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INTRODUCTION



EXPOSITION - INVERSE PROBLEMS

Aim: infer model

Given

» Design parameters
 Measurements

« Observation model

Naive inversion ... Fails...

Cast as an optimization problem



HOW TO IMPROVE MODEL RECOVERY ?

« How can we ...

* Improve observation model ?

« Extract more information in the measurement procedure ?

« Use more meaningful a-priori information ?

« Provide more efficient optimization schemes ?



PART I
REGULARIZATION DESIGN



REGULARIZATION DESIGN -
BACKGROUND



REGULARIZATION APPROACHES

« Why regularization is necessary ?
« Imposes a-priori information
« Stabilizes the inversion process

« Provides a unique solution

« Two approaches
« Explicit

« Sparse representation



HOW TO REPRESENT SPARSELY 7

Principle of parsimony  True model can be represented by a small
number of parameters
Each column is a prototype model atom
Sparse representation vector
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SPARSE REPRESENTATION

« |deally sparsest solution achieved by -'norm’ penalty
« Non-convex NP-hard combinatorial problem

* Instead employ -norm ( Donoho 2006 )

-



SPARSE REPRESENTATION PERFORMANCE

Smoothness Total Variation Sparse Representatior



SPARSE REPRESENTATION PERFORMANCE - DIFFERENT
OPERATORS

Fadili et al 2007



SPARSE REPRESENTATION PERFORMANCE -
DIFFERENT DICTIONARIES

Fadili et al 2007



SPARSE REPRESENTATION PERFORMANCE

Singular

Wavelets
vectors

Lanczos Hybrid Bidiagonalization Gradient Projection Sparse
Regularization (HyBR) Representation (GPSR)

Chung, Nagy, O’Leary 2006 Figueiredo, Nowak, Wright 2007



IMPLICIT REGULARIZATION - RATIONALE

Sometimes sparse representation performs well, sometimes not...

Why?

Model and operator dependent

Some dictionaries perform better than others for specific problems

should be chosen such that it sparsifies the representations

i

Local DCT

locally oscillatory, stationary texture
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Curvelets
piecewise smooth with C2 contours

@7 of English

Wavelets
piecewise smooth, isotropic structures

One approach: choose from a known set of transforms (Steerable wavelet,
Curvelet, Contourlets, Bandlets, Singular vectors...)



IMPLICIT REGULARIZATION BY
DICTIONARY DESIGN

- Objective vs. subjective function
« Heuristic choice of regularization functional based on ad-hoc assumptions

« Solutions are intrinsically subjective to the regularization functional choice

How to construct more objective regularization functionals ?

Design a dictionary by learning from authentic examples

« Adaptability - account for the problem’s statistics (model, operator and noise)

« Efficiency and precision - use the right jargon to express a message/model



DICTIONARY DESIGN - PREVIOUS WORK

Approximated Maximum Likelihood (Olshusen & Field 1996, 1997 )
Overcomplete ICA (Lewicki 2000)

Method of Optimal Directions (Engan et al 2001, 2005 )

Sparse Bayesian Learning (Girolami 2001, Wipf 2005 )

FOCUSS (Delgado et al 2003 ) - Bayesian MAP & relative complexity
K-SVD (Aharon & Elad 2006)

FOCUSS+ (Murray & Delgado 2007 )

But

All addressed sparse coding  observation operator was identity



REGULARIZATION LEARNING -
STATISTICAL MERIT



DICTIONARY LEARNING - OPTIMALITY CRITERION

Loss

[3 Depends on the noise

[} Depends on an unknown model

Mean Square Error

3 Depends on an unknown model



DICTIONARY LEARNING - OPTIMALITY CRITERION

Bayes risk

[} Computationally infeasible

Bayes empirical risk

« Assume a set of feasible authentic model examples Is available



REGULARIZATION LEARNING -
OPTIMIZATION FRAMEWORK



OVER-COMPLETE DICTIONARY DESIGN - FORMULATION

Bi-level optimization problem

Non-smooth - norm is replaced by a smooth optimization problem with
inequality constraints

Sensitivity by differentiating the necessary conditions of the decomposition

Non-smooth optimization framework  Modified L-BFGS (0verton 2003)

Horesh & Haber 2009



REGULARIZATION DESIGN -
NUMERICAL RESULTS



DICTIONARY DESIGN - TRAINING SET

Horesh & Haber 2009



DICTIONARY DESIGN - COMPARISON

Horesh & Haber 2009



DICTIONARY LEARNING —
ASSESSMENT WITH NOISE

Horesh & Haber 2009



PART II
OPTIMAL EXPERIMENTAL DESIGN



OPTIMAL EXPERIMENTAL DESIGN -
MOTIVATION



MOTIVATION — LIMITED ANGLE TOMOGRAPHY

Clerbout 2000



MOTIVATION — DIFFUSE OPTICAL TOMOGRAPHY




MOTIVATION — ULTRASOUND IMAGING

Clerbout 2000



DESIGN EXPERIMENTAL LAYOUT

Stonehenge, 2500 B.C.



DESIGN EXPERIMENTAL PROCESS

Galileo Galilei, 1564-1642



RESPECT EXPERIMENTAL CONSTRAINTS...

French nuclear test, Mururoa, 1970



OPTIMAL EXPERIMENTAL DESIGN -
BACKGROUND



ILL VS. WELL-POSED
OPTIMAL EXPERIMENTAL DESIGN
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* Previous work
« Well-posed problems - well established (Fedorov 1997, Pukelsheim 2006 )
* lll-posed problems - under-researched (curtis 1999, Bardow 2008 )

« Many practical problems in engineering and sciences are ill-posed (under-
determined)

What makes non-linear ill-posed problems so special ?



