busy period;

? correlation function

? infimum over given time interval.



Transient workload distribution: spectrally-positive case

We start with X ∈ S+.

Kella-Whitt martingale:

Kt := ϕ(α)

∫ t

0

e−αQsds + e−αx − e−αQt − αLt(x).

T : exponentially distributed with mean 1/ϑ.

Then:

0 = EKT = ϕ(α)

∫ ∞
0

∫ t

0

ϑe−ϑte−αQsdsdt− e−αx − Exe
−αQT − αELT (x).



Transient workload distribution: spectrally-positive case

0 = EKT = ϕ(α)

∫ ∞
0

∫ t

0

ϑe−ϑte−αQsdsdt− e−αx − Exe
−αQT − αELT (x).

The first term reads:

ϕ(α)

∫ ∞
0

∫ ∞
s

ϑe−ϑte−αQsdtds =
ϕ(α)

ϑ
Exe

−αQT .

Now Exe
−αQT can be solved, and we obtain an expression in which unknown term ELT (x) appears

in numerator, and in which denominator equals ϑ− ϕ(α).

Then: root of denominator (i.e., α = ψ(ϑ)) should be a root of the numerator as well (otherwise the

transform equals ∞). This yields ELT (x).



Transient workload distribution: spectrally-positive case

Eventually, we obtain:

Theorem: Let X ∈ S+, and let T be exponentially distributed with mean 1/ϑ, independently of X .

Then

Exe
−αQT = ϑ

∫ ∞
0

e−ϑtExe
−αQt =

ϑ

ϑ− ϕ(α)

(
e−αx − α

ψ(ϑ)
e−ψ(ϑ)x

)
.



Transient workload distribution: spectrally-positive case

Eventually, we obtain:

Theorem: Let X ∈ S+, and let T be exponentially distributed with mean 1/ϑ, independently of X .

Then

Exe
−αQT = ϑ

∫ ∞
0

e−ϑtExe
−αQt =

ϑ

ϑ− ϕ(α)

(
e−αx − α

ψ(ϑ)
e−ψ(ϑ)x

)
.

Hence: we have uniquely characterized the distribution of the workload after an exponential time, for

an arbitrary starting level.

Alternative technique: level-crossing.



Transient workload distribution: spectrally-positive case

This result implies ‘generalized Pollaczek-Khintchine’ in at least two ways:

(a) let ϑ ↓ 0, so that T corresponds with some epoch infinitely far away,

and use elementary calculus (L’Hôpital);

(b) find Ee−αQT by deconditioning, use that in stationarity Ee−αQT should coincide with Ee−αQ0,

and then solve Ee−αQ0.



Transient workload distribution: spectrally-positive case

The special case of X ∈ Bm(µ, σ2) can be solved explicitly.

It turns out that

P(Qt ≤ y |Q0 = x) = 1− ΦN

(
−y + x + µt

σ
√
t

)
− e2µy/σ2

ΦN

(
−y − x− µt

σ
√
t

)
,

with ΦN(·) denoting the distribution function of a standard Normal random variable.

(Sending t→∞ gives the exponential distribution.)



Transient workload distribution: spectrally-negative case

Now X ∈ S−.



Transient workload distribution: spectrally-negative case

Now X ∈ S−.

q-scale functions:

Let W (q)(x) be a strictly increasing and continuous function whose Laplace transform satisfies∫ ∞
0

e−βxW (q)(x)dx =
1

Φ(β)− q
, β > Ψ(q). (1)

In addition,

Z(q)(x) := 1 + q

∫ x

0

W (q)(y)dy. (2)



Transient workload distribution: spectrally-negative case

Again: goal is to characterize distribution after an exponential time.



Transient workload distribution: spectrally-negative case

Again: goal is to characterize distribution after an exponential time.

Pistorius (2004): with mild abuse of notation, the transform (with respect to t) of the density of Qt,

given that Q0 = x:∫ ∞
0

e−qtPx(Qt = y)dt = e−Ψ(q)yΨ(q)

q
Z(q)(x)−W (q)(x− y).



Transient workload distribution: spectrally-negative case

Again: goal is to characterize distribution after an exponential time.

Pistorius (2004): with mild abuse of notation, the transform (with respect to t) of the density of Qt,

given that Q0 = x:∫ ∞
0

e−qtPx(Qt = y)dt = e−Ψ(q)yΨ(q)

q
Z(q)(x)−W (q)(x− y).

Straightforward calculus: this leads to, with T denoting an exponential rv with mean q−1,∫ ∞
0

e−βxExe
−αQTdx = I1 − I2;

where

I1 :=

∫ ∞
0

∫ ∞
0

qe−βxe−αye−Ψ(q)yΨ(q)

q
Z(q)(x)dxdy,

I2 :=

∫ ∞
0

∫ ∞
0

qe−βxe−αyW (q)(x− y)dxdy.



Transient workload distribution: spectrally-negative case

We now compute I1 ≡ I1(α, β, q) and I2 ≡ I2(α, β, q) explicitly.



Transient workload distribution: spectrally-negative case

We now compute I1 ≡ I1(α, β, q) and I2 ≡ I2(α, β, q) explicitly.

Using the definitions of the q-scale functions:

I1(α, β, q) =
Ψ(q)

Ψ(q) + α

∫ ∞
0

e−βxZ(q)(x)dx

=
Ψ(q)

Ψ(q) + α

(
1

β
+

∫ ∞
0

∫ ∞
y

qW (q)(y)e−βxdxdy

)
=

Ψ(q)

Ψ(q) + α

1

β

(
1 +

q

Φ(β)− q

)
.

Likewise,

I2(α, β, q) =

∫ ∞
0

qe−(α+β)y 1

Φ(β)− q
dy =

q

α + β

1

Φ(β)− q
.



Transient workload distribution: spectrally-negative case

Theorem: Let X ∈ S−, and let T be exponentially distributed with mean 1/q, independently of X .

Then∫ ∞
0

e−βxExe
−αQTdx =

1

β

(
Ψ(q)

Ψ(q) + α
+

q

Φ(β)− q
Ψ(q)− β
Ψ(q) + α

α

α + β

)
.



Transient workload distribution: spectrally-negative case

Theorem: Let X ∈ S−, and let T be exponentially distributed with mean 1/q, independently of X .

Then∫ ∞
0

e−βxExe
−αQTdx =

1

β

(
Ψ(q)

Ψ(q) + α
+

q

Φ(β)− q
Ψ(q)− β
Ψ(q) + α

α

α + β

)
.

Very implicit result: double transform.



Busy period

Second transient characteristic: busy period.

How long does it take before the queue idles?



Busy period

Second transient characteristic: busy period.

How long does it take before the queue idles?

More precisely: define

τ := inf{t ≥ 0 : Qt = 0},

where Q0 is distributed according to the stationary distribution.



Busy period

Second transient characteristic: busy period.

How long does it take before the queue idles?

More precisely: define

τ := inf{t ≥ 0 : Qt = 0},

where Q0 is distributed according to the stationary distribution.

We write: p(t) := P(τ > t); we derive the Laplace transform of p(·).



Busy period: spectrally-positive case

Recall:

Lemma: Let X ∈ S+, and EX1 < 0. Then

Ee−ϑτ(x) = e−ψ(ϑ)x.



Busy period: spectrally-positive case

Recall:

Lemma: Let X ∈ S+, and EX1 < 0. Then

Ee−ϑτ(x) = e−ψ(ϑ)x.

Hence, using integration by parts:∫ ∞
0

e−ϑtP(τ (x) > t)dt =

∫ ∞
0

P(τ (x) > t)d

(
−1

ϑ
e−ϑt

)



Busy period: spectrally-positive case

Recall:

Lemma: Let X ∈ S+, and EX1 < 0. Then

Ee−ϑτ(x) = e−ψ(ϑ)x.

Hence, using integration by parts:∫ ∞
0

e−ϑtP(τ (x) > t)dt =

∫ ∞
0

P(τ (x) > t)d

(
−1

ϑ
e−ϑt

)
=

[
−P(τ (x) > t)

1

ϑ
e−ϑt

]∞
0

+
1

ϑ

∫ ∞
0

e−ϑtdP(τ (x) > t)

=
1

ϑ
− 1

ϑ

∫ ∞
0

e−ϑtdP(τ (x) ≤ t) =
1

ϑ

(
1− e−ψ(ϑ)x

)
.



Busy period: spectrally-positive case

We thus find:∫ ∞
0

e−ϑtp(t)dt =

∫ ∞
0

(∫ ∞
0

e−ϑtP(τ (x) > t)dt

)
dP(Q0 < x)

=
1

ϑ

∫ ∞
0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x).



Busy period: spectrally-positive case

We have∫ ∞
0

e−ϑtp(t)dt =
1

ϑ

∫ ∞
0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x),

but the latter expression equals:

1

ϑ

(
1− Ee−ψ(ϑ)Q0

)
,

which we can evaluate with ‘generalized Pollaczek-Khinchine’.



Busy period: spectrally-positive case

We have∫ ∞
0

e−ϑtp(t)dt =
1

ϑ

∫ ∞
0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x),

but the latter expression equals:

1

ϑ

(
1− Ee−ψ(ϑ)Q0

)
,

which we can evaluate with ‘generalized Pollaczek-Khinchine’.

‘Generalized Pollaczek-Khinchine’:

Ee−αQ0 =
αϕ′(0)

ϕ(α)
.



Busy period: spectrally-positive case

Conclude:

Proposition: Let X ∈ S+. Then∫ ∞
0

e−ϑtp(t)dt =
1

ϑ
− ϕ′(0)

ψ(ϑ)

ϑ2
.



Busy period: spectrally-positive case

Special case: X ∈ CP(r, λ, b(·)).

Then the notion of a busy period starting in 0 is well-defined; denote this by τ 0.

Let π(ϑ) := Ee−ϑτ0
.



Busy period: spectrally-positive case

Let π(ϑ) := Ee−ϑτ0
.

Known (Takács): π(ϑ) = β(ϑ + λ− λπ(ϑ)), after renormalizing time such that r = 1.



Busy period: spectrally-positive case

Let π(ϑ) := Ee−ϑτ0
.

Known (Takács): π(ϑ) = β(ϑ + λ− λπ(ϑ)), after renormalizing time such that r = 1.

Recall: ϕ(α) = α− λ + λβ(α).

