
Novel techniques for multiscale representations 1

Prashant Athavale 2

Institute of Pure and Applied Mathematics, Department of Mathematics, University of California, Los Angeles.

Conference on mathematics of medical imaging, Fields Institute
June 23, 2010

1Supported by CSCAMM and IPAM.
2with Eitan Tadmor, CSCAMM, University of Maryland, College Park.

Outline

1 Problems in image processing, a historical tour

2 (BV , L2) decomposition based integro-differential equation (IDE)

3 A few theoretical results about (BV , L2)-based IDE

4 Modifications to the (BV , L2)-based IDE

5 IDE based on (BV , L1) image decomposition

6 A few theoretical results for (BV , L1)-IDE

7 Modifications to the (BV , L1)-IDE

1. Problems in image processing, a historical tour

What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

Problems in image processing...

Image denoising: f may have some noise η in it.

f = u + η, we need to get back the denoised image u.

(a) (b)

Figure: Can we go from a noisy image (a) to a restored image in (b) ?

f may be blurry and noisy f = Ku + η

Image segmentation ≡ identifying ‘components’ in f ≡ edge detection

Problems in image processing...

Image segmentation ≡ identifying ‘components’ in f ≡ edge detection

(a) (b)

Figure: Can we identify components in (a) and get a segmented image as in (b) ?

Multiscale image representation

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {u(t)} for a scaling
parameter t

Forward marching: u(0) = 0, u(t)→ u

Backward marching: u(0) = f , u(t)→ u

Multiscale image representation

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {u(t)} for a scaling
parameter t

Forward marching: u(0) = 0, u(t)→ u

Backward marching: u(0) = f , u(t)→ u

Multiscale image representation

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {u(t)} for a scaling
parameter t

Forward marching: u(0) = 0, u(t)→ u

Backward marching: u(0) = f , u(t)→ u

There are two main approaches to solve above problems:

Variational approaches - Tikhonov regularization, greedy algorithms,
wavelets shrinkage etc.

PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -

Variational methods in image processing: Tikhonov regularization

We need to solve the ill posed problem f = Ku :

Consider interpolation functional

inf
u∈X

(
‖u‖X + λ‖f − Ku‖2

Y

)
X (Y , ‖u‖X : regularizing term, ‖f − Ku‖2

Y : fidelity term

(X ,Y) ≡ (BV , L2): Rudin-Osher-Fatemi (1992), Aubert-Vese (1997).

inf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − Ku|2
)

Variational methods in image processing: Tikhonov regularization

We need to solve the ill posed problem f = Ku :

Consider interpolation functional

inf
u∈X

(
‖u‖X + λ‖f − Ku‖2

Y

)
X (Y , ‖u‖X : regularizing term, ‖f − Ku‖2

Y : fidelity term

(X ,Y) ≡ (BV , L2): Rudin-Osher-Fatemi (1992), Aubert-Vese (1997).

inf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − Ku|2
)

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The BV seminorm
∫

Ω
|∇u| is a regularizing term∫

Ω
|f − u|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The BV seminorm
∫

Ω
|∇u| is a regularizing term∫

Ω
|f − u|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The BV seminorm
∫

Ω
|∇u| is a regularizing term∫

Ω
|f − u|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The BV seminorm
∫

Ω
|∇u| is a regularizing term∫

Ω
|f − u|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Alvarez et al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
, u(0) = f

Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

The term |∇u| div
(
∇u
|∇u|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Alvarez et al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
, u(0) = f

Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

The term |∇u| div
(
∇u
|∇u|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Alvarez et al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
, u(0) = f

Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

The term |∇u| div
(
∇u
|∇u|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂u
∂t

= f − u + div (g(|∇u|)∇u), u(0) = 0.

This equation has non-trivial steady state.

Forward marching: u(0) = 0 and u(t)→ u.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂u
∂t

= f − u + div (g(|∇u|)∇u), u(0) = 0.

This equation has non-trivial steady state.

Forward marching: u(0) = 0 and u(t)→ u.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂u
∂t

= f − u + div (g(|∇u|)∇u), u(0) = 0.

This equation has non-trivial steady state.

Forward marching: u(0) = 0 and u(t)→ u.

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition (1992)

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The (time dependent) Euler-Lagrange equation:

∂u
∂t

= f − u +
1

2λ
div
(
∇u
|∇u|

)
.

Nordström’s modification of Perona-Malik (1990)

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
2λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition (1992)

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The (time dependent) Euler-Lagrange equation:

∂u
∂t

= f − u +
1

2λ
div
(
∇u
|∇u|

)
.

