Mathematical Methods for Breast Image Registration

Mehran Ebrahimi

Dept. of Medical Biophysics, University of Toronto Imaging Research, Sunnybrook Research Institute

mehran@sri.utoronto.ca

Fields-MITACS Conference on Mathematics of Medical Imaging

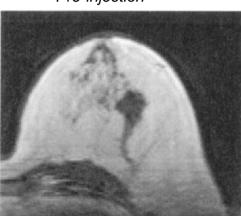
Outline

- PDE Approach to Joint Registration and Intensity Correction
 - Introduction
 - Mathematical Formulation
 - A Corresponding PDE
 - Discretization and Numerical Scheme
 - Results and Discussion
- Quantity Correction
 Quantity Correction
 - Introduction
 - Mathematical Formulation
 - Discretization and Numerical Scheme
 - Results and Discussion

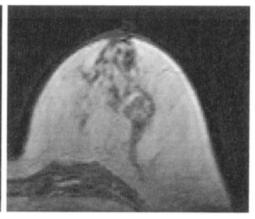
Introduction Mathematical Formulation A Corresponding PDE Discretization and Numerical Scheme Results and Discussion

Motivation: Contrast Enhanced MR Breast Registration

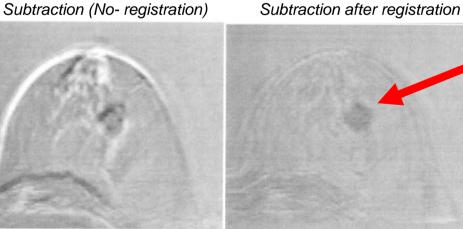
Pre-injection



Post-injection



Subtraction (No-registration)

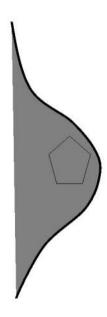


Rueckert et. al., 1999

Introduction Mathematical Formulation A Corresponding PDE

Discretization and Numerical Scheme
Results and Discussion

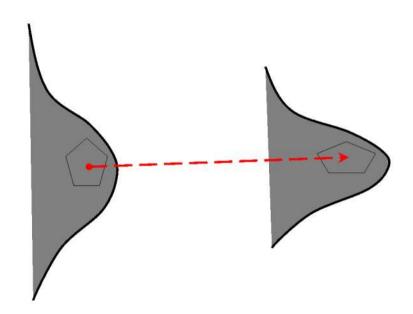
Schematic Example



An initial image is given.

Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

Schematic Example

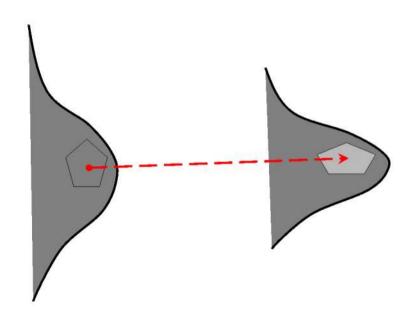


The initial image is transformed to a second image.

Introduction

Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

Schematic Example

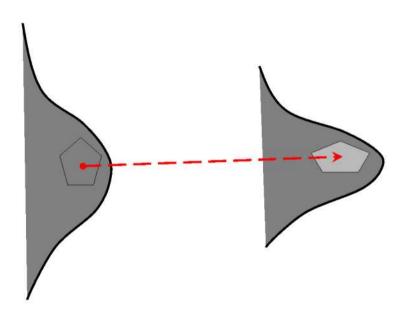


Parts of the second image have different **contrast** compared to the first.

Introduction

Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

Schematic Example



The transformation and the contrast enhancement are the unknowns.

Introduction

Mathematical Formulation

A Corresponding PDE

Discretization and Numerical Scheme
Results and Discussion

Literature

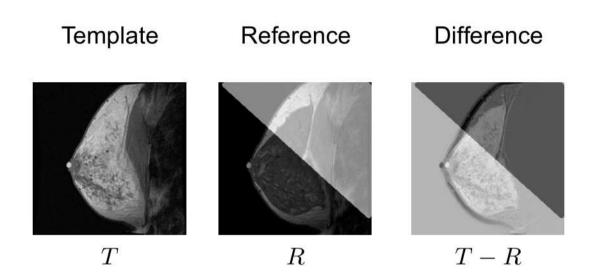
Separate the contrast enhancement from the image and regularize it!