Therefore

0 = β(ϑ + λ− λπ(ϑ))− π(ϑ) =
1

λ
ϕ(ϑ + λ− λπ(ϑ))− ϑ

λ
,

and hence ϕ(ϑ + λ− λπ(ϑ)) = ϑ. Apply ψ(·) to both sides, and we obtain the following result.



Busy period: spectrally-positive case

Let π(ϑ) := Ee−ϑτ0
.

Known (Takács): π(ϑ) = β(ϑ + λ− λπ(ϑ)), after renormalizing time such that r = 1.

Recall: ϕ(α) = α− λ + λβ(α).

Therefore

0 = β(ϑ + λ− λπ(ϑ))− π(ϑ) =
1

λ
ϕ(ϑ + λ− λπ(ϑ))− ϑ

λ
,

and hence ϕ(ϑ + λ− λπ(ϑ)) = ϑ. Apply ψ(·) to both sides, and we obtain the following result.

Proposition: Let X ∈ CP(1, λ, b(·)). Then

π(ϑ) =
λ + ϑ

λ
− 1

λ
ψ(ϑ).



Busy period: spectrally-negative case

Without proof we state:

Proposition: Let X ∈ S−. Then∫ ∞
0

e−qtp(t)dt =
1

q

(
1− Ψ(0)

Ψ(q)

)
.



Correlation function

We now examine the Laplace transform r̂(·) corresponding to the correlation of the workload process.

Assume system is in steady-state at time 0.

Then

r(t) := Corr(Q0, Qt) =
Cov(Q0, Qt)√
VarQ0 · VarQt

=
E(Q0Qt)− (EQ0)2

VarQ0
.



Correlation function: spectrally-positive case

Let T be exponentially distributed with mean 1/ϑ.

Realize that

E(e−αQT | Q0 = q) =

∫ ∞
0

ϑe−ϑtE(e−αQt | Q0 = q)dt.



Correlation function: spectrally-positive case

Let T be exponentially distributed with mean 1/ϑ.

Realize that

E(e−αQT | Q0 = q) =

∫ ∞
0

ϑe−ϑtE(e−αQt | Q0 = q)dt.

We know that

Exe
−αQT = ϑ

∫ ∞
0

e−ϑtExe
−αQt =

ϑ

ϑ− ϕ(α)

(
e−αx − α

ψ(ϑ)
e−ψ(ϑ)x

)
.



Correlation function: spectrally-positive case

Let T be exponentially distributed with mean 1/ϑ.

Realize that

E(e−αQT | Q0 = q) =

∫ ∞
0

ϑe−ϑtE(e−αQt | Q0 = q)dt.

We know that

Exe
−αQT = ϑ

∫ ∞
0

e−ϑtExe
−αQt =

ϑ

ϑ− ϕ(α)

(
e−αx − α

ψ(ϑ)
e−ψ(ϑ)x

)
.

By differentiation with respect to α and subsequently letting α ↓ 0, we obtain∫ ∞
0

ϑe−ϑtE(Qt | Q0 = q)dt = −ϕ
′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)
. (3)



Correlation function: spectrally-positive case

Concentrate on the Laplace transform γ(ϑ) of Cov(Q0, Qt).

Straightforward calculus reveals that

γ(ϑ) :=

∫ ∞
0

Cov(Q0, Qt)e
−ϑtdt =

∫ ∞
0

(E(Q0Qt)− µ2)e−ϑtdt

=

∫ ∞
0

∫ ∞
0

q · E(Qt | Q0 = q) · e−ϑtdP(Q0 ≤ q)dt− µ2

ϑ
;

(use queue is in stationarity at time 0, and hence also at t).

Recall µ and v are mean and variance of Q.



Correlation function: spectrally-positive case

By invoking (3) we find that this equals∫ ∞
0

q

ϑ

(
−ϕ

′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)

)
dP(Q0 ≤ q)− µ2

ϑ

= −µϕ
′(0)

ϑ2
+
v

ϑ
+

1

ϑψ(ϑ)
E(Q0e

−ψ(ϑ)Q0).



Correlation function: spectrally-positive case

By invoking (3) we find that this equals∫ ∞
0

q

ϑ

(
−ϕ

′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)

)
dP(Q0 ≤ q)− µ2

ϑ

= −µϕ
′(0)

ϑ2
+
v

ϑ
+

1

ϑψ(ϑ)
E(Q0e

−ψ(ϑ)Q0).

From ‘generalized Pollaczek-Khinchine’ we obtain by differentiating

E(Q0e
−αQ0) = ϕ′(0)

(
− 1

ϕ(α)
+ α

ϕ′(α)

(ϕ(α))2

)
.



Correlation function: spectrally-positive case

By invoking (3) we find that this equals∫ ∞
0

q

ϑ

(
−ϕ

′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)

)
dP(Q0 ≤ q)− µ2

ϑ

= −µϕ
′(0)

ϑ2
+
v

ϑ
+

1

ϑψ(ϑ)
E(Q0e

−ψ(ϑ)Q0).

From ‘generalized Pollaczek-Khinchine’ we obtain by differentiating

E(Q0e
−αQ0) = ϕ′(0)

(
− 1

ϕ(α)
+ α

ϕ′(α)

(ϕ(α))2

)
.

Inserting this relation, in addition to the explicit expression for µ:

γ(ϑ) :=

∫ ∞
0

Cov(Q0, Qt)e
−ϑtdt = −ϕ

′′(0)

2ϑ2
+
v

ϑ
+
ϕ′(0)

ϑ2

(
1

ϑψ′(ϑ)
− 1

ψ(ϑ)

)
.



Correlation function: spectrally-positive case

We finally obtain:

Theorem: Let X ∈ S+. Then, for any ϑ ≥ 0,

r̂(ϑ) :=

∫ ∞
0

r(t) e−ϑtdt =
γ(ϑ)

v
=

1

ϑ
− ϕ′′(0)

2vϑ2
+
ϕ′(0)

vϑ2

[
1

ϑψ′(ϑ)
− 1

ψ(ϑ)

]
.



Correlation function: spectrally-negative case

Recall (i) that we have the double transform of Qt:∫ ∞
0

e−βxExe
−αQTdx =

1

β

(
Ψ(q)

Ψ(q) + α
+

q

Φ(β)− q
Ψ(q)− β
Ψ(q) + α

α

α + β

)
,

and (ii) that Q0 is exponentially distributed with mean 1/β0.



Correlation function: spectrally-negative case

Recall (i) that we have the double transform of Qt:∫ ∞
0

e−βxExe
−αQTdx =

1

β

(
Ψ(q)

Ψ(q) + α
+

q

Φ(β)− q
Ψ(q)− β
Ψ(q) + α

α

α + β

)
,

and (ii) that Q0 is exponentially distributed with mean 1/β0.

This leads to:

Theorem: Let X ∈ S+. Then, for any q ≥ 0,

r̂(q) :=

∫ ∞
0

r(t) e−qtdt =
1

q
+
β2

0

q2
Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
.



Correlation function: structural properties

Proposition: Let X ∈ S+ or X ∈ S−. Then r(·) is positive, decreasing, and convex.



Correlation function: structural properties

Proposition: Let X ∈ S+ or X ∈ S−. Then r(·) is positive, decreasing, and convex.

Proof through completely monotone functions, to be thought of as Laplace transforms of nonnegative

random variables.

We demonstrate this concept for the case X ∈ S−.



Correlation function: structural properties

C : class of completely monotone functions.



Correlation function: structural properties

C : class of completely monotone functions.

The concept of complete monotonicity is easy to work with, as one can use a set of practical properties.



Correlation function: structural properties

Lemma: The following properties apply:

(1) C is closed under addition: if f (α) ∈ C and g(α) ∈ C , then f (α) + g(α) ∈ C . This extends

to: if fx(α) ∈ C for x ∈ Ξ, then
∫
x∈Ξ fx(α)µ(dx) ∈ C for any measure µ(·).

(2) C is closed under multiplication: if f (α) ∈ C and g(α) ∈ C , then f (α)g(α) ∈ C .

(3) Properties of composite C functions: if f (α) ∈ C and g(α) ≥ 0 with g′(α) ∈ C , then

f (g(α)) ∈ C .

(4) Let U(α) non-decreasing on [0,∞), and U(0) = 0, u := limα→∞U(α) <∞, and

f (α) :=

∫
[0,∞)

e−αxdU(x);

clearly f (α) ∈ C and u = f (0). Then also

g(α) :=
f (0)− f (α)

α
∈ C .

(5) C closed under differentiation: if f (α) ∈ C , then −f ′(α) ∈ C .
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Correlation function: structural properties

Let X ∈ S−.

Next step:

Ψ(0)/Ψ(q) ∈ C .

Reason:∫ ∞
0

e−qtp(t)dt =
1

q

(
1− Ψ(0)

Ψ(q)

)
.

implies that

Ee−qτ = Ψ(0)/Ψ(q).



Correlation function: structural properties

Integration by parts:

ρ(1)(q) :=

∫ ∞
0

e−qtr′(t)dt =
β2

0

q
Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
;

ρ(2)(q) :=

∫ ∞
0

e−qtr′′(t)dt = −r′(0) + β2
0Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
.

Recall that Ψ(0)/Ψ(q) ∈ C .

Conclude: ρ(2)(q) is in C , and hence r′′(·) is positive, i.e., r(·) is convex.

Known: f (q) ∈ C implies that, with g(q) := (f (0)− f (q))/q, also g(q) ∈ C .

Taking f (q) = ρ(2)(q), we have −ρ(1)(q) is in C , and hence r′(·) is negative, i.e., r(·) is decreasing.

Similarly, ρ(q) is in C , and hence r(·) is positive. 2



Correlation function: structural properties

Proof for X ∈ S+ is more involved.



Correlation function: structural properties

Proof for X ∈ S+ is more involved.

Crucial: −ψ(·) is the Laplace exponent of an increasing Lévy process.

Hence this Lévy process does not have a Brownian component, and it entails that ψ′(·) ∈ C .

Delicate manipulation with Laplace transforms: proof of the Laplace transform of r′′(·) being is

completely monotone, and therefore r(·) is convex.

Procedure to do statements about r(·) is decreasing and positive: similar to the case X ∈ S−.
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Infimum over given time interval

Last transient performance metric:

Mt := inf
s∈[0,t]

Qs.