OPTIMALITY CRITERIA IN OVER-DETERMINED PROBLEMS

For linear inversion, employ Tikhonov regularized least squares solution

Bias - variance decomposition

For over-determined problems

A-optimal design problem



OPTIMALITY CRITERIA IN OVER-DETERMINED PROBLEMS

« Optimality criteria of the information matrix

« A-optimal design  average variance

« D-optimality  uncertainty ellipsoid

« E-optimality  minimax

« Almost a complete alphabet...



THE PROBLEM...

* For non-linear ill-posed problems  none of these apply !
* Non-linearity  bias-variance decomposition is impossible

+ lll-posedness  controlling variance alone reduces mildly the error

T

What strategy can be used ?

Proposition 1 - Common practice so far

Trial and Error...



EXPERIMENTAL DESIGN BY TRIAL AND ERROR

Pick a model

Invert and compare recovered models

= R — : ﬂ
: ——

Choose the experimental design that provides the best model recovery



THE PROBLEM...

For non-linear ill-posed problems  none of these apply !
* Non-linearity  bias-variance decomposition is impossible

 lll-posedness  controlling variance alone reduces mildly the error

T

What other strategy can be used ?

Proposition 2 - Minimize bias and variance altogether by some optimality criterion

T

How to define the optimality criterion ?

Horesh, Haber & Tenorio 2010



OPTIMAL EXPERIMENTAL DESIGN -
STATISTICAL MERIT



OPTIMALITY CRITERION

e Loss

[3 Depends on the noise
[3 Depends on an unknown model

« Mean Squared Error

[3 Depends on an unknown model



OPTIMALITY CRITERION

Bayes risk
[3 Computationally infeasible

Bayes empirical risk
« Assume a set of feasible authentic model examples I$ available

How can be regularized 7



OPTIMALITY CRITERION —
SPARSITY CONTROLLED DESIGN

* Regularized empirical risk - Direct density penalty for activation
« Assume: fixed number of experiments

o Let
« The data

* Regularized risk

Horesh, Haber & Tenorio 2011



OPTIMALITY CRITERION —
SPARSITY CONTROLLED DESIGN

» Regularized empirical risk - Direct approach

« Total number of experiments may be large

 Effective when activation of each source and receiver is expensive

- Derivatives of the forward operator w.r.t. =2 ificult. ..

Horesh, Haber & Tenorio 2011



OPTIMALITY CRITERION —
SPARSITY CONTROLLED DESIGN

Regularized empirical risk - Weights formulation

Density penalty over selected experiments from a predefined set

Haber, Horesh & Tenorio 2010



OPTIMALITY CRITERION —
SPARSITY CONTROLLED DESIGN

« Regularized empirical risk - Weights formulation
o Let b2 discretization of the space

o Let

« The observation operator is weighted

. |If B)xperiment  is not conducted

Haber, Horesh & Tenorio 2010



OPTIMALITY CRITERION —
SPARSITY CONTROLLED DESIGN

« Regularized empirical risk - Weights formulation
« Suitable when each experiment conduction is costly

« Source and receiver activation may be highly populated

« Less DOF

* No explicit access to the observation operator needed

Haber, Horesh & Tenorio 2010



OPTIMAL EXPERIMENTAL DESIGN -
OPTIMIZATION FRAMEWORK



THE OPTIMIZATION PROBLEMS

* Direct formulation

min

arg min

« Weights formulation

min

arg min

Haber, Horesh & Tenorio 2010  Horesh, Haber & Tenorio 2011



THE OPTIMIZATION PROBLEM

* Bi-level optimization problem

min

arg min

1 ..
ij

* Assuming the lower optimization level is:
« Convex with a well defined minimum

« With no inequality constraints

min

Haber, Horesh & Tenorio 2010



THE OPTIMIZATION PROBLEM

m is eliminated from the equations and viewed as a function of

Compute gradient by implicit differentiation

The sensitivity

The reduced gradient

Haber, Horesh & Tenorio 2010



OPTIMAL EXPERIMENTAL DESIGN -
NUMERICAL STUDIES



IMPEDANCE TOMOGRAPHY —
OBSERVATION MODEL

« Governing equations

Following Finite Element discretization
« Given model and design settings
« Find data



IMPEDANCE TOMOGRAPHY —
DESIGNS COMPARISON

Naive design True model Optimized design

Horesh, Haber & Tenorio 2011



MAGNETO-TULLERICS TOMOGRAPHY —
OBSERVATION MODEL

« Governing equations

Following Finite Volume discretization
« Given: model and design settings (frequency )
« Find: data




MAGNETOTELLURICS TOMOGRAPHY —
DESIGNS COMPARISON
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Optimalnl_i"nearized design Optimized non-linear design

Haber, Horesh & Tenorio 2008 Haber, Horesh & Tenorio 2010



THE PARETO CURVE — A DECISION MAKING TOOL

Risk
o

Haber, Horesh & Tenorio 2010



SUMMARY



SUMMARY

Generic approaches for design in ill-posed inverse problems
« Design of adaptive regularization
« Optimal experimental design

Only two (important) elements in the big puzzle...

New frontiers in inverse problems and optimization

Vast range of applications in medical imaging, that offers:
« Faster

« Safer
« Higher fidelity image reconstructions
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