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The problem

Standard solution techniques
Reformulation and some new insight
Numerical experiments

Extensions to moving sources/receivers



The problem

We consider an inverse problem solved by the optimization of

: 1
min - Z 1P u; — dj||* + R(m)
j

m

st A(m)u; = Q) j=1,..., N,

m A(m) - a discretization of a parameter dependent
differential operator

(); - source

P - observation matrix
u; - field

d; - data vector

R(m) - regularization



The problem

: 1
min - 5 Z 1P u; — dj||* + R(m)
j

st A(m)u; = Q) j=1,..., N,

m The number of sources is LARG E

m The discretized PDE A(m) is large and ill-conditioned

m Special structure - all sources share the same receivers



The problem

Medical examples include
m Electrical Impedance Tomography (EIT)
m Magnetic Induction Tomography (MIT)
m Microwave Imaging
m 3D Ultrasound

Geophysical examples include
m DC resistivity
m Electromagnetics

m Seismic imaging



Electrical Impedance Tomography




Magnetic Induction Tomography




Solution technique

: 1
min §Z\|PTuj—de2+R(m)
J

st A(m)u; = Q; j=1,..., N,

Impossible to store all fields, use unconstrained approach [H.
Oldenburg, Ascher 2000]

N,
min J(m) =5 > |PTAm)™Q; — ;I + R(m)

[



Solution technique

mln J(m) ZHPTA ~'Q; — d;||> + R(m)

The gradient

N,
Z —G(m,u;) " A(m)"TP(PTA(m)™'Q; — d;) + VR(m)
7=1

where G(m, u;) = V,,(A(m)u;)



Solution technique

Computing the misfit and gradient
m Set misfit =0 Vmisfit =0
mForj=1,..., N

m Solve A(m)u; = Q;

| ’I’j = PTUj — dj

m misfit < misfit + T;rj

m Solve AT\ = Pr;

m Vmisfit < Vmisfit — G\

Computation of misfit and its derivative require 2/V, solutions
of the forward/adjoint problem.

For large scale problems difficult if not impossible



Solution technique

m Set misfit =0 Vmisfit=20
mForj=1,..., N

expensive!

e
Solve A(m)u7 = Q_j

n
.o — DT, .
mr; =P u;—d;
m misfit < misfit + r;rr_j
expensive
e

Solve A )\ = Pr;
Vmisfit «— Vmisfit — GT\



Solution technique

Current methods to deal with multiple rhs

m Factor the system if possible [Pratt, 2000, H. & Oldenburg,
2006]

m Almost factor the system (ILU, domain decomposition
with large domains) [Ascher & van den Doel, 2009]

m Recycle right hand sides [Kilmer & de Sturler 2006]

Issues - complexity, storage



Solution technique

For the computation of a Gauss-Newton step similar
calculations are needed.

Typically, avoid Gauss-Newton and use L-BFGS, nonlinear CG
and steepest descent (storage).

Converges can be slow



A different point of view

The difficulty: computing the misfit.
Can we do this cheaper?



A different point of view

The difficulty: computing the misfit.
Can we do this cheaper?

Recall that
- 1 _
misfit = > Z I1PTA(m)~'Q; — dj|?
j

1 _ 5
= SIPTA(m) Q- DIk =

= ;trace ((PTA(m)le = D)T(PTA(m>71Q - D))

1
= SEI(PTA(m)'Q - Dyu?

where w is a random variable with
E(w)=0 Cov(w) =1



A different point of view

The original (deterministic) optimization problem is therefor
equivalent to the (stochastic) optimization problem

N
. : 1 ~
m=argmin - E IPTA(m)~'Q; — d;||* + R(m)

(=]

1
= arg min éEwHPTA(m)_IQw — Dwl|]* + R(m)



A different point of view

The original (deterministic) optimization problem is therefor
equivalent to the (stochastic) optimization problem

m

N,
1 S
m = arg min . ; |PTA(m)'Q; — dj||* + R(m)
1
= arg min éEwHPTA(m)_IQw — Dwl|]* + R(m)

So What?