Observe that Mt > u corresponds to Q0 + infs∈[0,t]Xs > u. Hence:∫ ∞
0

e−ϑt
∫ ∞

0

e−αuP(Mt > u)dudt

=

∫ ∞
0

e−ϑt
∫ ∞

0

e−αu
∫ ∞
u

P
(

inf
s∈[0,t]

Xs > u− q
)

dP(Q0 ≤ q)dudt

=

∫ ∞
0

∫ q

0

e−αu
∫ ∞

0

e−ϑtP(τ (q − u) > t)dtdudP(Q0 ≤ q).



Infimum over given time interval

By using integration by parts we have that∫ ∞
0

∫ q

0

e−αu
∫ ∞

0

e−ϑtP(τ (q − u) > t)dtdudP(Q0 ≤ q)

equals∫ ∞
0

∫ q

0

e−αu
1

ϑ

(
1− Ee−ϑτ(q−u)

)
dudP(Q0 ≤ q).



Infimum over given time interval

Now we have to distinguish between X ∈ S+ and S−.

In the former case: we know Ee−ϑτ(x), and we have to apply ‘generalized Pollaczek-Khinchine’. We

obtain the following result.

Proposition: Let X ∈ S+. Then∫ ∞
0

e−ϑt
∫ ∞

0

e−αuP(Mt > u)dudt =
1

ϑ

(
1

α
− ϕ′(0)

ϕ(α)

)
− ϕ′(0)

(α− ψ(ϑ))ϑ

(
ψ(ϑ)

ϑ
− α

ϕ(α)

)
.



Infimum over given time interval

In the latter case, Q0 has an exponential distribution with parameter β0.

Interchanging the order of integration, and applying a certain factorization identity, we obtain the

following result.

Proposition: Let X ∈ S−. Then∫ ∞
0

e−qt
∫ ∞

0

e−βuP(Mt > u)dudt =
1

β + β0

Ψ(q)

Ψ(q) + β0
.



PART III:

ASYMPTOTICS



Asymptotics

? Tail of workload distribution;

? Tail of busy period distribution;

? Joint transient distribution;

? Rare-event simulation, importance sampling.



Workload asymptotics

Goal: characterize P(Q > u) for u large.
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Workload asymptotics

Goal: characterize P(Q > u) for u large.

Depends on the heaviness of the ‘upper tail’ !

Three cases:

? light-tailed regime;

? indermediate regime;

? heavy-tailed regime.



Workload asymptotics: light-tailed regime

L : class of Lévy processes such that there is an ω > 0 such that

EeωX1 = 1 and EX1e
ωX1 <∞.



Workload asymptotics: light-tailed regime

6

-

δ

EeδX1

1

ω



Workload asymptotics: light-tailed regime

Examples: Brownian case, compund Poisson with light-tailed jobs, . . .
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Workload asymptotics: light-tailed regime

For ease: start with X ∈ CP(1, λ, b(·)); we consider more the general case of X ∈ L later.

Let ρ := λEB < 1. Then ω solves EeωX1 = 1, or, equivalently, ϕ(−ω) = 0.

More concretely:

λ + ω = λb(−ω).



Workload asymptotics: light-tailed regime

We now introduce alternative probability measure.

Original probability measure: P;

alternative measure Q characterized as CP(1, λ + ω, b̄(·)), where

b̄(α) := b(α− ω)/b(−ω).



Workload asymptotics: light-tailed regime

We now introduce alternative probability measure.

Original probability measure: P;

alternative measure Q characterized as CP(1, λ + ω, b̄(·)), where

b̄(α) := b(α− ω)/b(−ω).



Workload asymptotics: light-tailed regime

Convexity: ϕ′(−ω) = 1 + λb′(−ω) < 0.

Therefore

(λ + ω) EQB = (λ + ω)

(
−b
′(−ω)

b(−ω)

)
= −λb′(−ω) =: ρQ > 1,

so that under Q the queue is unstable.



Workload asymptotics: light-tailed regime

Under Q the queue is unstable.

Realize: P(Q > u) equals P(∃t ≥ 0 : Xt > u) = P(σ(u) <∞), where σ(u) is defined as the hitting

time of level u, i.e.,

σ(u) := inf{t : Xt ≥ u}.

Hence: under Q we have that σ(u) <∞ almost surely, for any u > 0.



Workload asymptotics: light-tailed regime

Change of measure:

P(Q > u) = EQ

(
dP
dQ

1{σ(u)<∞}

)
.

Using that σ(u) < ∞ almost surely under Q, in conjunction with EeωXt = 1 for all t ≥ 0, it is a

standard that

P(Q > u) = EQe
−ωXσ(u).
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−ωXσ(u).

Realize: Xσ(u) = u + Ru, where Ru is the overshoot over level u.
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−ωXσ(u).

Realize: Xσ(u) = u + Ru, where Ru is the overshoot over level u.

Let Ln be the n-th ladder height, i.e., the difference between the n-th and (n − 1)-st record; these

random variables are positive and i.i.d., and nondefective (why?).



Workload asymptotics: light-tailed regime

P(Q > u) = EQe
−ωXσ(u).

Realize: Xσ(u) = u + Ru, where Ru is the overshoot over level u.

Let Ln be the n-th ladder height, i.e., the difference between the n-th and (n − 1)-st record; these

random variables are positive and i.i.d., and nondefective (why?).

Renewal theory: Ru converges to a limiting random variable R, where

Q(R ≤ v) =
1

EQL

∫ v

0

(1−Q(L ≤ y))dy,

with L denoting a ladder height.



Workload asymptotics: light-tailed regime

Due to the definition of Q:

dQ(L ≤ y) = eωydP(L ≤ y) = eωyλP(B > y)dy;

it follows from the definition of ω that this density integrates to 1.



Workload asymptotics: light-tailed regime

Due to the definition of Q:

dQ(L ≤ y) = eωydP(L ≤ y) = eωyλP(B > y)dy;

it follows from the definition of ω that this density integrates to 1.

Combining the above, we obtain that, as u→∞,

P(Q > u)eωu → 1

EQL

∫ ∞
0

e−ωy(1−Q(L ≤ y))dy.

Straightforward calculus now yields the classical Cramér-Lundburg asymptotics.

Theorem: Let X ∈ CP(1, λ, b(·)) ∩L . Then, as u→∞,

P(Q > u)eωu → 1− ρ
ρQ − 1

.



Workload asymptotics: light-tailed regime

In passing, we also proved that, for all u ≥ 0,

P(Q > u) ≤ e−ωu

(realize that Ru ≥ 0).

This uniform bound applies for all X ∈ L , i.e., not just for compound Poisson; the proof relies on a

change-of-measure argument.

Corollary: Let X ∈ L . Then P(Q > u) ≤ e−ωu.



Workload asymptotics: light-tailed regime

Now consider more general X ∈ L : is it for instance possible to extend the asymptotics to S+?

Recall: we have Laplace transform of Q, viz. αϕ′(0)/ϕ(α).

Can we use this to obtain asymptotics?



Workload asymptotics: light-tailed regime

Transform → asymptotics: so-called Heaviside principle.

Note that∫ ∞
0

e−αQP(Q > x)dx =
1

α
− ϕ′(0)

ϕ(α)
.

Now observe that when X ∈ L , ϕ(·) has a pole in −ω, and

lim
α↓−ω

∫ ∞
0

e−αQP(Q > x)dx =
ϕ′(0)

−ϕ′(−ω)
> 0;

note that we assumed that the denominator of the last expression is finite (definition of L ).

Now the Heaviside principle yields that, as u→∞,

P(Q > u)eωu → ϕ′(0)

−ϕ′(−ω)
.



Workload asymptotics: light-tailed regime

P(Q > u)eωu → ϕ′(0)

−ϕ′(−ω)
.

Poisson case: it indeed gives Cramér-Lundberg.

Caveat: Heaviside principle, although well established in the literature and frequently used, lacks full

mathematical rigor.



Workload asymptotics: light-tailed regime

The most general result is due to Bertoin and Doney:

tail asymptotics for P(Q > u) are derived for the full class L .



Workload asymptotics: light-tailed regime

The most general result is due to Bertoin and Doney:

tail asymptotics for P(Q > u) are derived for the full class L .

Of the form Ce−ωu, where ω solves EeωX1 = 1, but with some rather involved expression for C.



Workload asymptotics: intermediate regime

Define

ω := sup{δ ≥ 0 : EeδX1 <∞}.

We say that X ∈ I if

ω ∈ (0,∞) and EeωX1 < 1.

At δ = ω, moment generating function EeδX1 < 1 jumps from a value strictly smaller than 1 to ∞.



Workload asymptotics: intermediate regime

6

-

δ

EeδX1

1

‘∞’

ω



Workload asymptotics: intermediate regime

Again change-of-measure technique can be used to find a uniform upper bound.

Define: M(δ) := EeδX1.

Identify with Q(ϑ) the Lévy process that obeys

EQ(ϑ)e
δX1 =

M(δ + ϑ)

M(ϑ)
.

As before, for all ϑ < ω,

P(Q > u) = EQ(u)

(
e−ϑXσ(u) · (M(ϑ))σ(u)

)
≤ e−ϑu.

We obtain the following bound.

Corollary: Let X ∈ I . Then P(Q > u) ≤ e−ωu.



Workload asymptotics: intermediate regime

Without proof:

Proposition: Let X ∈ I . Then, as u→∞,

P(Q > u)

P(X1 > u)
→ EeωQ

M(ω) logM(ω)
.



Workload asymptotics: intermediate regime

Without proof:

Proposition: Let X ∈ I . Then, as u→∞,

P(Q > u)

P(X1 > u)
→ EeωQ

M(ω) logM(ω)
.

Interestingly, they show that for X ∈ I the tail distribution of Q is proportional to that of X1!
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Now: Levy processes for which EeδX1 =∞ for all δ > 0.

Important subclass: regularly varying Lévy processes R.



Workload asymptotics: heavy-tailed regime

Now: Levy processes for which EeδX1 =∞ for all δ > 0.

Important subclass: regularly varying Lévy processes R.

Considering the class of compound Poisson inputs, regular variation refers to the tail of the distribution

of the jobs: for an index α and all y > 0

P(B > yx)

P(B > x)
→ yα.