Nordström’s modification of Perona-Malik (1990)

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
2λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition (1992)

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The (time dependent) Euler-Lagrange equation:

∂u
∂t

= f − u +
1

2λ
div
(
∇u
|∇u|

)
.

Nordström’s modification of Perona-Malik (1990)

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
2λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

2. IDE based on (BV , L2) image decomposition

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

Idea: Tadmor-Nezzar-Vese scheme with “intensity quanta”

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τu|2
)
.

TNV multiscale decomposition

vλk−1 = τuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τu|2

)
.

With this scheme after N + 1 steps we get:

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= τu0 + τu1 + τu2 + v2

= ...

= τuλ0 + τuλ1 + ...+ τuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τuλk + vλN .

Idea: Tadmor-Nezzar-Vese scheme with “intensity quanta”

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τu|2
)
.

TNV multiscale decomposition

vλk−1 = τuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τu|2

)
.

With this scheme after N + 1 steps we get:

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= τu0 + τu1 + τu2 + v2

= ...

= τuλ0 + τuλ1 + ...+ τuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τuλk + vλN .

Idea: Tadmor-Nezzar-Vese scheme with “intensity quanta”

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τu|2
)
.

TNV multiscale decomposition

vλk−1 = τuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τu|2

)
.

With this scheme after N + 1 steps we get:

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= τu0 + τu1 + τu2 + v2

= ...

= τuλ0 + τuλ1 + ...+ τuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τuλk + vλN .

Idea: Tadmor-Nezzar-Vese scheme with “intensity quanta”

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τu|2
)
.

TNV multiscale decomposition

vλk−1 = τuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τu|2

)
.

With this scheme after N + 1 steps we get:

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= τu0 + τu1 + τu2 + v2

= ...

= τuλ0 + τuλ1 + ...+ τuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τuλk + vλN .

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
)

τuλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

Going from TNV to a novel integro-differential equation

New TNV formulation:

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

This ‘motivates’ us to write the following model.

The novel integro-differential model

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) > 0 is an increasing scaling function at our disposal.

Going from TNV to a novel integro-differential equation

New TNV formulation:

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

This ‘motivates’ us to write the following model.

The novel integro-differential model

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) > 0 is an increasing scaling function at our disposal.

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t := UN−1 + ωN .

Thus, we have the following fixed point iteration.

ωn
i,j =

2λNh2(fi,j − UN−1
i,j) + cEω

n−1
i+1,j + cWω

n−1
i−1,j + cSω

n−1
i,j+1 + cNω

n−1
i,j−1

2λNh2 + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t := UN−1 + ωN .

Thus, we have the following fixed point iteration.

ωn
i,j =

2λNh2(fi,j − UN−1
i,j) + cEω

n−1
i+1,j + cWω

n−1
i−1,j + cSω

n−1
i,j+1 + cNω

n−1
i,j−1

2λNh2 + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t := UN−1 + ωN .

Thus, we have the following fixed point iteration.

ωn
i,j =

2λNh2(fi,j − UN−1
i,j) + cEω

n−1
i+1,j + cWω

n−1
i−1,j + cSω

n−1
i,j+1 + cNω

n−1
i,j−1

2λNh2 + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t := UN−1 + ωN .

Thus, we have the following fixed point iteration.

ωn
i,j =

2λNh2(fi,j − UN−1
i,j) + cEω

n−1
i+1,j + cWω

n−1
i−1,j + cSω

n−1
i,j+1 + cNω

n−1
i,j−1

2λNh2 + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

Proposed model λ(t) = (0.002)2t , on Lenna.

Numerical result for
∫ t

0 u(x , s)ds = f (x) + 1
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) As λ(t)→∞, the images
∫ t

0 u(x , s)ds are shown above for
t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t .

3. A few theoretical results about (BV , L2)-based IDE

What does the scaling function, λ(t), mean ?

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖w‖∗ := sup
ϕ 6=0

|(w , ϕ)L2 |∫
Ω
|∇ϕ|

.

Theorem (I)

For the IDE model ∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let U(·, t) :=
∫ t

0 u(x , s) ds and V (·, t) be the residual,

V (·, t) := f − U(·, t).

Then size of the residual is dictated by the scaling function λ(t),

‖V (·, t)‖∗ =
1

2λ(t)
.

What does the scaling function, λ(t), mean ?

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖w‖∗ := sup
ϕ 6=0

|(w , ϕ)L2 |∫
Ω
|∇ϕ|

.

Theorem (I)

For the IDE model ∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let U(·, t) :=
∫ t

0 u(x , s) ds and V (·, t) be the residual,

V (·, t) := f − U(·, t).