- M.A. Gennert, S. Negahdaripour (1987) (Following the seminal work of B.K.P. Horn, B.G. Schunck (1981))
- D.C. Barber, D.R. Hose (2005)
- Modersitzki, J., Papenberg, N. (2005)
- A.L. Martel, M.S. Froh, K. K. Brock, D. B. Plewes (2006-2007)

The goal: Generalize and present efficient numerical schemes.

Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

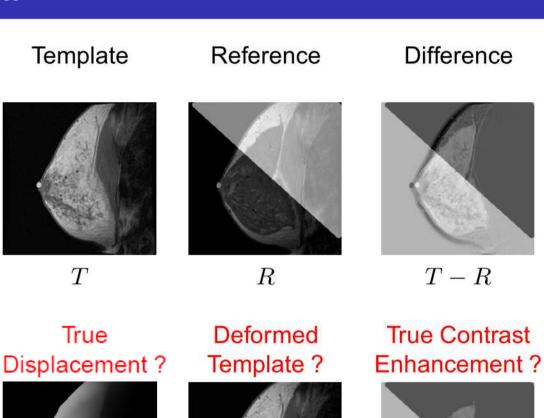
Problem



Simulated data courtesy of Dr. Kristy Brock (PMH)

Introduction Mathematical Formulation A Corresponding PDE Discretization and Numerical Scheme Results and Discussion

Problem



Simulated data courtesy of Dr. Kristy Brock (PMH)

Problem

Given two images R and T, find a displacement field u and a contrast enhancement image w, that minimizes

$$\mathcal{J}[u,w] := \mathcal{D}[R,T;u,w] + \mathcal{H}[u,w]$$

in which \mathcal{D} measures the dissimilarity of $T_u - w$ and R, and \mathcal{H} is a regularization expression on [u, w].

Problem

Hence, the objective is to minimize

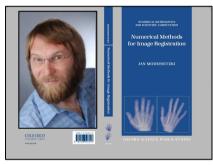
$$\mathcal{J}[u, w] := \frac{1}{2} ||T_u - R - w||_{L_2(\Omega)}^2 + \alpha \mathcal{S}[u] + \beta \mathcal{Q}[w].$$

Assume diffusion regularization on both

$$S[u] := \frac{1}{2} \sum_{j=1}^{d} \int_{\Omega} \langle \nabla u_j, \nabla u_j \rangle \ dx,$$

$$Q[w] := \frac{1}{2} \int_{\Omega} \langle \nabla w, \nabla w \rangle \ dx$$

Optimize then Discretize



Numerical Methods for Image Registration, J. Modersitzki 2004

Technical details of the joint PDE approach:
M. Ebrahimi and A. L. Martel, A General PDE-Framework for Registration of Contrast Enhanced Images, MICCAI 2009, pp.811-819

Theorem

The Euler-Lagrange equations corresponding to $\mathcal{J} = \mathcal{D} + \alpha \mathcal{S} + \beta \mathcal{Q}$, are

$$\Phi(x, u(x), w(x)) + \alpha \mathcal{A}[u](x) + \beta \mathcal{B}[w](x) = 0, \quad x \in \Omega,$$

with Neumann boundary conditions.

These can also be written as

$$[T_u(x) - R(x) - w(x)]\nabla T_u(x) + \alpha \Delta u(x) = 0_{\mathbb{R}^d} \quad x \in \Omega,$$
$$[T_u(x) - R(x) - w(x)] + \beta \Delta w(x) = 0 \quad x \in \Omega,$$

Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

Corresponding PDE

There exists various ways to solve the Euler-Lagrange equations. A possibility is to formulate its solution as the steady-state solution of a PDE. We propose

$$\partial_t(u(x,t), s \ w(x,t)) = \Phi(x, u(x,t), w(x,t)) + \alpha \mathcal{A}[u](x) + \beta \mathcal{B}[w](x)$$
$$x \in \Omega, \ t \ge 0.$$

where s is a nonzero real scale factor.