Workload asymptotics: heavy-tailed regime

We now give ‘recipe’ to find the tail asymptotics P(Q > u) for u large

Key idea: in these heavy-tailed scenarios a large workload is (with overwhelming probability) due to a

single big job.



Workload asymptotics: heavy-tailed regime

We now give ‘recipe’ to find the tail asymptotics P(Q > u) for u large

Key idea: in these heavy-tailed scenarios a large workload is (with overwhelming probability) due to a

single big job.

The approach consists of

? lower bound, in which the probability of this most likely scenario is evaluated, and

? upper bound in which it is shown that the contributions of other scenarios (e.g. no big job, multiple

big jobs) can be neglected.



Workload asymptotics: heavy-tailed regime

We here demonstrate how the lower bound is derived.

Consider X ∈ CP(r, λ, b(·); denote % := λEB.

Due the the law of large numbers, we can find (for any δ, ε > 0) a tδ,ε such that for all t ≥ tδ,ε,

P(Xt > (%− ε)t) > 1− δ.

To have that Q0 exceeding u it suffices that

? a job of size at least u + (r − %)t + εt arrived at time −t, and

? that between −t and 0 at least (%− ε)t arrived;

former event is rare, as opposed to the latter.



Workload asymptotics: heavy-tailed regime

Hence:

P(Q > u) ≥
∫ ∞
tδ,ε

λP(B > u + (r − %)t + εt)P(−X−t > (%− ε)t)dt

≥ (1− δ)

∫ ∞
tδ,ε

λP(B > u + (1− %)t + εt)dt

= (1− δ) %

r − % + ε
P(Bres > u + tδ,ε) ∼

(1− δ)%

r − % + ε
P(Bres > u);

last step due to the definition of regular variation.



Workload asymptotics: heavy-tailed regime

Hence:

P(Q > u) ≥
∫ ∞
tδ,ε

λP(B > u + (r − %)t + εt)P(−X−t > (%− ε)t)dt

≥ (1− δ)

∫ ∞
tδ,ε

λP(B > u + (1− %)t + εt)dt

= (1− δ) %

r − % + ε
P(Bres > u + tδ,ε) ∼

(1− δ)%

r − % + ε
P(Bres > u);

last step due to the definition of regular variation.

Now let δ, ε ↓ 0. After proving the corresponding upper bound, the following theorem is obtained.

Theorem: Let X ∈ CP(r, λ, b(·)) ∩R. Then, as u→∞,

P(Q > u) ∼ %

r − %
P(Bres > u).



Workload asymptotics: heavy-tailed regime

Alternative approach if Laplace transform is available: Tauberian inversion.



Workload asymptotics: heavy-tailed regime

Alternative approach if Laplace transform is available: Tauberian inversion.

Define the following notion.

Definition: We say that f (x) ∈ Rδ(n, η), with δ ∈ (n, n + 1), for x ↓ 0, if

f (x) =

n∑
i=0

f (i)(0)

i!
xi + ηxδL(1/x), x ↓ 0,

for a slowly varying function L(·), i.e., L(x)/L(tx)→ 1 for x→∞, for any t.



Workload asymptotics: heavy-tailed regime

Suppose now that ϕ(α) ∈ Rν(n, η), it is readily checked that

Ee−αQ =
αϕ′(0)

ϕ(α)
∈ Rν−1

(
n− 1,

ζ

ϕ′(0)

)
.

Tauberian theorem (Bingham, Goldie, and Teugels) now yields:

Theorem: Let X ∈ S+ ∩R, with ϕ(α) ∈ Rν(n, η). Then, as u→∞,

P(Q > u) ∼ (−1)n

Γ(2− ν)
·
(

η

ϕ′(0)

)
u1−νL(u).



Workload asymptotics: heavy-tailed regime

Example: Consider X ∈ CP(1, λ, b(·)). Suppose P(B > x) ∼ x−δL(x).

From ϕ(α) = α + λb(α)− λ, it follows that ϕ(α) ∈ Rδ(n, λΓ(1− δ)(−1)n) by applying ‘Tauber’.

Then the above theorem (for X ∈ S+ ∩R) confirms the result for compound Poisson. ♦



Workload asymptotics: heavy-tailed regime

Define the class of heavy-tailed (or: subexponential) Lévy processes, as follows.

? First introduce the notion of subexponential distribution functions:

with D(·) being a distribution function on [0,∞) and D(2) the convolution of D with itself, we

say that D is subexponential if 1−D(2)(x) ∼ 2(1−D(x)) as x→∞.

? For a measure µ(·) we say that it is subexponential if (i) µ([1,∞) <∞, and (ii) µ([1, ·])/µ([1,∞))

is subexponential.

? Then define

ΠI((x,∞)) :=

∫ ∞
x

Π((y,∞))dy.

? We say that X ∈H if ΠI(·) is a subexponential.



Workload asymptotics: heavy-tailed regime

Without proof:

Theorem: Let X ∈H . Then, as u→∞,

P(Q > u) ∼ 1

−EX1

∫ ∞
u

P(X1 > x)dx.



Workload asymptotics: heavy-tailed regime

Without proof:

Theorem: Let X ∈H . Then, as u→∞,

P(Q > u) ∼ 1

−EX1

∫ ∞
u

P(X1 > x)dx.

Cf.: single big job.



Workload asymptotics: heavy-tailed regime

Class of α-stable Lévy motions belongs to H .

Recall: Let Y
d
= Sα(σ, β,m). Then, as u→∞,

P(Y > u)uα → Cα,σ

(
1 + β

2

)
,

where

Cα,σ :=

{
σα(1− α)/ (Γ(2− α) cos(πα/2)) α 6= 1;

2σ/π α = 1.



Workload asymptotics: heavy-tailed regime

Following result is immediate consequence of result for X ∈ H , asymptotics of P(X1 > u), and

Karamata’s theorem; recall that m < 0.

Proposition: Let X ∈ S(α, β,m), with α ∈ (1, 2). Then

P(Q > u) ∼ 1

(−m)

∫ ∞
u

x−αCα,1

(
1 + β

2

)
dx ∼ 1

(−m)

1

α− 1
u−α+1Cα,1

(
1 + β

2

)
.
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Busy-period asymptotics

First consider the light-tailed case.

? Then Ee−sX1 = 1 has a negative root, say ω < 0.

? Hence: Ee−sX1 has a minimizer somewhere between ω and 0.

Relying on Heaviside heuristics, we now study the tail of P(τ > t) (r(t) works similarly).



Busy-period asymptotics

Considering X ∈ S+ ∩L , assume ϕ(α) = 0 has a negative root.

Recall:∫ ∞
0

e−ϑtp(t)dt =
1

ϑ
− ϕ′(0)

ψ(ϑ)

ϑ2
.

Hence transform holds for any positive ϑ, but we can consider the analytic continuation up to the

branching point ϑ? < 0 of ψ(·).



Busy-period asymptotics

ζ < 0 denotes the minimizer of ϕ(·), so that ϕ(ζ) = ϑ? < 0 (notice that vϕ := ϕ′′(ζ) > 0).

Then write, for ϑ ↓ ϑ?,

ψ(ϑ)− ζ ∼
√

2/vϕ ·
√
ϑ− ϑ?.



Busy-period asymptotics

ζ < 0 denotes the minimizer of ϕ(·), so that ϕ(ζ) = ϑ? < 0 (notice that vϕ := ϕ′′(ζ) > 0).

Then write, for ϑ ↓ ϑ?,

ψ(ϑ)− ζ ∼
√

2/vϕ ·
√
ϑ− ϑ?.

Hence, around ϑ?, we have, for some (irrelevant) constant κ,∫ ∞
0

e−ϑtP(τ > t)dt =
1

ϑ
− ϕ′(0)

ψ(ϑ)

ϑ2
∼ κ + Aϕ

√
ϑ− ϑ?; Aϕ := −ϕ

′(0)

(ϑ?)2

√
2

vϕ
< 0.



Busy-period asymptotics

ζ < 0 denotes the minimizer of ϕ(·), so that ϕ(ζ) = ϑ? < 0 (notice that vϕ := ϕ′′(ζ) > 0).

Then write, for ϑ ↓ ϑ?,

ψ(ϑ)− ζ ∼
√

2/vϕ ·
√
ϑ− ϑ?.

Hence, around ϑ?, we have, for some (irrelevant) constant κ,∫ ∞
0

e−ϑtP(τ > t)dt =
1

ϑ
− ϕ′(0)

ψ(ϑ)

ϑ2
∼ κ + Aϕ

√
ϑ− ϑ?; Aϕ := −ϕ

′(0)

(ϑ?)2

√
2

vϕ
< 0.

‘Heaviside’: tail distribution of the busy period is

P(τ > t) ∼ Aϕ

Γ(−1
2)
· e

ϑ?t

t
√
t
.



Busy-period asymptotics

Considering X ∈ S+ ∩L : works similarly.

Heavy-tailed case with compound Poisson input has also been analyzed.
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for p, q > 0 and functions T (·).

We summarize the main results.



Asymptotics of joint transient distribution

Focus is on probabilities of the type

P(Q0 > pu,QT (u) > qu),

for p, q > 0 and functions T (·).

We summarize the main results.

A. Under certain conditions probability of interest is dominated by ‘most demanding event’:

P(Q0 > pu,QT (u) > qu) ∼ P(Q > max{p, q}u)

for u large, where Q denotes the steady-state workload.

These conditions turn out to reduce to T (u) being sublinear (i.e., T (u)/u→ 0 as u→∞).



Asymptotics of joint transient distribution

B. Under another condition the probability ‘decouples’:

P(Q0 > pu,QT (u) > qu) ∼ P(Q > pu)P(Q > qu).

Here crucial role is played by QD, for D > EX1, which is distributed as supt≥0(Xt −Dt); as a

result QD resembles the original queue Q, but the drain rate is adapted by D.

Decoupling condition: for all η > 0, D > EX1,

lim
u→∞

P(QD > ηT (u))

P(Q > pu)P(Q > qu)
= 0.



Asymptotics of joint transient distribution

B. Decoupling condition: for all η > 0, D > EX1,

lim
u→∞

P(QD > ηT (u))

P(Q > pu)P(Q > qu)
= 0.

For various Lévy inputs ‘decoupling condition’ reduces to requiring that Tu is superlinear (i.e.,

Tu/u→∞ as u→∞); for instance if tails of Q and QD decay exponentially.