Then size of the residual is dictated by the scaling function λ(t),

‖V (·, t)‖∗ =
1

2λ(t)
.

Energy decomposition

Theorem (II)

For the IDE model ∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

associated with an L2- image f , and let V (·, t) be the residual,
V (t) = f − U(t). Then the following energy decomposition holds∫ t

s=0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖2
L2 = ‖f‖2

L2 .

L2-convergence of
∫ t

s=0 u(x , s)ds

Theorem (III)

Given an image f ∈ BV, we consider the IDE model∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

with rapidly increasing scaling function λ(t) so that

λ(t/2)

λ(t)
t→∞−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in
L2- sense)

f (x) =

∫ ∞
s=0

u(x , s) ds,

with energy decomposition

‖f‖2
L2 =

∫ ∞
s=0

1
λ(s)

|u(·, s)|BV ds.

We show that limt→∞‖V (·, t)‖L2 → 0. What happens for f ∈ L2 ?

L2-convergence of
∫ t

s=0 u(x , s)ds

Theorem (III)

Given an image f ∈ BV, we consider the IDE model∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

with rapidly increasing scaling function λ(t) so that

λ(t/2)

λ(t)
t→∞−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in
L2- sense)

f (x) =

∫ ∞
s=0

u(x , s) ds,

with energy decomposition

‖f‖2
L2 =

∫ ∞
s=0

1
λ(s)

|u(·, s)|BV ds.

We show that limt→∞‖V (·, t)‖L2 → 0. What happens for f ∈ L2 ?

L2-convergence of
∫ t

s=0 u(x , s)ds

Theorem (III)

Given an image f ∈ BV, we consider the IDE model∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

with rapidly increasing scaling function λ(t) so that

λ(t/2)

λ(t)
t→∞−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in
L2- sense)

f (x) =

∫ ∞
s=0

u(x , s) ds,

with energy decomposition

‖f‖2
L2 =

∫ ∞
s=0

1
λ(s)

|u(·, s)|BV ds.

We show that limt→∞‖V (·, t)‖L2 → 0. What happens for f ∈ L2 ?

4. Modifications to the (BV , L2)-based IDE

Filtered IDE model

Recall heat equation :
∂u
∂t

= ∆u.

Perona Malik model:

∂u
∂t

= div (g(|Gσ ?∇u|)∇u).

Filtered IDE model

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
;

∂u
∂n

∣∣∣∣
∂Ω

= 0,

To compute this IDE we use a fixed point iteration as before with
g(|Gσ ?∇u(x , t)|).

Filtered IDE model

Recall heat equation :
∂u
∂t

= ∆u.

Perona Malik model:

∂u
∂t

= div (g(|Gσ ?∇u|)∇u).

Filtered IDE model

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
;

∂u
∂n

∣∣∣∣
∂Ω

= 0,

To compute this IDE we use a fixed point iteration as before with
g(|Gσ ?∇u(x , t)|).

Filtered IDE model

Recall heat equation :
∂u
∂t

= ∆u.

Perona Malik model:

∂u
∂t

= div (g(|Gσ ?∇u|)∇u).

Filtered IDE model

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
;

∂u
∂n

∣∣∣∣
∂Ω

= 0,

To compute this IDE we use a fixed point iteration as before with
g(|Gσ ?∇u(x , t)|).

Filtered IDE model

Recall heat equation :
∂u
∂t

= ∆u.

Perona Malik model:

∂u
∂t

= div (g(|Gσ ?∇u|)∇u).

Filtered IDE model

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
;

∂u
∂n

∣∣∣∣
∂Ω

= 0,

To compute this IDE we use a fixed point iteration as before with
g(|Gσ ?∇u(x , t)|).

Numerical results of the filtered IDE model

Numerical results of
∫ t

0 u(x , s)ds = f (x) + g(|Gσ?∇u(x,t)|)
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) The above images depict
∫ t

0 u(x , s)ds for t = 1, 4, 6, 10. Here,
λ(t) = 0.002× 2t . Here the function g(s) = 1

1+(s/5)2 .

The ORIGINAL IDE model applied to Lenna

Numerical result for
∫ t

0 u(x , s)ds = f (x) + 1
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) As λ(t)→∞, the images
∫ t

0 u(x , s)ds are shown above for
t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t .

The ORIGINAL IDE model applied to MRI image

Numerical results of
∫ t

0 u(x , s)ds = f (x) + 1
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) The above images depict
∫ t

0 u(x , s)ds for t = 1, 4, 6, 10 for the
ORIGINAL IDE. Here, λ(t) = 0.002× 2t .

