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Short introduction to EIT

The aim of electrical impedance tomography (eit) is to form an
image of the conductivity distribution inside an unknown body
using electric boundary measurements.

Applications in medical imaging, nondestructive testing, subsurface
monitoring:

◮ monitoring heart and lungs of unconscious patients,

◮ detecting pulmonary edema,

◮ breast cancer detection,

◮ detecting cracks in concrete structures,

◮ environmental applications...
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Short introduction to EIT

The inverse conductivity problem introduced by Calderón is to find
the conductivity σ when the Dirichlet-to-Neumann -map (dn-map)
Λσ is known.

{
∇ · (σ∇u) = 0 in Ω1,

u = f on ∂Ω1.
(1)

Λσf = σ
∂u

∂ν
|∂Ω1

(2)

The problem of reconstructing σ from Λσ is nonlinear and ill-posed.
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Short introduction to EIT

In the two-dimensional case, unique reconstruction can be
obtained:

◮ For σ ∈ W 2,p(Ω1), p > 1, Nachman 1996 (the D-bar

method), Knudsen-Lassas-Mueller-Siltanen 2009

◮ For σ ∈ W 1,p(Ω1), p > 2, Brown-Uhlmann 1997

◮ and for σ ∈ L∞(Ω1) Astala-Päivärinta 2003.

Nachman’s method reduces the reconstruction problem to the case
σ = 1 near the boundary. This procedure is tested numerically in
this joint work with S. Siltanen.
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The Boundary correction procedure

We transform the original conductivity equation to Schrödinger
equation: by writing u = σ−1/2ũ we get

(−△− q)ũ = 0 in Ω1, (3)

where q = σ−1/2△(σ1/2). This means we have to have
σ ≥ c0 > 0. The dn-map becomes

Λq = σ−1/2(Λσ +
1

2

∂σ

∂ν
)σ−1/2. (4)

In order for this transformation to be useful we need to have σ ≡ 1
near ∂Ω1 so that Λq = Λσ.
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The Boundary correction procedure

Ω1

Ω2

σ

Λσ

Λγ?

σ̃ ≡ 1

σ̃ ∈ W 2,p

We extend σ:

γ(x) =

{
σ(x), x ∈ Ω1,

σ̃(x), x ∈ Ω2 \Ω1,

σ̃|∂Ω1
= σ|∂Ω1

(5)

∂σ

∂ν
|∂Ω1

=
∂σ̃

∂ν
|∂Ω1

(6)

giving us γ ∈ W 2,p(Ω2) and
Λq = Λγ .
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The Boundary correction procedure

In this work,

Ω1 = D(0, r1), r1 = 1.0

Ω2 = D(0, r2), r2 = 1.2

σ ∈ L∞(Ω1)

σ̃ ∈ W 2,p(Ω2 \ Ω1)

γ ∈ L∞(Ω2),
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The Boundary correction procedure

Define two Dirichlet problems, for j = 1, 2,





∇ · (σ̃∇uj) = 0 in Ω2 \Ω1

uj = fj on ∂Ωj

uj = 0 on ∂Ωi, i = 1, 2, i 6= j.
(7)

Four new dn maps in Ω2 \ Ω1 can be characterized by

Λij fj = σ̃
∂uj
∂ν

|∂Ωi
, i , j = 1, 2 (8)

so λij : H1/2(∂Ωj ) → H−1/2(∂Ωi ).
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The Boundary correction procedure

Proposition (6.1 in Nachman 1996)

Let γ ∈ W 2,p(Ω2), p > 1, then

Λγ = Λ22 + Λ21(Λσ − Λ11)−1Λ12. (9)

The proof consists of showing that the operator Λσ − Λ11 is
invertible, and the identities

(Λγ − Λ22)f2 = Λ21(u|∂Ω1
) (10)

(Λσ − Λ11)(u|∂Ω1
) = Λ12f2 (11)

for any u that solves the conductivity equation in Ω2 with
u|∂Ω2

= f2.
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The D-bar method

The D-bar method:

◮ based on Nachman 1996

◮ robust algorithm was given by Siltanen-Mueller-Isaacson

◮ The method has been successfully tested on a chest phantom
and on in vivo human chest data
(Isaacson-Mueller-Newell-Siltanen).

Λγ → t(k) → γ
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The D-bar method

The CGO-solution (Complex Geometric Optics) on ∂Ω2 can be
solved from

ψ( · , k)|∂Ω2
= e ikx − Sk(Λγ − Λ1)ψ( · , k)|∂Ω2

, (12)

in the Sobolev space H1/2(∂Ω2) for all k ∈ C \ {0}. Here Sk is a
single-layer operator

(Skφ)(x) :=

∫

∂Ω2

Gk(x − y)φ(y)ds,

and Gk is Faddeev’s Green function defined by

Gk(x) := e ikxgk(x), gk(x) :=
1

(2π)2

∫

R2

e ix ·ξ

|ξ|2 + 2k(ξ1 + iξ2)
dξ.
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The D-bar method