Asymptotics of joint transient distribution

B. Decoupling condition: for all η > 0, D > EX1,

lim
u→∞

P(QD > ηT (u))

P(Q > pu)P(Q > qu)
= 0.

For various Lévy inputs ‘decoupling condition’ reduces to requiring that Tu is superlinear (i.e.,

Tu/u→∞ as u→∞); for instance if tails of Q and QD decay exponentially.

Condition does not hold, however, for X ∈ R: then ‘decoupling’ reduces to T (u)/u2 →∞.

Rationale: for T (u) increasing subquadratically with overwhelming probability it suffices to have a

single big jump to cause overflow over pu at time 0, and over qu at time T (u); whereas ‘decoupling’

would correspond to two big jumps.



Asymptotics of joint transient distribution

B. Decoupling condition: for all η > 0, D > EX1,

lim
u→∞

P(QD > ηT (u))

P(Q > pu)P(Q > qu)
= 0.

For various Lévy inputs ‘decoupling condition’ reduces to requiring that Tu is superlinear (i.e.,

Tu/u→∞ as u→∞); for instance if tails of Q and QD decay exponentially.

Condition does not hold, however, for X ∈ R: then ‘decoupling’ reduces to T (u)/u2 →∞.

Rationale: for T (u) increasing subquadratically with overwhelming probability it suffices to have a

single big jump to cause overflow over pu at time 0, and over qu at time T (u); whereas ‘decoupling’

would correspond to two big jumps.

Hence for X ∈ R there is a third regime, viz. T (u) increasing superlinearly but subquadratically.



Asymptotics of joint transient distribution

Special interesting case: T (u) = Ru for some R > 0;

for X ∈ L intuitively appealing asymptotics are known, based on sample-path large deviations results.

The regimes obtained can be interpreted in terms of most likely paths to overflow.



Asymptotics of joint transient distribution

? If R small (that is, fulfilling explicit criterion in terms of p, q, and characteristics of the Lévy

process (Xt)t), then asymptotics are of type P(Q > max{p, q}u).

? If this condition does not apply, two cases are possible:

- for large R most likely scenario is that buffer first builds up pu, then drains, remains empty for

a while, and starts building up relatively short before R.

In this case asymptotics look like P(Q > pu)P(Q > qu).

- for moderate R buffer remains (most likely) nonempty between 0 and R.



Asymptotics of joint transient distribution

Hence: there are (uniquely characterized) R̄ and Ř such that for all R smaller than R̄,

lim
u→∞

1

u
log P(Q0 > pu,QRu > qu) = −max{p, q}ω,

for R between R̄ and Ř,

lim
u→∞

1

u
log P(Q0 > pu,QRu > qu) = −pω −R · sup

δ

(
δ

(
q − p
R

)
− log EeδX1

)
,

and for R larger than Ř,

lim
u→∞

1

u
log P(Q0 > pu,QRu > qu) = −(p + q)ω,

where ω solves EeωX1 = 1.



Rare-event simulation, importance sampling

What to do if you’re not sure the asymptotic regime has kicked in?
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Rare-event simulation, importance sampling

What to do if you’re not sure the asymptotic regime has kicked in?

Simuation!

Here: estimation of

? Tail of workload distribution;

? Tail of busy-period distribution;

? Tail of workload correlation function;



Rare-event simulation: tail of workload distribution

General statement:

number of simulation runs needed to obtain an estimate with predefined precision (expressed in terms

of the ratio of the width of the confidence interval and the estimate), is inversely proportional to the

probability to be estimated.



Rare-event simulation: tail of workload distribution

General statement:

number of simulation runs needed to obtain an estimate with predefined precision (expressed in terms

of the ratio of the width of the confidence interval and the estimate), is inversely proportional to the

probability to be estimated.

Suppose X ∈ L .

Number of runs needed to estimate P(Q > u) grows exponentially in u

Objective: speed up the simulation.



Rare-event simulation: tail of workload distribution

Let ω solve EeωX1 = 1.



Rare-event simulation: tail of workload distribution

Let ω solve EeωX1 = 1.

Idea: do not perform simulation under the original measure P, corresponding to the characteristic

triplet (d, σ2,Π),

but under an alternative measure Q under which the event of interest occurs more frequently.

After weighing simulation output with appropriate likelihood ratios: importance sampling.



Rare-event simulation: tail of workload distribution

This Q is exponentially twisted version of P, that is, Q is such that, in self-evident notation,

EQe
δX1 = Ee(δ+ω)X1

(is a Laplace transform!).
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This Q is exponentially twisted version of P, that is, Q is such that, in self-evident notation,

EQe
δX1 = Ee(δ+ω)X1

(is a Laplace transform!).



Rare-event simulation: tail of workload distribution

EQe
δX1 = Ee(δ+ω)X1

Elementary to check that Q also corresponds to a Lévy process, with triplet(
d + σ2ω +

∫ 1

−1

x(eωx − 1)Π(dx), σ2, eωxΠ(dx)

)
.



Rare-event simulation: tail of workload distribution

EQe
δX1 = Ee(δ+ω)X1

Elementary to check that Q also corresponds to a Lévy process, with triplet(
d + σ2ω +

∫ 1

−1

x(eωx − 1)Π(dx), σ2, eωxΠ(dx)

)
.

Convexity of EeδX1 implies that

EQX1 = EX1e
ωX1 > 0,

so that the random variable

T := inf{t : Xt ≥ u}

becomes nondefective under Q.



Rare-event simulation: tail of workload distribution

Hence, as before:

P(Q > u) = EQe
−ωXT ;

cf. the change-of-measure arguments used for ‘Cramér-Lundberg’.



Rare-event simulation: tail of workload distribution

Hence, as before:

P(Q > u) = EQe
−ωXT ;

cf. the change-of-measure arguments used for ‘Cramér-Lundberg’.

Idea: simulate under Q until T , record the value Yi of e−ωXT in each run i, perform n runs, and

estimate P(Q > u) by

tn :=
1

n

n∑
i=1

yi,

with yi realizations of Yi.

Unbiased estimator!



Rare-event simulation: tail of workload distribution

Estimator:

tn :=
1

n

n∑
i=1

yi,

with yi realizations of Yi.

Observe: Yi are bounded by e−ωu.



Rare-event simulation: tail of workload distribution

Estimator:

tn :=
1

n

n∑
i=1

yi,

with yi realizations of Yi.

Observe: Yi are bounded by e−ωu.

Also, as variances are positive,

E

(1

n

n∑
i=1

Yi

)2
 ≥ (E

(
1

n

n∑
i=1

Yi

))2

= (P(Q > u))2 ,

so that

lim inf
u→∞

1

u
log E

(1

n

n∑
i=1

Yi

)2
 ≥ lim inf

u→∞

2

u
log P(Q > u) = −2ω.



Rare-event simulation: tail of workload distribution

Our estimator actually achieves this lower bound:

E

(1

n

n∑
i=1

Yi

)2
 ≤ e−2ωu,

so that

lim sup
u→∞

1

u
log E

(1

n

n∑
i=1

Yi

)2
 ≤ −2ω.

We call the estimator asymptotically efficient.



Rare-event simulation: tail of busy-period distribution

Recall: τ := inf{t ≥ 0 : Qt = 0}, where Q0 has stationary distribution.

p(t) := P(τ > t).



Rare-event simulation: tail of busy-period distribution

Earlier we found striking feature:

transforms have the same branching point as the transforms of the workload correlation function!!

Spectrally positive, light tails (∃α < 0 : ϕ(α) = 0): we roughly have

r(t) ∼ p(t) ∼ eϑ
?t,

where ζ is the minimizer of ϕ(·) and ϑ? = ϕ(ζ) the branching point of ψ(·).

Idea: develop importance sampling technique for p(t) that can be reused for r(t) = Corr(Q0, Qt).



Rare-event simulation: tail of busy-period distribution

Näıve simulation: estimate p(t) by

S(NS)
n (t) :=

1

n

n∑
i=1

1{τi > t}.



Rare-event simulation: tail of busy-period distribution

Näıve simulation: estimate p(t) by

S(NS)
n (t) :=

1

n

n∑
i=1

1{τi > t}.

Number of runs needed to obtain estimate of given precision: roughly of order 1/p(t), i.e., exponentially

increasing...



Rare-event simulation: tail of busy-period distribution

Again: fast algorithm based on importance sampling.

? Let, in the interval (0, t], the Lévy process be twisted with −ζ = −ψ(ϑ?) > 0.

Meaning: ϕ(ϑ) replaced by ϕ̄(ϑ) := ϕ(ϑ + ζ)− ϕ(ζ).

? But what about distribution of Q0?

Simulate Q0 from a κ-twisted version, i.e., a distribution with LT Ee−(α−κ)Q0/EeκQ0.

Call new measure Qκ.



Rare-event simulation: tail of busy-period distribution

We simulate the process under Qκ till time t. Likelihood L := LA · LB, where

? contribution due to the twisted Lévy process between 0 and t:

LA := eψ(ϑ?)Xt · Ee−ψ(ϑ?)Xt = eψ(ϑ?)Xt · eϑ?t.

? contribution due to the twisted queue at time 0 (use ‘Pollaczek-Khinchine’):

LB := e−κQ0 · EeκQ0 = e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

Estimate p(t) by, sampling under Qκ,

S(IS)
n (t) :=

1

n

n∑
i=1

Li1{τi > t}.



Rare-event simulation: tail of busy-period distribution

L = eψ(ϑ?)Xt · eϑ?t · e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

First option: not twisting Q0 at all (i.e., choosing κ = 0).

This does not work well: recalling that a necessary condition for {τ > t} is {Q0 + Xt > 0}, we find

EQκL
21{τ > t} ≤

(
−κϕ

′(0)

ϕ(−κ)

)2

e2ϑ?tEQκe
−2κQ0e−2ψ(ϑ?)Q0.



Rare-event simulation: tail of busy-period distribution

L = eψ(ϑ?)Xt · eϑ?t · e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

First option: not twisting Q0 at all (i.e., choosing κ = 0).

This does not work well: recalling that a necessary condition for {τ > t} is {Q0 + Xt > 0}, we find

EQκL
21{τ > t} ≤

(
−κϕ

′(0)

ϕ(−κ)

)2

e2ϑ?tEQκe
−2κQ0e−2ψ(ϑ?)Q0.