The filtered IDE model applied to MRI image

Numerical results of
∫ t

0 u(x , s)ds = f (x) + g(|Gσ?∇u(x,t)|)
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) The above images depict
∫ t

0 u(x , s)ds for t = 1, 4, 6, 10. Here,
λ(t) = 0.002× 2t . Here the function g(s) = 1

1+(s/5)2 .

IDE with tangential smoothing modification

The Heat equation
∂u
∂t

= ∆u.

Note: ∆u = uTT + uNN and uTT := |∇u| div
(
∇u
|∇u|

)
.

Alvarez et al. modification model:

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
,

Filtered IDE with tangential smoothing

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

IDE with tangential smoothing modification

The Heat equation
∂u
∂t

= ∆u.

Note: ∆u = uTT + uNN and uTT := |∇u| div
(
∇u
|∇u|

)
.

Alvarez et al. modification model:

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
,

Filtered IDE with tangential smoothing

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

IDE with tangential smoothing modification

The Heat equation
∂u
∂t

= ∆u.

Note: ∆u = uTT + uNN and uTT := |∇u| div
(
∇u
|∇u|

)
.

Alvarez et al. modification model:

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
,

Filtered IDE with tangential smoothing

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

IDE with tangential smoothing modification

The Heat equation
∂u
∂t

= ∆u.

Note: ∆u = uTT + uNN and uTT := |∇u| div
(
∇u
|∇u|

)
.

Alvarez et al. modification model:

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
,

Filtered IDE with tangential smoothing

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

Numerical results for∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, at t = 1, 4, 7. Here,
the scaling function is λ(t) = 0.002× 2t . Most of the noise is present at scale t = 7.

Numerical results for filtered IDE with tangential smoothing

Numerical results for∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: The same noisy image f and the corresponding
∫ t

0 u(·, s) ds, of the IDE with
tangential smoothing at t = 1, 4, 7. The same scaling function as before,
λ(t) = 0.002× 2t . Large portion of the noise is suppressed at t = 7 but there is
normal diffusion of edges.

Numerical results for filtered IDE with tangential smoothing

Numerical results for∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: The same noisy image and the images,
∫ t

0 u(·, s) ds, of IDE with tangential
smoothing and filtering at t = 1, 4, 7. Here, λ(t) = 0.002× 2t and
g(s) = 1/(1 + (s/5)2). Noise is suppressed with minimal normal edge diffusion.

Deblurring with IDE

TNV scheme with “intensity quanta” τ and blurring

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τKuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τKu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τKu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τKuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τKu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τKu|2
)
.

TNV multiscale decomposition

vλk−1 = τKuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τKu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τKu|2

)
.

With this scheme after N + 1 steps we get:

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= τKu0 + τu1 + τKu2 + v2

= ...

= τKuλ0 + τKuλ1 + ...+ τKuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τKuλk + vλN .

TNV scheme with “intensity quanta” τ and blurring

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τKuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τKu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τKu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τKuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τKu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τKu|2
)
.

TNV multiscale decomposition

vλk−1 = τKuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τKu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τKu|2

)
.

With this scheme after N + 1 steps we get:

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= τKu0 + τu1 + τKu2 + v2

= ...

= τKuλ0 + τKuλ1 + ...+ τKuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τKuλk + vλN .

TNV scheme with “intensity quanta” τ and blurring

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τKuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τKu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τKu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τKuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τKu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τKu|2
)
.

TNV multiscale decomposition

vλk−1 = τKuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τKu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τKu|2

)
.

With this scheme after N + 1 steps we get:

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= τKu0 + τu1 + τKu2 + v2

= ...

= τKuλ0 + τKuλ1 + ...+ τKuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τKuλk + vλN .

TNV scheme with “intensity quanta” τ and blurring

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τKuλ0 + vλ0 , [uλ0 , vλ0] = arginf
{f =τKu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τKu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τKuλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=τKu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τKu|2
)
.

TNV multiscale decomposition

vλk−1 = τKuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τKu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τKu|2

)
.

With this scheme after N + 1 steps we get:

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= τKu0 + τu1 + τKu2 + v2

= ...

= τKuλ0 + τKuλ1 + ...+ τKuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τKuλk + vλN .

TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ

N∑
k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ
N∑

k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ
N∑

k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ
N∑

k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ
N∑

k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

(a) (b)

Figure: Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel
with σ = 1. Image (b) shows the result of the deblurring IDE model, as t →∞.

E. Tadmor, P. Athavale, Multiscale image representation using novel integro-differential
equations, Inverse Problems in Imaging, 3 (2009), 693–710.