A different point of view

1
m = arg min §EwHPTA(m)*1Qw — Dw||* + R(m)

m This is a stochastic optimization problem [Shapiro 09] and
has been treated extensively in the literature

m We can capitalize on the structure of the problem to
obtain cheap algorithms

Main point - Given a realization w; a Single PDE
solve is required to evaluate misfit(m; w;)



A different point of view

1
m = arg min §Ew|\PTA(7n)_1Qw — Dw||* + R(m)



A different point of view

1 .
M = arg min §Ew|\PTA(m)_1Qw — Dw||* + R(m)

Two methods for stochastic optimization | Shapiro 05]

SAA - Sample Average Approximation
Discretize the Expectation THEN optimize

SA - Stochastic Approximation
Optimize AND Discretize



Stochastic Optimization

SAA - Sample Average Approximation
Approximate the expectation using Monte-Carlo

1
n}viln Z 5 1P A(m)~'Quw; — Dw;||> + R(m)
J



Stochastic Optimization

SAA - Sample Average Approximation
Approximate the expectation using Monte-Carlo

1
n}viln Z 5 1P A(m)~'Quw; — Dw;||> + R(m)
J

SA - Stochastic approximation
forj=1,...

1
§ = arg(aprox)l’niné |PT A(m; + s) " Quw; — Dw;||® + R(s)
sj+1 = average(si.j, §)

end



SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

1 :
min  J(m;w) = Z éHPTA(m)*lej — Dwj||* + R(m)

J

m How to pick w?
m How many w's?

Any distribution with E(w) = 0 and Cov(w) = I has
E (wTHw) = trace(H)

Choose the distribution such that [Hutchinson 93]

Var (wTHw) — min

w = rand(%1)



SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

1
min J(m;w) = Z §||PTA(77L)’1ij — Dw;||* + R(m)
/ i

m How to pick w?

® How many w's?

The number of w’s depends on the variability of the unbiased
estimator

E(J (m;w) ijw]

and the accuracy we would like to obtain.



SAA - Example

Generate A(m) by discretizing the PDE
V - exp(m)Vu

Assume 1089 sources (right hand sides) and 1089 receivers
Look at

£(0) = 55 SO IPTA(m +as) Q- DI



SAA - Sample Average Approximation

1 vector 10 vectors

25 vectors 50 vectors




SAA - Sample Average Approximation

Controlling the quality of the approximation can be done by
repeating the minimization with different samples

For our problems we have found that a small sample size may
be sufficient [Also Golub & Bai, 99, Golub & von Matt 98]

Advantage of SAA - separate the stochastic part from the
optimization

Disadvantage of SAA - number of realization may be too large



SA - Stochastic Approximation

Stochastic approximation

foryj=1,...
1
§ = arg(aprox)miné |PT A(m; + 5) " Quw; — Dw;||® + R(s)
Sj+1 = average(Si.;, 5)
end
Questions

m How approximate?
m What methods can be used?

m Convergence?



SA - Stochastic Approximation

m Proof that it works only on various flavors of steepest
descent (recent work [Nemirovski and Shaoiro])

m Observed in practice - works well for L-BFGS and
Gauss-Newton [Schraudolph, Yu & Gunter 10]

m Much interest in machine learning (online algorithms)



An illustrative example

Model problem - Electrical Impedance Tomography

. _ (6]
min |[PT(GTS(m)G) ' Q - DI + S[Gml?




An illustrative example

m Assume 1089 sources and 1089 receivers.

m Mesh 32 x 32 x 32

m Number of unknowns (fields) 35,684, 352

m Computation of full forward, roughly, 2 hours

Use standard, SAA and SA to solve the problem.



An illustrative example

Method  # iterations # rhs/iter Cost (pde solves)

Standard 37 1089 80, 293
SSA 45 10 2757
SA 453 1 923

Computational saving of factor 100

2.1 x 1072
3.2 x 1072

HmSAA — MsStandard HQ/HmStandardHZ
||mSA — 77”LStandardHZ/HT”LStandardH2



Inversion parameters

a=10"1
Starting model - m = 1072S/m
Converges - solution does not change between iterations



Recovered solution




Sequential SAA

How to choose the size of the random batch?
Use continuation in batch-size
Example - EIT in 2D



Sequential SAA

1 src 2 src 3 src
- L - L | L]
s B
H | b - ‘

4 src 5 src 6 src

| Yol *9




Conclusions

m Develop a new point of view for multi-source data

m Can solve the problem in a fraction of the cost of the
original problem

m Key - stochastic trace estimators and stochastic
optimization

m Applications in other parameter estimation problems with
many sources