Asymptotic efficiency, meaning that the number of replications needed to obtain an estimate with a

certain fixed precision grows subexponentially in the ‘rarity parameter’ t:

lim sup
t→∞

t−1 log EQκL
21{τ > t} ≤ 2ϑ?.

In other words: when picking κ = 0 we need to have EQ0e
−2ψ(ϑ?)Q0 <∞ for logarithmic efficiency...

Not a priori clear....



Rare-event simulation: tail of busy-period distribution

L = eψ(ϑ?)Xt · eϑ?t · e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

First option: not twisting Q0 at all (i.e., choosing κ = 0).

This does not work well: recalling that a necessary condition for {τ > t} is {Q0 + Xt > 0}, we find

EQκL
21{τ > t} ≤

(
−κϕ

′(0)

ϕ(−κ)

)2

e2ϑ?tEQκe
−2κQ0e−2ψ(ϑ?)Q0.



Rare-event simulation: tail of busy-period distribution

L = eψ(ϑ?)Xt · eϑ?t · e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

Second option: twisting with κ = −ζ > 0.

Easy to see that we do get logarithmic efficiency here!



Rare-event simulation: workload correlation function

But can we come up with an efficient simulation algorithm for r(t)?



Rare-event simulation: workload correlation function

But can we come up with an efficient simulation algorithm for r(t)?

Remember:

r(t) =
EQ0Qt − µ2

v
,

with µ := EQ and v := VarQ known...

We can estimate EQ0Qt − µ2 by

T (NS)
n (x) :=

1

n

n∑
i=1

Q
(i)
0 Q

(i)
t − µ2.

How many runs needed?



Rare-event simulation: workload correlation function

Variance of this estimator:

1

n
· Var (Q0Qt) =

E(Q2
0Q

2
t )− (E(Q0Qt))

2

n
→ (EQ2)2 − (EQ)4

n
;

Conclude: number of runs needed roughly proportional to 1/r(t)2!!!



Rare-event simulation: workload correlation function

Solution: coupling



Rare-event simulation: workload correlation function

We construct a coupling as follows.

Write:

r(t) =
1

v
· E(Q0 · (Qt −Q?

t )),

where both Q and Q? are stationary versions of the workload, and Q?
t is independent of Q0.

Construct this as follows: generate Q0 and Q?
0 independently, sampled from the stationary distribution

of the workload. Now use exactly the same driving Lévy process Xt over (0, t] to drive both Qt and

Q?
t from their two independently generated initial conditions.

This makes Qt and Q0 correlated but Q?
t and Q0 independent.



Rare-event simulation: workload correlation function

We can estimate EQ0Qt − µ2 by

T (CS)
n (x) :=

1

n

n∑
i=1

Q
(i)
0 (Q

(i)
t −Q

?(i)
t ).

What is performance of this estimator?



Rare-event simulation: workload correlation function

Split E(Q0 · (Qt −Q?
t )) into four terms, as follows.

Recall Mt = infs∈(0,t]Xs. Then

r(t) = r++(t) + r+−(t) + r−+(t) + r−−(t),

where

r++(t) := E(Q0 · (Qt −Q?
t ) · 1{Q0 + Mt > 0, Q?

0 + Mt > 0}),
r+−(t) := E(Q0 · (Qt −Q?

t ) · 1{Q0 + Mt > 0, Q?
0 + Mt < 0}),

r−+(t) := E(Q0 · (Qt −Q?
t ) · 1{Q0 + Mt < 0, Q?

0 + Mt > 0}),
r−−(t) := E(Q0 · (Qt −Q?

t ) · 1{Q0 + Mt < 0, Q?
0 + Mt < 0}).



Rare-event simulation: workload correlation function

Split E(Q0 · (Qt −Q?
t )) into four terms, as follows.

Recall Mt = infs∈(0,t]Xs. Then

r(t) = r++(t) + r+−(t) + r−+(t) + r−−(t),

where

r++(t) := E(Q0 · (Qt −Q?
t ) · 1{Q0 + Mt > 0, Q?

0 + Mt > 0}),
r+−(t) := E(Q0 · (Qt −Q?

t ) · 1{Q0 + Mt > 0, Q?
0 + Mt < 0}),

r−+(t) := E(Q0 · (Qt −Q?
t ) · 1{Q0 + Mt < 0, Q?

0 + Mt > 0}),
r−−(t) := E(Q0 · (Qt −Q?

t ) · 1{Q0 + Mt < 0, Q?
0 + Mt < 0}).

It is evident that r−−(t) = 0 as both queues have been empty (and this happens most of the time!)



Rare-event simulation: workload correlation function

Key observation: |Qt −Q?
t | ≤ |Q0 −Q?

0|.

We therefore have:

Var (Q0(Qt −Q?
t )) ≤ EQ2

0(Qt −Q?
t )

2 ≤ EQ2
0(Q0 −Q?

0)2.

In addition:

EQ2
0(Q0 −Q?

0)2 ≤ E(Q2
0(Q0 −Q?

0)2 · 1{Q0 + Mt > 0, Q?
0 + Mt > 0}) +

+ E(Q2
0(Q0 −Q?

0)2 · 1{Q0 + Mt > 0, Q?
0 + Mt ≤ 0})

+ E(Q2
0(Q0 −Q?

0)2 · 1{Q0 + Mt ≤ 0, Q?
0 + Mt > 0})



Rare-event simulation: workload correlation function

Lemma: in the spectrally-positive case

lim
t→∞

1

t
log E(Qk

01{τ > t}) ≤ ϑ?

(and . . . ≤ q? in the spectrally-negative case).

Hence,

lim
t→∞

1

t
log Var (Q0(Qt −Q?

t )) ≤ ϑ?.



Rare-event simulation: workload correlation function

Lemma: in the spectrally-positive case

lim
t→∞

1

t
log E(Qk

01{τ > t}) ≤ ϑ?

(and . . . ≤ q? in the spectrally-negative case).

Hence,

lim
t→∞

1

t
log Var (Q0(Qt −Q?

t )) ≤ ϑ?.

Consequently,√
VarT

(CS)
n (x)

r(t)
≈
√
eϑ?t/n

eϑ?t
,

so that number of runs needed grows roughly as 1/r(t).

Substantial improvement!



Rare-event simulation: workload correlation function

Augment coupling algorithm with importance sampling (as for busy period),

and we even get an asymptotically efficient algorithm (i.e., number of runs grows subexponentially).



Example: estimation of r(t) for reflected Brownian motion

Take µ = −1, σ2 = 1; remember

Qt = Xt + max

{
− inf

0≤s≤t
Xs, Q0

}
.

Q0 has an exponential distrbution with mean 1
2.



Example: estimation of r(t) for reflected Brownian motion

Take µ = −1, σ2 = 1; remember

Qt = Xt + max

{
− inf

0≤s≤t
Xs, Q0

}
.

Q0 has an exponential distrbution with mean 1
2.

Then we sample Xt from a normal distribution with mean −t and variance t; say it has value z. Using

Brownian Bridge:

P
(
− inf

0≤s≤t
Xs ≤ x

∣∣∣∣ Xt = z

)
= exp

(
−2

x

t
(x + z)

)
.

Then it can be verified that

Yz :=

(
− inf

0≤s≤t
Xs

∣∣∣∣ Xt = z

)
d
= −z

2
+

1

2

√
z2 − 2t logU,

where U has a uniform distribution over (0, 1].

Hence: easy simulation of Qt, requiring just three random numbers!



? Perform 108 runs per experiment;

? the table gives the relative errors.

Naive Coupling IS

t = 10 7.91 · 10−4 35% 0.85% 0.038%

t = 12 2.21 · 10−4 75% 1.50% 0.042%

t = 14 6.75 · 10−5 133% 2.82% 0.045%

t = 16 2.17 · 10−5 151% 4.99% 0.049%

t = 18 6.83 · 10−6 160% 8.4% 0.054%

t = 20 2.27 · 10−6 188% 11.9% 0.057%



? Perform 108 runs per experiment;

? the table gives the relative errors.

Naive Coupling IS

t = 10 7.91 · 10−4 35% 0.85% 0.038%

t = 12 2.21 · 10−4 75% 1.50% 0.042%

t = 14 6.75 · 10−5 133% 2.82% 0.045%

t = 16 2.17 · 10−5 151% 4.99% 0.049%

t = 18 6.83 · 10−6 160% 8.4% 0.054%

t = 20 2.27 · 10−6 188% 11.9% 0.057%

? Under importance sampling the relative error is more or less constant!



PART IV:

VARIANTS OF THE STANDARD QUEUE



Variants of the standard queue

? Finite-buffer queues;

? Models with feedback;

? Vacation and polling models;

? Models with Markov-additive input.



Finite-buffer queues

Consider a Lévy-driven queue in which workload cannot exceed level K > 0.

Corresponding Skorokhod problem can be formulated, in which Qt is expressed in terms of

? local time at 0 (as before),

? but now also the local time at K.



Finite-buffer queues

Assuming for ease Q0 = 0. Then

Qt = Xt + Lt − L̄t,

with Lt (L̄t) the local time at 0 (at K, respectively);

popularly speaking, Lt only increases when Qt = 0, whereas L̄t only increases when Qt = K.



Finite-buffer queues

Assuming for ease Q0 = 0. Then

Qt = Xt + Lt − L̄t,

with Lt (L̄t) the local time at 0 (at K, respectively); popularly speaking, Lt only increases when

Qt = 0, whereas L̄t only increases when Qt = K.

Then Qt can be explicitly solved:

Qt = Xt − sup
s∈[0,t]

(
max

{
min

{
Xs −K, inf

u∈[0,t]
Xu

}
, inf
u∈[s,t]

Xu

})
,

whereas an alternative solution is

Qt = sup
s∈[0,t]

max

{
Xt −Xs, inf

u∈[s,t]
(K + Xt −Xu)

}
.



Finite-buffer queues

First part of following result characterizes steady-state workload Q in terms of a first-passage time

(not required anymore that EX1 < 0).

Second part assumes X ∈ S−, but realize X ∈ S+ can be dealt with analogously.

Recall (implicit) definition of W (0)(·): a strictly increasing and continuous function whose Laplace

transform satisfies∫ ∞
0

e−βxW (0)(x)dx =
1

Φ(β)
, β > Ψ(0).