Corresponding PDE

Assuming $\Phi = (f, g)$ this PDE can be written as

$$\partial_t u(x,t) = f(x,u(x,t),w(x,t)) + \alpha \Delta u(x,t), \quad x \in \Omega, \quad t \ge 0,$$

$$s \ \partial_t w(x,t) = g(x,u(x,t),w(x,t)) + \beta \Delta w(x,t), \quad x \in \Omega, \quad t \ge 0,$$

$$f(x, u, w) := [T_u(x) - R(x) - w(x)] \nabla T_u(x),$$

$$g(x, u, w) := [T_u(x) - R(x) - w(x)].$$

Discretized Numerical Scheme

This yields

Iterative Scheme

$$U_j^{k+1} = \left(I - \tau_1 \alpha A\right)^{-1} \left(U_j^k + \tau_1 \left(T(X - U^k(X)) - R(X) - W^k(X)\right) \partial_j T(X - U^k(X))\right),$$

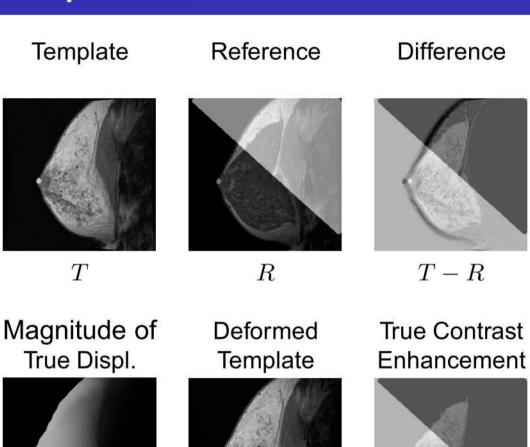
$$W^{k+1} = \left((1+\tau_2)I - \tau_2\beta A \right)^{-1} \left(W^k + \tau_2 \left(T(X - U^{k+1}(X)) - R(X) \right) \right).$$

We use the initialization vectors

$$W^0 = U_j^0 = 0_{\mathbb{R}^{nd}}, \quad j = 1, \dots, d.$$

Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

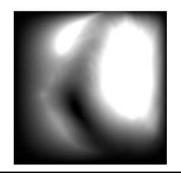
A Simple Experiment

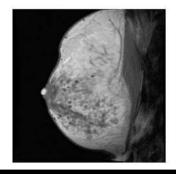


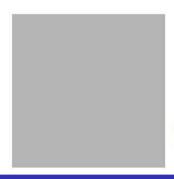
Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

$$\beta = 10^{10}$$





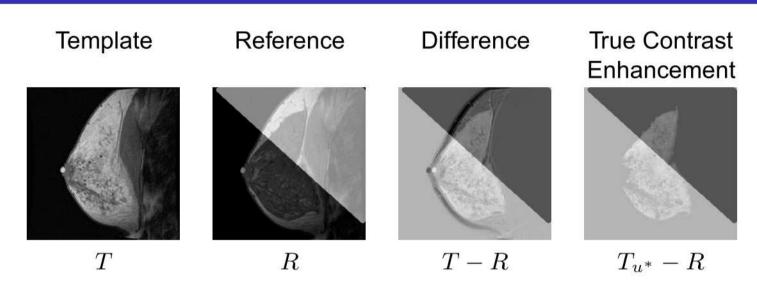


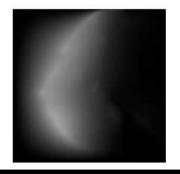


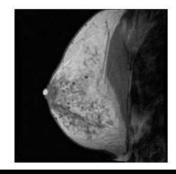
M. Ebrahimi, Sunnybrook Research Institute

Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

 $\beta = 100$

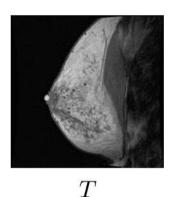




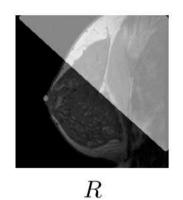


Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

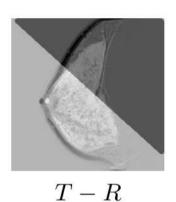
 $\beta = 10$



Reference

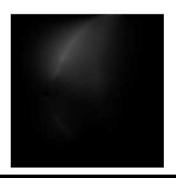


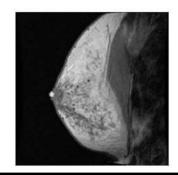
Difference



True Contrast Enhancement

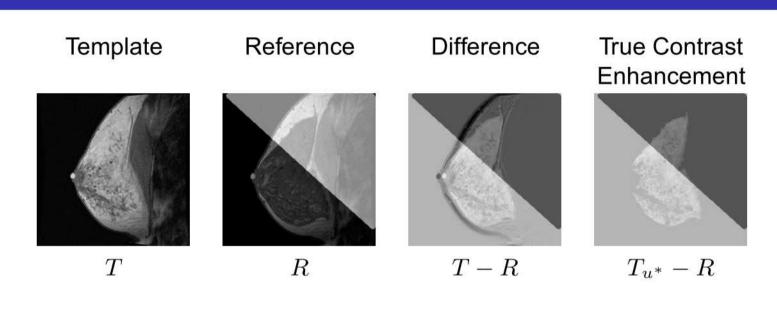
 $T_{u^*}-R$

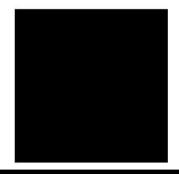


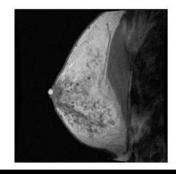


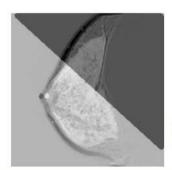
Introduction
Mathematical Formulation
A Corresponding PDE
Discretization and Numerical Scheme
Results and Discussion

$$\beta = 0$$





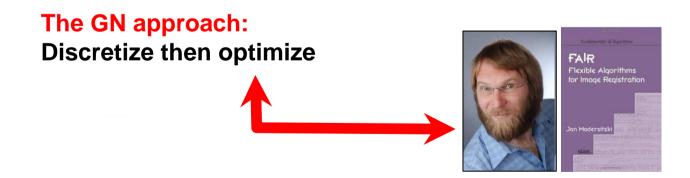




Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

Advantages to the coupled PDE approach

Newton's method is proven to be far more efficient than steepest descent.



Flexible Algorithms for Image Registration (FAIR), J. Modersitzki 2009

Mathematical Formulation

Problem

Given two images $\mathcal{R}, \mathcal{T}: \Omega \subset \mathbb{R}^d \to \mathbb{R}$, find a transformation $y: \mathbb{R}^d \to \mathbb{R}^d$ and an illumination image $w: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ that minimize the joint objective functional

$$\mathcal{J}[y;w] := \mathcal{D}[\mathcal{T}[y] + w, \mathcal{R}] + \alpha \mathcal{S}[y - y^{\mathsf{ref}}] + \beta \mathcal{Q}[w].$$

Here, \mathcal{D} measures the dissimilarity of $\mathcal{T}[y] + w$ and \mathcal{R} , and $\alpha \mathcal{S} + \beta \mathcal{Q}$ is a regularization expression on [y; w].

Mathematical Formulation

Here we assume

$$\begin{split} y^{\text{ref}}(x) &= x, \\ \mathcal{D}[\mathcal{T}, \mathcal{R}] &= \mathcal{D}^{\text{SSD}}[\mathcal{T}, \mathcal{R}] = \frac{1}{2} \int_{\Omega} (\mathcal{T}(x) - \mathcal{R}(x))^2 \ dx, \\ \mathcal{S}[y] &= \frac{1}{2} \int_{\Omega} \mu \langle \nabla y, \nabla y \rangle + (\lambda + \mu) (\nabla \cdot y)^2 \ dx, \\ \mathcal{Q}[w] &= \mathcal{T} \mathcal{V}_{\epsilon}[w] = \int_{\Omega} \sqrt{(\nabla w(x))^2 + \epsilon} dx \\ &\approx \int_{\Omega} |\nabla w(x)| \ dx. \end{split}$$

Discretization

Let x denote a discretization of the Ω , y $\approx y(x)$, w $\approx w(P \cdot x)$, and $R \approx R(P \cdot x)$.