(a) (b)

Figure: Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel
with σ = 1. Image (b) shows the result of the deblurring IDE model, as t →∞.

E. Tadmor, P. Athavale, Multiscale image representation using novel integro-differential
equations, Inverse Problems in Imaging, 3 (2009), 693–710.

5. IDE based on (BV , L1) image decomposition

(BV ,L1) image decomposition

(BV , L1) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

f = uλ + vλ, [uλ, vλ] := arginf
f =u+v

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|
)
.

This decomposition is contrast invariant and

The scale-space generated is geometric in nature. (Chan-Esedoḡlu,
2005)

(BV ,L1) image decomposition

(BV , L1) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

f = uλ + vλ, [uλ, vλ] := arginf
f =u+v

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|
)
.

This decomposition is contrast invariant and

The scale-space generated is geometric in nature. (Chan-Esedoḡlu,
2005)

(BV ,L1) image decomposition

(BV , L1) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

f = uλ + vλ, [uλ, vλ] := arginf
f =u+v

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|
)
.

This decomposition is contrast invariant and

The scale-space generated is geometric in nature. (Chan-Esedoḡlu,
2005)

(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Multiscale image representation using (BV ,L1) IDE

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 9, 15.

Scale space generated by (BV ,L1) IDE

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 3, 5, 7.

Compare this with the scale space generated by (BV ,L2) IDE

∫ t

s=0
u(x , s) dx = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L2) IDE for t = 1, 6, 7, 10.

Athavale, Tadmor, Integro-Differential Equations Based on (BV , L1) Image
Decomposition, SIAM J. Imaging Sci. 4, pp. 300-312.

Denoising application for Proton therapy imaging

Proton therapy applications

Denoising using (BV ,L1) IDE

Figure: The above images show the original noisy image∗,
∫ t

0 u(·, s) ds for the
(BV , L1) IDE for t = 7 and the corresponding residual.

∗Noisy image provided by Dr. Reinhard, Loma Linda University.

6. A few theoretical results for (BV , L1)-IDE

Some properties of this IDE

Theorem (I)

For the IDE model

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let V (·, t) be the residual, and U(·, t) :=
∫ t

0 u(x , s) ds

V (·, t) := f − U(·, t).

Then size of the signum of residual is dictated by the scaling function λ(t),

‖sgn (V (·, t))‖∗ =
1
λ(t)

.

Recall, for (BV , L2)-based IDE we had

‖V (·, t)‖∗ =
1

2λ(t)
.

Some properties of this IDE

Theorem (I)

For the IDE model

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let V (·, t) be the residual, and U(·, t) :=
∫ t

0 u(x , s) ds

V (·, t) := f − U(·, t).

Then size of the signum of residual is dictated by the scaling function λ(t),

‖sgn (V (·, t))‖∗ =
1
λ(t)

.

Recall, for (BV , L2)-based IDE we had

‖V (·, t)‖∗ =
1

2λ(t)
.

Theorem (II)

Moreover, we have the following L1-energy decomposition,∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖L1 = ‖f‖L1 .

Recall, for (BV , L2)-based IDE we had the following L2-energy
decomposition: ∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖2
L2 = ‖f‖2

L2 .

Theorem (II)

Moreover, we have the following L1-energy decomposition,∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖L1 = ‖f‖L1 .

Recall, for (BV , L2)-based IDE we had the following L2-energy
decomposition: ∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖2
L2 = ‖f‖2

L2 .

7. Modifications to the (BV , L1)-IDE

The (BV ,L1) IDE with filtered diffusion.

Results for the (BV , L1) IDE with filtered diffusion:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

g(|Gσ ?∇u(x , t)|)
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 7, 10.

Compare these results for the original (BV , L1) IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 7, 10.

Results for filtered (BV ,L1) IDE with tangential smoothing

Numerical results for

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

g(|Gσ ?∇u(x , t)|)
λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: The same noisy image f and the corresponding
∫ t

0 u(·, s) ds, of the IDE with
tangential smoothing at t = 1, 4, 18.

Compare these results with the numerical results for

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, at t = 1, 4, 18.

Let’s connect the dots!

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

Connecting the dots ...

Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations

T HANK YOU
www.math.ucla.edu/∼prashant

prashant@math.ucla.edu

	Problems in image processing, a historical tour
	(BV, L2) decomposition based integro-differential equation (IDE)
	A few theoretical results about (BV, L2)-based IDE
	Modifications to the (BV, L2)-based IDE
	IDE based on (BV, L1) image decomposition
	A few theoretical results for (BV, L1)-IDE
	Modifications to the (BV, L1)-IDE