Finite-buffer queues

Write πK(u) := P(Q < u).

Proposition: (i) For u ∈ [0, K],

1− πK(u) = P(Xτ [y−K,y) ≤ y),

where τ [u, v) := inf{t ≥ 0 : Xt 6∈ [u, v)}, for u ≤ 0 ≤ v.

(ii) Let X ∈ S−. Then, for u ∈ [0, K],

1− πK(u) =
W (0)(K − x)

W (0)(K)
.



Finite-buffer queues

Write πK(u) := P(Q < u).

Proposition: (i) For u ∈ [0, K],

1− πK(u) = P(Xτ [y−K,y) ≤ y),

where τ [u, v) := inf{t ≥ 0 : Xt 6∈ [u, v)}, for u ≤ 0 ≤ v.

(ii) Let X ∈ S−. Then, for u ∈ [0, K],

1− πK(u) =
W (0)(K − x)

W (0)(K)
.

As we know the transform of W (0)(·), this result characterizes P(Q ≥ u).

For the case of Brownian input, it turns out that Q has a truncated exponential distribution, as is

easily checked.



Finite-buffer queues

In finite-buffer models: notion of a loss rate, defined by, in self-evident notation,

`K := EπKL̄1.

Proposition: If
∫∞

1 yΠ(dy) =∞, then `K =∞, and otherwise

`K =
EX1

K

∫ K

0

xπk(dx) +
σ2

2K
+

1

2K

∫ K

0

∫ ∞
−∞

k(x, y)Π(dy)πK(dx),

where k(x, y) := −(x2 + 2xy) for y ≤ −x, k(x, y) := y2 for −x < y < K − x, and k(x, y) :=

2y(K − x)− (K − x)2 for y ≥ K − x.



Finite-buffer queues

For X ∈ L possible to find asymptotics of `K for K large.

Are of the form Ce−ωK , for some rather complicated C, and ω solving EeωX1 = 1.



Models with feedback

So far: input stream was not affected by the current level of the workload.

Now we do allow such dependencies.



Models with feedback

First model: input is

CP(r(x), λ(x), b(·))

when the current workload level is x ≥ 0; note that the distribution of the jobs B does not depend

on x.

Rate conservation argument: density fQ(·) of stationary workload obeys

r(x)fQ(x) =

∫
(0,x)

λ(x)fQ(y)P(B > x− y)dy + λ(0)p0P(B > x),

with p0 := P(Q = 0).



Models with feedback

Special case that jobs have an exponential distribution with mean 1/µ:

after multiplication with eµx we get the differential equation

g′(x) = g(x)λ(x)/r(x),

with g(x) := eµxr(x)fQ(x).

For the case p0 > 0 we obtain by an elementary separation of variables argument that

fQ(x) =
λ(0)p0

r(x)
exp

(∫ x

0

(
λ(y)

r(y)
− µ

)
dy

)
,

under appropriate integrability conditions; the case p0 = 0 should be dealt with separately.



Models with feedback

Other model: queue fed by a spectrally-positive Lévy process, where feedback information about the

workload level may lead to adaptation of the Lévy exponent.

One possiblity: models in which workload can only be observed at Poisson instants; at these Poisson

instants, the Lévy exponent may be adapted based on the amount of work present at that time.



Vacation and polling models

Lévy-driven queue with server vacations is studied: stochastic storage process alternatingly experienc-

ing active and passive (vacation) periods.

? During active periods, work is generated according to Lévy process XD(·) ∈ S+ with negative

drift, until workload reaches zero (i.e., the storage reservoir is empty).



Vacation and polling models

Lévy-driven queue with server vacations is studied: stochastic storage process alternatingly experienc-

ing active and passive (vacation) periods.

? During active periods, work is generated according to Lévy process XD(·) ∈ S+ with negative

drift, until workload reaches zero (i.e., the storage reservoir is empty).

? From then on, storage level behaves according to second Lévy process XU(·), assumed to be

non-decreasing.

As during this period work accumulates in the queue, it may be interpreted as a vacation; it

lasts aI + bV , where I is a function of the length of the preceding active period, and V is an

independent vacation time, and a and b are given nonnegative scalars.

The case in which the workload is still zero after aI + bV , has to be treated separately: then the

vacation period is extended until work is generated by XU(·).



Vacation and polling models

Lévy-driven queue with server vacations is studied: stochastic storage process alternatingly experienc-

ing active and passive (vacation) periods.

? During active periods, work is generated according to Lévy process XD(·) ∈ S+ with negative

drift, until workload reaches zero (i.e., the storage reservoir is empty).

? From then on, storage level behaves according to second Lévy process XU(·), assumed to be

non-decreasing.

As during this period work accumulates in the queue, it may be interpreted as a vacation; it

lasts aI + bV , where I is a function of the length of the preceding active period, and V is an

independent vacation time, and a and b are given nonnegative scalars.

The case in which the workload is still zero after aI + bV , has to be treated separately: then the

vacation period is extended until work is generated by XU(·).

? Subsequently a new active period starts; etc.



Vacation and polling models

Consider sequence of epochs right before an active period starts.
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Vacation and polling models

Consider sequence of epochs right before an active period starts.

Transform of storage level at such embedded epoch can be expressed in terms of transform at previous

embedded epoch.

These transforms should be identical in equilibrium → transform of the stationary storage level at

those embedded epochs.

Using Kella-Whitt martingale, they can be translated into transform of workload at arbitrary epoch.

Interestingly, these vacation models can be related to so-called polling models, in which a single server

visits multiple queues according to some predefined discipline.



Vacation and polling models

Lévy-driven polling systems can be considered in very general context:

? N -queue polling model with switchover times;

? Each of the queues is fed by nondecreasing Lévy process, which can be different during each of

the consecutive periods within the server’s cycle.

? The N -dimensional Lévy processes obtained in this fashion are described by their (joint) Laplace

exponent, thus allowing for non-independent input streams.



Vacation and polling models

For this general Lévy-driven polling system analysis is same as before:

? First step: steady-state distribution of the workload is determined at embedded epochs (which are

now polling and switching instants);

importantly joint transform of all N workloads is found.

? As before, application of Kella-Whitt martingale yields the steady-state distribution at arbitrary

epoch.

Results are so general that they cover most important polling disciplines, like exhaustive and gated.



Models with Markov-additive input

Markov-additive processes (map s): Markov-modulated version of Lévy processes.
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Models with Markov-additive input

A map (for ease only spectrally positive case S map
+ ) is a bivariate Markovian process (Xt, Jt) that

is defined as follows.

? Let (Jt)t be irreducible continuous-time Markov chain with finite state space E = {1, . . . , N},
transition rate matrix Q = (qij) and (unique) stationary distribution π.

? For each state i that Jt can attain, let (X
(i)
t )t be a Lévy process with Laplace exponent

ϕi(α) = log E exp(−αX(i)
1 ).

? Letting Tn and Tn+1 be two successive transition epochs of Jt, and given that Jt jumps from state

i to state j at t = Tn, we define the additive process Xt in the time interval [Tn, Tn+1) through

Xt = XTn− + Un
ij + [X

(j)
t −X

(j)
Tn

],

where (Un
ij)n is a sequence of i.i.d. random variables with Laplace transform

bij(α) = Ee−αU
1
ij ,

where U 1
ii ≡ 0, describing the jumps at transition epochs.



Models with Markov-additive input

To make the map spectrally positive, it is required that U 1
ij ≥ 0 (for all i, j ∈ {1, . . . , N}) and that

X
(i)
t is allowed to have only positive jumps (for all i ∈ {1, . . . , N}).



Models with Markov-additive input

Observe: modulating Markov chain does not jump in [t, t+ h) with probability 1 + qjjh+ o(h), given

Jt = j (recall that qjj < 0), and jumps to k with probability qjkh + o(h).

Therefore, in self evident notation, with

Ξij(α, t) := Ei(e
−αXt, Jt = j),

we obtain

Ξij(α, t + h) = (1 + qjjh)Ξij(α, t)Ee−αX
(j)
h +

∑
k 6=j

qkjh · Ξik(α, t)bkj(α) + o(h)

= (1 + ϕi(α))Ξij(α, t) + h
N∑
k=1

Ξik(α, t)qkjbkj(α) + o(h).



Models with Markov-additive input

Ξij(α, t + h) = (1 + ϕi(α))Ξij(α, t) + h

N∑
k=1

Ξik(α, t)qkjbkj(α) + o(h).

Subtract Ξij(α, t) from both sides; divide by h: we obtain system of linear differential equations.



Models with Markov-additive input

Ξij(α, t + h) = (1 + ϕi(α))Ξij(α, t) + h

N∑
k=1

Ξik(α, t)qkjbkj(α) + o(h).

Subtract Ξij(α, t) from both sides; divide by h: we obtain system of linear differential equations.

Its solution is given in following proposition, which shows some sort of infinite-divisibility, but now at

matrix level.

map can be regarded as a genuine matrix-counterpart of the Lévy process!

Proposition: The matrix (Ξij(α, t))ij equals eM(α)t, where

Mij(α) := 1{i=j}ϕi(α) + qijbij(α).



Models with Markov-additive input

Just as in Lévy case: map-driven queues.

Stable under assumption that

EX1 =

N∑
i=1

πiEX(i)
1 +

∑
i 6=j

πiqijEUij < 0.

All issues we have addressed so far for the Lévy-driven queue (stationary distribution, transience, busy

periods, tail probabilities, etc.) can be studied for the map-driven queue as well!



Models with Markov-additive input

Now: only short account of main findings on the stationary distribution.

Under stability condition:

E(e−αQ, J = j) =
(
α`(M(α))−1

)
j
,

where ` is a row vector.



Models with Markov-additive input

Now: only short account of main findings on the stationary distribution.

Under stability condition:

E(e−αQ, J = j) =
(
α`(M(α))−1

)
j
,

where ` is a row vector.



Models with Markov-additive input

Now: only short account of main findings on the stationary distribution.

Under stability condition:

E(e−αQ, J = j) =
(
α`(M(α))−1

)
j
,

where ` is a row vector.

Interesting: compare structure of this result with ‘generalized Pollaczek-Khinchine’: it is essentially

its map-counterpart!

Left: methods to determine `. Several techniques have been developed.

Case X ∈ S map
− is also dealt with: then Q has phase-type distribution.



