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Outline

- EIT by elastic perturbation

- Uniqueness and a reconstruction formula

- Stability



1. EIT by elastic perturbation

Ω ⊂ R
n smooth bounded domain, n = 2, 3

γ(x) unknown conductivity. The test potentials satisfy

8

<

:

div(γ(x)∇ui(x)) = 0 in Ω
ui = fi on ∂Ω
γ∂nui = gi on ∂Ω

- In general, the recovery of γ from boundary measurements is severely ill-posed, unless

additionnal information is available

- For example : If we knew that the medium contained small-volume inclusions, then we

could extract (some) information from the data in a stable manner



We are interested in multi-wave imaging where EIT measurements are made while the

medium is perturbed by ultrasounds

- One or several currents are imposed at the boundary and the voltage potential is mea-

sured there (get data u/∂Ω, ∂nu/∂Ω)

- At the same time, a spherical region is mechanically excited by focused accoustic waves

(the focal spot is a few mm’s in diameter)

- The electric measurements are repeated as the ultrasound spot scans the whole domain

- Asymptotically, the measurements contain information on the pointwise energy density

E(x) = γ(x)∇u(x) · ∇u(x)



Reconstruction with the ‘0-Laplacian’

Assume that the conductivity γ is known in the vicinity of ∂Ω

The asymptotic formula gives an approximation of the local values of the energy density

γ(x)|∇u(x)|2 ∼ E(x) thus we may obtain u by solving
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:

div

„

E(x)∇u(x)

|∇u(x)|2
«

= 0 in Ω

E(x)∇u(x)

|∇u(x)|2
· n = ψ on ∂Ω

provided that the current g is chosen in such a way that ∇u 6= 0



Numerical reconstruction :

We use 2 measurements E1 and E2, corresponding to 2 Dirichlet data g1 and g2 on ∂Ω.

1. Select an initial conductivity γ0 and compute the solution to



div(γ0∇u0) = 0 in Ω

u0 = g1 on ∂Ω

2. Compute the error e0 =
E1(x)

|∇u0|2 − γ
0

3. Introduce a corrector w solution to



div(γ0∇w) = −div(e0∇u0) in Ω

w = 0 on ∂Ω

4. Update the conductivity

γ1 =
E1(x) − 2γ0(x)∇w · ∇u0

|∇u0|2

5. Iterate, alternating the currents g1, g2



An example of reconstruction (with 2 sets of measurements)





Sensitivity to the mesh



2. Uniqueness in 2D [Capdeboscq, De Gournay, Fehrenbach, Kavian]

Assume that Ω ⊂ R
2 is convex with smooth boundary, and that the conductivity γ is

smooth (C1,α)

Let (g1, g2) ∈ C2,α(∂Ω), such that ||gi||2,α,∂Ω = 1

Let ui, i = 1, 2 be the solutions to



div(γ∇ui) = 0 in Ω

ui = gi on ∂Ω.

The internal data is Eij(x) = γ(x)∇ui(x) · ∇uj(x) a.e. x ∈ ω

Alessandrini and Nesi have shown that if (g1, g2) : ∂Ω → ∂Ω is a homeomorphism,

then |det(∇u1,∇u2)| > 0, a.e. in Ω

Prop : If (g1, g2) is a homeomorphism ∂Ω −→ ∂Ω, then the internal data Eij in ω ⊂ Ω

determines γ up to a constant in ω



The proof is based on the following formula for computing ln(γ) :

Let si =
√
γ∇ui, i = 1, 2

Assume that det(∇u1,∇u2) > 0 and decompose s2 = αs1 + βJs1 where

J =

„

0 −1
1 0

«

α =
E12

E11
β =

q

E11E22 − E2
12

E11

Then we have in ω
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:

div(
√
γs1) = div(γ∇u1) = 0

div(
1

√
γ
Js1) = div(J∇u1) = 0

div(
√
γs2) = div(

√
γ[αs1 + βJs1]) = 0

div(
1

√
γ
Js2) = div(

1
√
γ
J[αs1 + βJs1]) = 0



From these relations one obtains

8

<

:

−2div(s1) = ∇ ln(γ) · s1 = U · Js1

−2div(Js1) = −∇ ln(γ) · Js1 = U · s1

(1)

where U =
∇α
β

− J∇ ln(β) is a known function

Note that |s1|2 = γ∇u1 ·∇u1 , so that we can write s1 =
√
E11(cos(θ), sin(θ))

Then we have in ω

8

<

:

div(s1) =
`

∇ ln(
√
E11) + J∇θ

´

· s1

div(Js1) =
`

∇ ln(
√
E11) − J∇θ

´

· Js1

(2)

Using (1) and (2) we obtain

∇θ = U − J∇ ln(
p

E11)



from which one can deduce s1 and finally

∇ ln(γ) = JU − 2JU · s1

E11

s1

so that γ is determined up to a constant from the energy densities Eij

In general, determining the constant requires additional information



3. Stability

3.1. The 2D case

Let γ ∈ C1,α(Ω) such that 0 < λ ≤ γ(x) ≤ Λ < ∞.