Problem

Minimize the discretized functional

$$J[y; w] := D[T(P \cdot y)] + w, R] + \alpha S(y - yRef) + \beta Q(w).$$

Gauss-Newton Approach

Minimizing J[y; w] using Gauss-Newton Approach

- Initialize $\begin{bmatrix} y \\ w \end{bmatrix} \leftarrow \begin{bmatrix} y_0 \\ w_0 \end{bmatrix}$.
- Loop while not converged
 - Evaluate H_J and dJ.
 - Solve the descent direction from the linear equation

$$H_J \left[egin{array}{c} \delta_{\mathbb{Y}} \ \delta_{\mathbb{W}} \end{array}
ight] = -dJ^T.$$

- Find a positive scalar step-size s using line-search.
- Update $\begin{bmatrix} y \\ w \end{bmatrix} \leftarrow \begin{bmatrix} y \\ w \end{bmatrix} + s \begin{bmatrix} \delta y \\ \delta w \end{bmatrix}$.
- End loop

Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

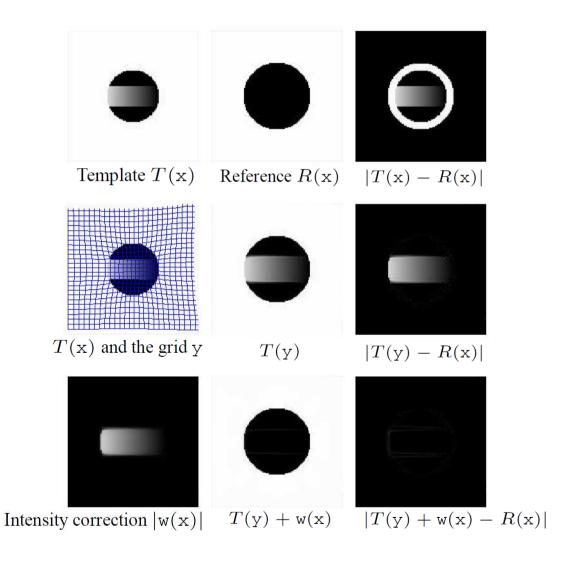
Jacobian of J

Jacobian Computation

$$dJ = [\mathbf{r}^T dT \ \mathbf{P} + \alpha \ dS, \mathbf{r}^T + \beta \ dQ]$$

Hessian of J

Hessian Computation
$$H_J = \begin{bmatrix} (dT \; \mathbb{P})^T dT \; \mathbb{P} + \alpha H_S & (dT \; \mathbb{P})^T \\ \\ \\ ----- & \\ \\ dT \; \mathbb{P} & I_n + \beta \; H_Q \end{bmatrix}$$