PART V:

NETWORKS



Tandem queue

Consider two concatenated Lévy-driven queues: a Lévy-driven tandem queue.

The output of the 1st (upstream) queue is immediately transferred to the 2nd (downstream) queue.

Let r1 (r2 > 0) be the output rates at upstream (downstream, respectively) node respectively.

In order to avoid degeneracy: assume r2 < r1.

Suppose that Lévy process Jt feeds into the first queue, with EJ1 < r2 (stationarity condition).



Tandem queue

Q1, Q2: be the stationary workload at first/second node, respectively.

Q: total stationary workload contained in stations 1, 2. Note that Q2 = Q−Q1.
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′
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Tandem queue

Consider (X1,t, X2,t)
′
t≥0, with X1,t := Jt − r1t and X2,t := Jt − r2t.

Then, due to ‘Reich’:

Q1
d
= sup

t≥0
X1,t

and

Q
d
= sup

t≥0
X2,t.

Hence following representation for the joint stationary workload holds:

(Q1, Q2)
d
=

(
sup
t≥0

X1,t, sup
t≥0

X2,t − sup
t≥0

X1,t

)
.

We are interested in the distribution of Q2 as well as in the joint distribution.



Tandem queue

To shorten the notation, let

X̄i,S := sup
t∈S

Xi,t,

and

X̄i = X̄i,[0,∞).

Also let

Gi := GXi = arg sup
t≥0

Xi,t

be the (first) epoch that (Xi,t)t≥0 attains its maximum, for i = 1, 2 and S ⊂ R.



Tandem: representation of downstream workload

Focus on downstream queue.

Note that it holds that Q2 is distributed as supt≥0X2,t − supt≥0X1,t, but . . .



Tandem: representation of downstream workload

Focus on downstream queue.

Note that it holds that Q2 is distributed as supt≥0X2,t − supt≥0X1,t, but . . .

. . .(X1,t)t≥0 and (X2,t)t≥0 are strongly dependent (note that X1,t −X2,t = (r2 − r1)t).



Tandem: representation of downstream workload

Still we can find a nice representation, as follows.

Define tu := u/(r1−r2), i.e., minimal time needed for second queue to exceed level u, starting empty.

Lemma: G1 ≤ tu ≤ G2 a.s.



Tandem: representation of downstream workload

Lemma: G1 ≤ tu ≤ G2 a.s.

Proof: two parts.

(i) G2 ≥ tu. As follows:

Suppose Q2 > u and G2 < tu. Then, using r1 > r2,

Q2 = sup
t∈[0,tu)

X2,t − sup
s≥0

X1,s

≤ sup
t∈[0,tu)

(Jt − r2t)− (Jt − r2t) = (r1 − r2)tu = u.

Contradiction!



Tandem: representation of downstream workload

(ii) G1 ≤ tu. As follows:

Partition P(Q2 > u) into

P(X̄2,[tu,∞) − X̄1,[0,∞) > u;G1 > tu) + P(X̄2,[tu,∞) − X̄1,[0,∞) > u;G1 ≤ tu).
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Tandem: representation of downstream workload

(ii) G1 ≤ tu. As follows:

Partition P(Q2 > u) into

P(X̄2,[tu,∞) − X̄1,[0,∞) > u;G1 > tu) + P(X̄2,[tu,∞) − X̄1,[0,∞) > u;G1 ≤ tu).

The latter probability trivially equals

P(X̄2,[tu,∞) − X̄1,[0,tu] > u;G1 ≤ tu).

Considering the former probability, observe that under G1 > tu,

X̄2,[tu,∞) − X̄1,[0,∞) ≥ (JG1 − r2G1)− (JG1 − r1G1) = (r1 − r2)G1 > (r1 − r2)tu = u.

But this probability is not reduced when replacing X̄1,[0,∞) by X̄1,[0,tu]:{
X̄2,[tu,∞) − X̄1,[0,∞) > u

}
⊆
{
X̄2,[tu,∞) − X̄1,[0,tu) > u

}
,

so that the former probability equals

P(X̄2,[tu,∞) − X̄1,[0,tu] > u;G1 > tu).



Tandem: representation of downstream workload

Adding the two probabilities up yields

P(Q2 > u) = P(X̄2,[tu,∞) − X̄1,[0,tu] > u).

In other words: we could have taken G1 ≤ tu.

Thus

P(Q2 > u) = P
(
X̄2,[tu,∞) − X̄1,[0,tu] > u

)
.

Hence, using that X1,tu −X2,tu = u,

X̄2,[tu,∞) − X̄1,[0,tu] = (X̄2,[tu,∞) −X2,tu)− (X̄1,[0,tu] −X1,tu) + u.



Tandem: representation of downstream workload

In view of stationarity and independence of increments of (Xi,t)t≥0, we obtain:

Theorem: Let (X
(1)
t )t≥0, (X

(2)
t )t≥0 be independent copies of (X1,t)t≥0, (X2,t)t≥0 respectively. Then,

for each u > 0,

P(Q2 > u) = P

(
sup

t∈[0,∞)

X
(2)
t > sup

t∈[0,tu]

−X(1)
t

)
.



Tandem: distribution of downstream workload

Goal: find Laplace transform Ee−αQ2 for J ∈ S+.



Tandem: distribution of downstream workload

Goal: find Laplace transform Ee−αQ2 for J ∈ S+.

Let ϕ1(α) := Ee−αX1,1. Also,

τ̄ (x) := inf{t ≥ 0 : −X(1)
t > x}.

Then, for each y ≥ 0,

P

(
sup
t∈[0,tu]

(−X(1)
t ) < y

)
= P(τ̄ (y) > tu)

and, as seen before,

Ee−ϑτ(x) = e−xϕ
−1
1 (ϑ).

Obviously,

sup
t∈[0,∞)

X
(2)
t

d
= Q.



Tandem: distribution of downstream workload

Application of representation of downstream workload, with ψ1(·) := ϕ−1
1 (·),∫ ∞

0

e−αuP(Q2 > u)du =

∫ ∞
0

e−αu
∫ ∞

0

P(τ̄ (y) > tu)dP(Q ≤ y)du

= (r1 − r2)

∫ ∞
0

∫ ∞
0

e−α(r1−r2)vP(τ̄ (y) > v)dvdP(Q ≤ y)

=
1

α

(
1−

∫ ∞
0

∫ ∞
0

e−α(r1−r2)vdP(Ry ≤ v)dP(Q ≤ y)

)
=

1

α

(
1− Ee−ψ1(α(r1−r2))Q

)
.



Tandem: distribution of downstream workload

As a consequence:

Ee−αQ2 = Ee−ψ1(α(r1−r2))Q,

which, combined with ‘generalized Pollaczek-Khinchine’, gives the following result.



Tandem: distribution of downstream workload

As a consequence:

Ee−αQ2 = Ee−ψ1(α(r1−r2))Q,

which, combined with ‘generalized Pollaczek-Khinchine’, gives the following result.

Theorem: Let J ∈ S+ with EJ1 < r2 < r1. Then, for each α > 0,

Ee−αQ2 =
−EX2,1

r1 − r2

ψ1(α(r1 − r2))

α− ψ1(α(r1 − r2))
.



Tandem: distribution of downstream workload

Suppose J ∈ Bm(0, 1).

Then density of supt∈[0,tu]−X
(1)
t equals

%(x) :=
d

dx
P

(
sup
t∈[0,tu]

−X(1)
t } ≤ x

)

=

√
2

πtu
exp

(
−(x− r1tu)

2

2tu

)
− 2r1e

2r1x

(
1− ΦN

(
x + r1tu√

tu

))
.

After some standard calculus, for each u ≥ 0,

P(Q2 > u) =

=
r1 − 2r2

r1 − r2
e−2r2uΦN

(
r1 − 2r2√
r1 − r2

√
u

)
+

r1

r1 − r2

(
1− ΦN

(
r1√
r1 − r2

√
u

))
.



Tandem: distribution of downstream workload

Suppose J ∈ Bm(0, 1).

After lengthy but standard calculus, we obtain following asymptotics, as u→∞:

(i) if r1 > 2r2, then

P(Q2 > u)e2r2u → r1 − 2r2

r1 − r2
;

(ii) if r1 = 2r2, then

P(Q2 > u)
√
ue2r2u → 1√

2πr2

;

(iii) if r1 < 2r2, then

P(Q2 > u)

(
u

r1 − r2

)3/2

exp

(
r2

1

2(r1 − r2)
u

)
→ 1√

2π

4r2

r2
1(r1 − 2r2)2

.

These extend to J ∈ L ∩S+ (‘Heaviside’).



Tandem: distribution of downstream workload

Applying ‘Tauber’ to the transform of Q2:

Theorem: Assume that X1 ∈ S+ ∩R, with ϕ1(α) ∈ Rν(n, η). Then, as u→∞,

P(Q2 > u) =

(
−EX1,1

r1 − r2

)1−ν
P(Q > u)(1 + o(1)) =

=
(−1)n+1

Γ(2− ν)

η

−EX2,1

(
−EX1,1

r1 − r2

)1−ν
u1−νL(u)(1 + o(1)).
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Extensions:

I. Joint distribution:

Ee−αQ1−ᾱQ2 =
−EX2,1ᾱ

ᾱ− ψ1((r1 − r2)ᾱ)

ψ1((r1 − r2)ᾱ)− α
(r1 − r2)ᾱ− ϕ1(α)

.
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(r1 − r2)ᾱ− ϕ1(α)

.

II. Bivariate asymptotics:

P(Q1 > Au,Q2 > (1− A)u)

as u→∞ and A ∈ (0, 1).



Tandem: distribution of downstream workload

Extensions:

I. Joint distribution:

Ee−αQ1−ᾱQ2 =
−EX2,1ᾱ

ᾱ− ψ1((r1 − r2)ᾱ)

ψ1((r1 − r2)ᾱ)− α
(r1 − r2)ᾱ− ϕ1(α)

.

II. Bivariate asymptotics:

P(Q1 > Au,Q2 > (1− A)u)

as u→∞ and A ∈ (0, 1).

III. More sophisticated systems: multihop tandems and intree networks.



EPILOGUE



A few conclusions

? Lévy-driven queues are a practically relevant concept;

? fairly explicit analysis is possible;

? a broad variety of techniques can be used (transforms, rate conservation, asymptotic techniques,

importance sampling, martingales, . . .