Let g ∈ C2,α(∂Ω). By elliptic regularity, the solution to



div(γ∇u) = 0 in Ω

u = g on ∂Ω

satisfies ||u||C2,α(Ω) ≤ C ||g||C2,α(∂Ω)

where C = C(Ω, λ,Λ, ||γ||1,α,Ω)

In particular, the maps γ ∈ C1,α(Ω) −→ Eij ∈ C1,α(Ω) are Frechet differentiable



Consider (g1, g2) diffeomorphic Dirichlet data (i.e. det(∇u1,∇u2) > 0 )

Assume that for all x ∈ ω ⊂ Ω,
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:

m < min{E11,
q

E11E22 − E2
12}

M > max{||Eij||C1(ω), i = 1, 2}

Then there exists ρ > 0 such that

∀ ||γ̃ − γ||C1,α < ρ,
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:

m

2
< min{Ẽ11,

q

Ẽ11Ẽ22 − Ẽ2
12}

2M > max{||Ẽij||C1(ω), i = 1, 2}
(3)



We observe that the maps

Eij −→

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

U =
E11∇(E12/E11)
q

E11E22 − E2
12

− J∇ ln (

q

E11E22 − E2
12

E11

´

∇θ = U − J∇ ln(
√
E11)

s1 =
√
E11(cos(θ), sin(θ))

∇γ = JU − 2(JU · s1)

E11

s1

are Lipschitz functions of the Eij’s and of their gradients, given the bounds (3)



Prop :

Assume ω is a smooth connected subset of Ω with z0 ∈ ∂ω ∩ ∂Ω.

There exists ρ = ρ(Ω, ω, g1, g2) such that

if ||γ − γ̃||C1,α(ω) < ρ and if γ̃(z0) = γ(z0), ∂νu1(z0) = ∂νũ1(z0)

then

||γ − γ̃||C1(ω) ≤ C
2

X

i,j=1

||Eij − Ẽij||C1(ω)

with
8
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:

C =
C(ω)

m
max(1,

M3

m3
)

2m = min{E11(γ),
p

E11(γ)E22(γ) − E12(γ)2}

M/2 = max{||Eij(γ)||C1(ω)
, i = 1, 2}



3.2. The 3D case

Assume that in a subset O of Ω, we measure electrostatic energy densities Eij(x) =

γ∇ui(x) · ∇uj(x) corresponding to 3 imposed boundary values ui = gi, such that

det(E)(x) ≥ c0 > 0 in O with E = (Eij)1≤i,j≤3

We set Si(x) =
√
γ∇ui(x), F = ∇log(

√
γ)

As Eij(x) = Si(x) · Sj(x), the data E determines S1(x), S2(x), S3(x) up to an
orthogonal matrix R(x) = [R1(x), R2(x), R3(x)], which satisfies

∇ · Ri = Vik · Rk − F · Ri, 1 ≤ i ≤ 3

∇ × Ri = Vik × Rk + F × Ri 1 ≤ i ≤ 3

where the Vij’s are computed from the data H.



These conditions lead to a system of ODE’s of the form

∂kR =
X

|α|=3

Qk
αR

α, Rα = Π9
i=1R

αi
i

with a polynomial RHS.

This system can be solved by direct integration along pathes γx0,x in O, provided R(x0)

is known, and from R one can determine ∇log(γ).

Moreover, one can obtain a local stability result of the form

||R− R̃||(x) ≤ C0||R − R̃||(x0) + C1||H − H̃||W1,∞(O)



About the hypothesis on det(H) (see also [Triki, Bal-Uhlmann])

Assume γ is smooth, and can be smoothly extended by 1 outside a large ball, and set

q(x) = −(∆
√
γ)/γ.

Then v =
√
γu solves ∆v + qv = 0 in R

3

Let ρ ∈ C
n, ρ = r(k + ik⊥) with k, k⊥ ∈ S

2, k · k
⊥ = 0, r = |ρ|/

√
2

w(x) = eρ·x is a harmonic complex plane wave (CGO solution)

Thm : [Sylvester, Uhlmann]

vρ =
√
γuρ = e

ρ·x
(1 + ψρ) with rψρ = O(1) in C1

(Ω)

In particular,

√
γ∇uρ = eρ·x (ρ+ ρψρ + ∇ψρ − (1 + ψρ)∇

√
γ)



Setting ρ1 = r(e2 + ie1), ρ2 = r(e3 + ie1) and

(S1, S2, S3, S4) =
√
γ(∇Re(uρ1),∇Im(uρ1),∇Re(uρ2),∇Im(uρ2))

yields

det(S1, S2, S3) = r
3
e
r(2x2+x3)

(− cos(rx1) + f1(x))

det(S1, S2, S4) = r
3
e
r(2x2+x3)

(− sin(rx1) + f2(x))

where the size of the supports of f1, f2 tends to 0 as r→∞

Thus, choosing r large enough, we see that we can find Dirichlet data u = Re(uρi), u =

Im(uρi) on ∂Ω and a partition of Ω into sets Ok, so that

det(S1, S2, S3) > c0 or det(S1, S2, S4) > c0 in Ok



Conclusion

- Multiwave imaging provides internal data, which stabilizes the reconstruction (in numerical

experiments)

- For US+EIT, the internal data is the elastic energy density. The feasibility of focusing

ultrasound waves on regions of the order of mm’s is not so clear however (but one can use

plane waves, see the work of P. Kuchment and L. Kunyansky, G. Bal and J. Schotland).

- For US+EIT in 2D, stability follows from an explicit reconstruction formula. The 3D

situation is more complex.

- Extension to anisotropic medium ?



2 anisotropic conductivities with same Dirichlet to Neumann map

A11, target conductivities

A11, reconstructed