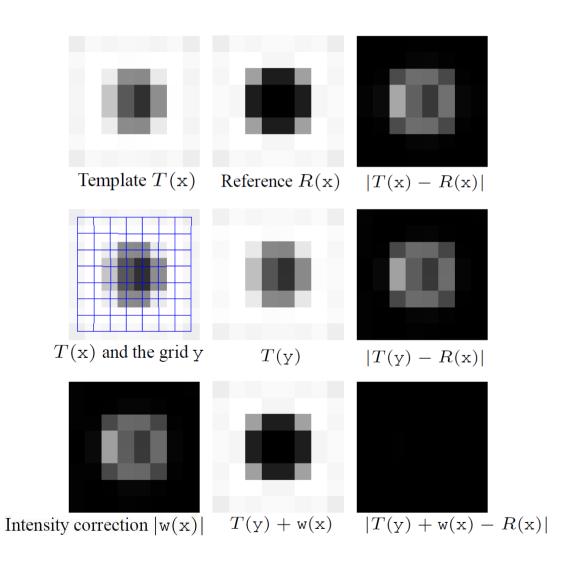


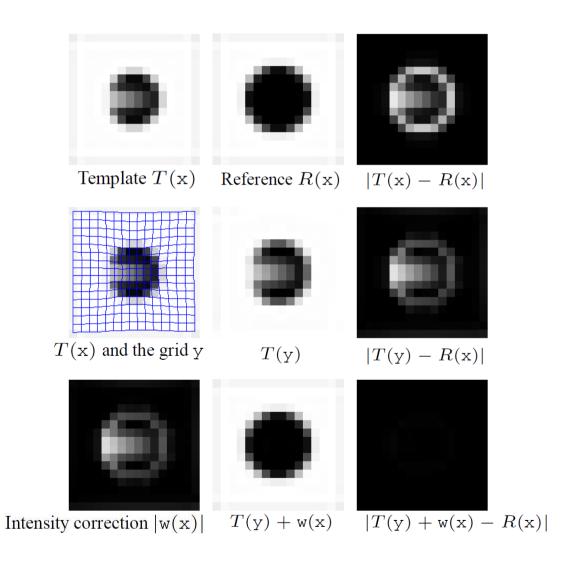
Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

