Radio Frequency Current Density Imaging with A 180° Sample Rotation

Dinghui Wang, Michael L.G. Joy, Weijing Ma, Tim P. DeMonte and Adrian I. Nachman

- Introduction
- RF-CDI with a single 180-degree rotation
- Three-dimensional RF current density reconstruction
- Discussion and conclusions

(25/2011

Basic (circa 1980) ideas behind CDI methods

- Allow imaging of the electrical aspects of living tissues and organs.
- Use MRI to acquire internal measurements of Magnetic fields permitting better tomography than EIT.
- Make full use of Maxwell's equations to allow quantitative imaging.

Current Density Imaging (CDI)

- Low frequency CDI (LF-CDI)
 up to 100 Hz
- Radio frequency CDI (RF-CDI)
 the Larmor frequency, 5-300 MHz

Current Density Impedance Imaging (CDII)

- Low frequency CDI (LF-CDI)
 up to 100 Hz
- Radio frequency CDI (RF-CDI)
 the Larmor frequency, 5-300 MHz

Biomedical Applications of CDI

LF-CDI on live pig

Why RF-CDI?

- Higher current can be tolerated without nerve and muscle stimulation.
 - More applications. Less noise.
- Dielectric properties measurable.
- Induced currents eliminate electrode tissue interface issues.

(25/2011

Limitations of Previous RF-CDI Reconstruction

Only compute J_z Single orientation approximation

What is Measured

Transverse magnetic field

LCP: Left Circularly Polarized

RCP: Right Circularly Polarized

Only LCP component can be measured

Single Orientation Reconstruction

$$J_z = \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} = j(\frac{\partial H_L}{\partial x} - \frac{\partial H_R}{\partial x}) - (\frac{\partial H_L}{\partial y} + \frac{\partial H_R}{\partial y})$$

$$H_{L} \sim \underbrace{(\tilde{H}_{x}, \tilde{H}_{y})}_{\text{LCP}} \neq \underbrace{(H_{x}, H_{y})}_{?} \longrightarrow J_{z}$$

$$\nabla \cdot \mathbf{H} = 0 \quad \Longrightarrow \quad J_z = 2j \frac{\partial H_L}{\partial x} - 2 \frac{\partial H_L}{\partial y} + \left(j \frac{\partial H_z}{\partial z}\right)$$

Single orientation approximation

$$\left|\partial H_{z}/\partial z\right| << \left|J_{z}\right|$$

Single Orientation Approximation

- Theoretical Implication

$$J_z = 2j \frac{\partial H_L}{\partial x} - 2 \frac{\partial H_L}{\partial y} + j \frac{\partial H_z}{\partial z}$$

Ideally,
$$\frac{\partial H_z}{\partial z} = 0$$
 $\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = 0$

$$\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2$$

$$\mathbf{H}_1 = H_z \vec{a}_z \qquad \mathbf{H}_2 = H_x \vec{a}_x + H_y \vec{a}_y$$

Single Orientation Approximation

- Impact on Practice

- Validity cannot be examined by measured data
- A sufficient condition—current flow globally in z direction $(\mathbf{H}_1 = H_z \vec{a}_z = 0)$
- May easily be violated in biomedical applications

Reconstruction with a Sample Rotation

$$+ \underbrace{(\tilde{H}_{x}^{0}, \tilde{H}_{y}^{0})}^{\text{LCP}} \longrightarrow (H_{x}, H_{y}) \longrightarrow J_{z}$$

$$(\tilde{H}_{x}^{\pi}, \tilde{H}_{y}^{\pi})$$
RCP

Simulation Verification

Results

Method I: single orientation

Method 2: 180° rotation

Experimental Testing

To RF Current Source through Cable and Matching Network

Experiment I

Forwarding modeling

Method 2

Method 1

Method I: single orientation

Method 2: 180° rotation

6/25/2011

17

Experiment 2

Method I: single orientation J_z has significant error

Method 2: 180° rotation J_{z} is close to the correct value

RF Current Density Vector Reconstruction -Three or Four Sample Positions

Forwarding modeling

Reconstruction with added noise

Experimental Testing

Discussion

- Imaging conditions
 Uniformity of the direction of B₁
- Practical consideration for sample rotations

Towards RF Impedance Imaging

Significance

Possible computation methods

$$\gamma = \sigma + j\omega\varepsilon = -j\frac{(\nabla^2 \mathbf{H}) \cdot (\nabla \times \mathbf{H})}{\omega \mu_0 \mathbf{H} \cdot (\nabla \times \mathbf{H})}$$

Conclusions

- We have demonstrated for the first time that all three components of RF current density vector can be reconstructed.
- The work presented in this thesis is expected to significantly enhance RF-CDI to image biological subjects.

- Dr. Greig Scott
- Ning Zhang, Emidio Tarulli
- MITACS, NSERC, OGS & OGSST

Why RF-CDI

 Higher current can be tolerated without nerve and muscle stimulation.

> More applicable in biomedical applications Higher current means less noisy images

 Working at different frequency range, RF-CDI may reveal new information about tissues.