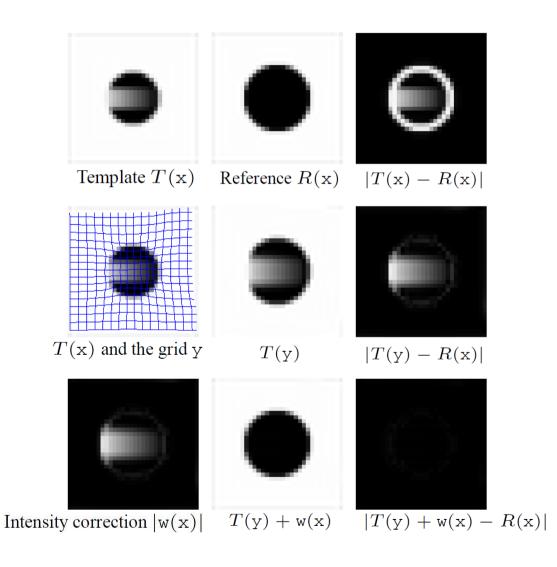
Α

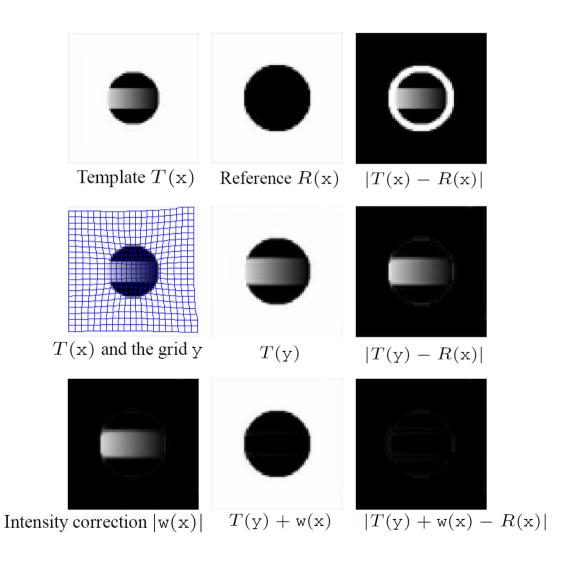
Multilevel

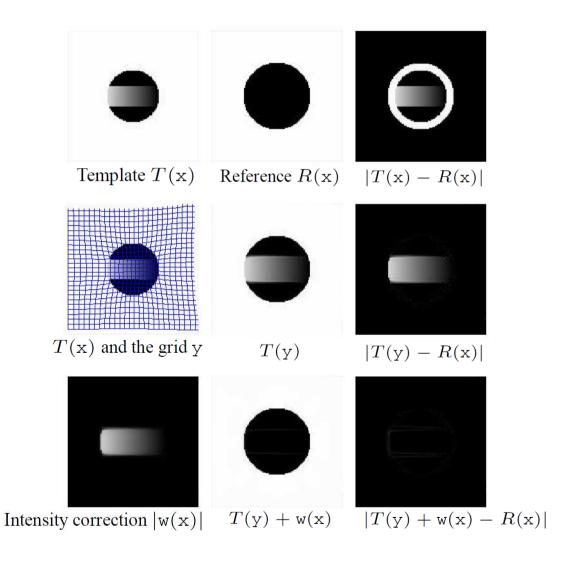
Treatment

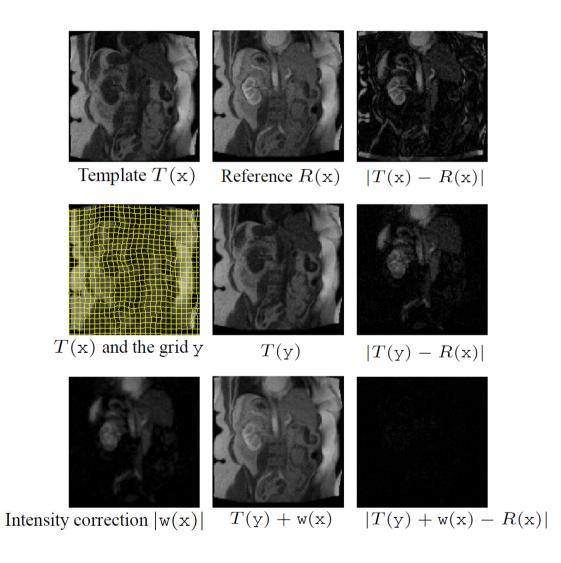


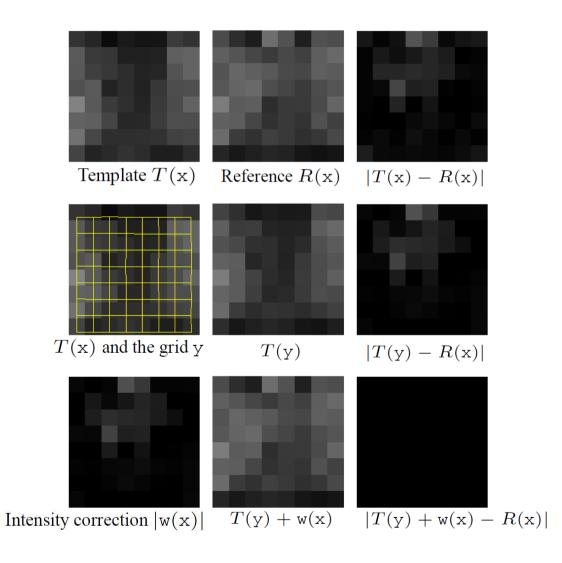


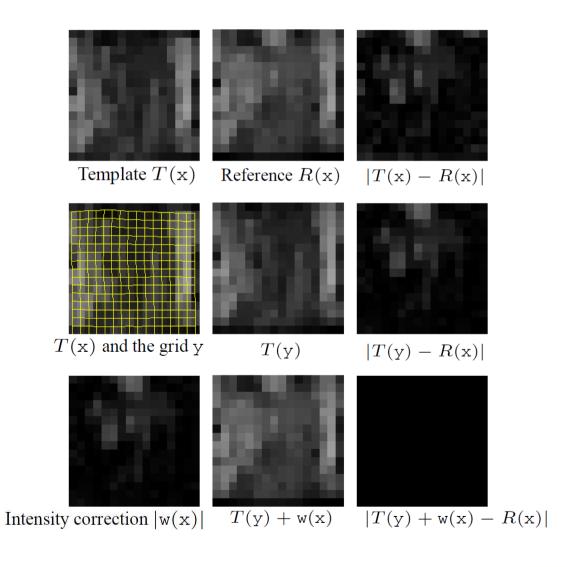


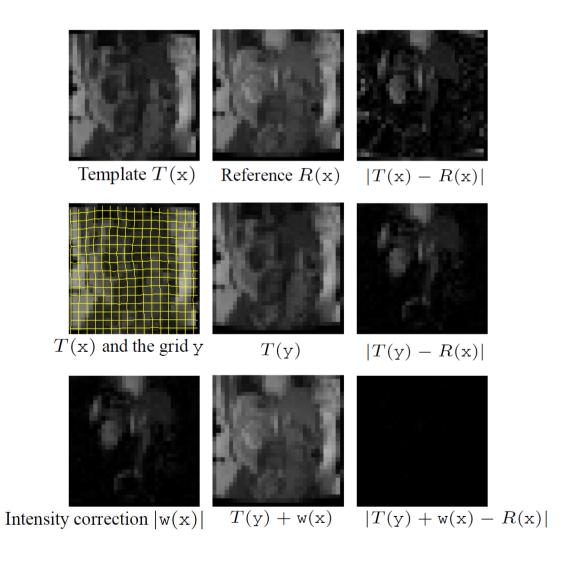


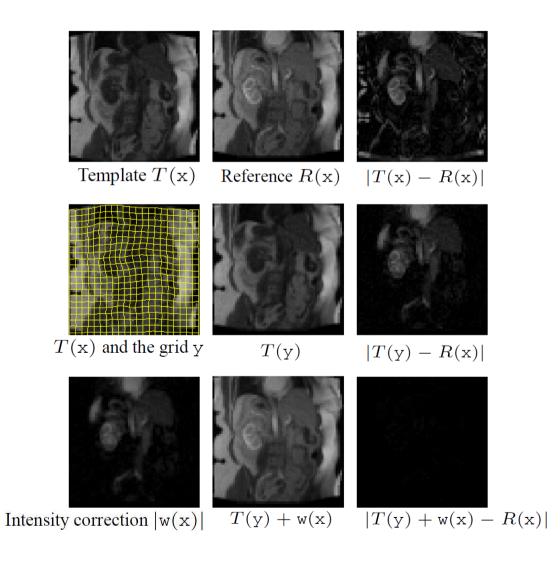


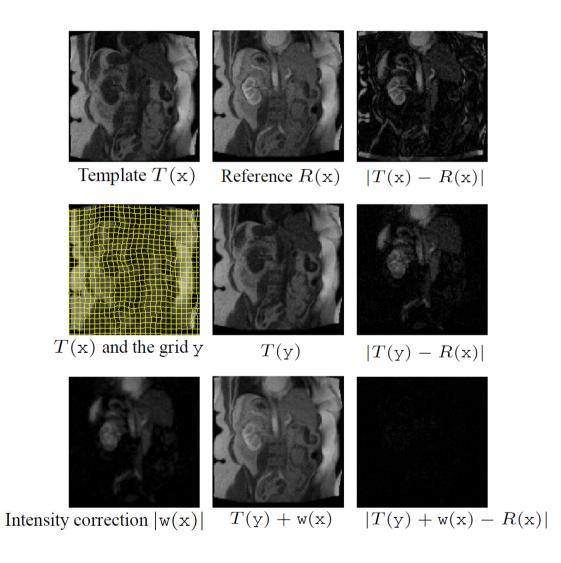












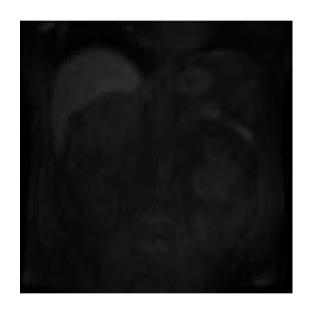
Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

Motionless

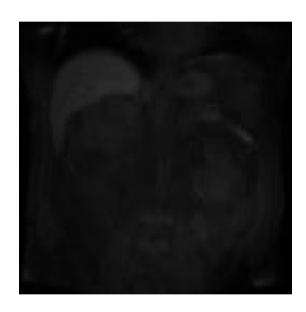


Simulated Motion

Simulated Data by Anthony Lausch (Sunnybrook Research Institute)



NGF



Proposed

Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

Concluding Remarks

- We presented a general mathematical framework for registration and intensity correction.
- This is an explanation of the previous methods (Martel, Froh, Gennert, Negahdaripiour, Barber, etc.) that separate the contrast enhancement term in the regularization.
- Two numerical schemes were presented: GN approach is more efficient compared to the PDE one.
- Our approach is flexible: new regularizations may be used.

Introduction
Mathematical Formulation
Discretization and Numerical Scheme
Results and Discussion
Appendix

Acknowledgments

Anne Martel's group (Sunnybrook) Funding : CBCF, NSERC