Using the CGO-solution we can define the scattering transform:

t(k) =

∫

∂Ω2

e i k̄ x̄(Λγ − Λ1)ψ( · , k)ds. (13)

For each fixed x ∈ Ω2, we would solve the following integral
formulation of the D-bar equation:

µ(x , k) = 1 +
1

(2π)2

∫

R2

t(k ′)

(k − k ′)k̄ ′
e i(k

′x+k′x)µ(x , k ′)dk ′1dk
′

2,

(14)

where µ(x , k) = exp(−ik(x1 + ix2))ψ(x , k). Then the conductivity
would be perfectly reconstructed as γ(x) = µ(x , 0)2.
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Simulation of measurement data, numerical D-bar

In this work we omit the requirement of continuity of the derivative
∂γ
∂ν and use the method of Nakamura-Tanuma-Siltanen-Wang to
calculate g(θ)≈ σ|∂Ω1

.

We extend σ to γ using the following extension in polar
coordinates:

γ(ρ, θ) =





σ(ρ, θ), ρ ≤ r1,

(g(θ)−1)fm(ρ) + 1, r1 < ρ ≤ re ,

1, re < ρ ≤ r2,

(15)

where re = 1.175 and fm(ρ) ≥ 0 is a suitable third-degree
polynomial satisfying fm(r1) = 1 and fm(re) = 0.
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Simulation of measurement data, numerical D-bar

Any linear operator Λ : H1/2(∂Ωi ) → H−1/2(∂Ωj) can be
represented by a matrix in the following way. Define a truncated
orthonormal basis at the boundary ∂Ωk :

φ
(n)
k (θ) =

1√
2πrk

e inθ, n = −N, ...,N, k = 1, 2. (16)

Write any function f : ∂Ωi → C as a vector

~f = [f̂ (−N), f̂ (−N+1), . . . , f̂ (N−1), f̂ (N)]T , f̂ (n) =

∫

∂Ωi

f φ
(n)
i ds.

Then the operator Λ is approximated by the matrix L = [û(ℓ, n)],
where

û(ℓ, n) =

∫

∂Ωj

(Λφ
(n)
i )φ

(ℓ)
j ds. (17)
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Simulation of measurement data, numerical D-bar

In practice in eit we measure the Neumann-to-Dirichlet -map
approximated by the matrix Rσ. We simulate measurement noise
by using the matrix

Rε
σ := Rσ + cE , (18)

where E is a matrix with random entries independently distributed
according to the Gaussian normal density. Then, the noisy
DN-matrix Lεσ is roughly speaking the inverse of Rε

σ, and the
boundary correction procedure gives us

Lεγ = L22 + L21(Lεσ − L11)−1L12, (19)

provided that the matrix Lεσ − L11 is invertible.
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Simulation of measurement data, numerical D-bar

The D-bar method numerically: expand e ikx |∂Ω2
as a vector ~g in

our finite trigonometric basis, solve the CGO-solution

~ψk := [I + Sk(L
ε
γ − L1)]

−1~g . (20)

for k ranging in a grid inside the disc |k | < R ( the truncation
radius R > 0). Define the truncated scattering transform by

tR(k) =

{∫
∂Ω2

e i k̄ x̄F−1((Lεγ − L1)~ψk)(x)ds for |k | < R ,

0, otherwise,
(21)

Finally solve the equation (14) with the numerical algorithm of
Knudsen-Mueller-Siltanen using tR and denote the solution by
µR(x , k). Then γ(x) ≈ µR(x , 0)

2.
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Numerical results

◮ Solutions to the Dirichlet problems are calculated using FEM,
with 1048576 triangles in the disk Ω1 and 425984 triangles in
the annulus Ω2 \ Ω1.

◮ ‖Rǫ
1 − R1‖/‖R1‖ = 0.0001 (the ACT3 impedance

tomography imager of Rensselaer Polytechnic Institute has
SNR of 95.5 dB ≈ noise of 0.0017%)

◮ ǫfem = ‖R th
1 − R1‖/‖R th

1 ‖ = 0.0000173,

◮ the error ‖Rǫ
σ − Rσ‖/‖Rσ‖ ranges between 0.00011 and

0.00076,

◮ The condition number of the matrix Lεσ − L11 was less than 27
in all our test cases.

◮ The error ‖Lǫγ − L2γ‖/‖L2γ‖, where L2γ is the dn map calculated
directly on the boundary ∂Ω2, was less than 2.2% in all cases.
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results

Example 1
Original conductivity

R = 3.0
Uncorrected

R = 5.0
Uncorrected

R = 6.0
Uncorrected

R = 3.0
Corrected

R = 5.0
Corrected

R = 6.0
Corrected

30% 25% 37%

26% 18% 49%
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Numerical results

Example 2
Original conductivity

R = 3.0
Uncorrected

R = 5.4
Uncorrected

R = 6.0
Uncorrected

R = 3.0
Corrected

R = 5.4
Corrected

R = 6.0
Corrected

42% 29% 35%

35% 15% 39%
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Numerical results

Example 3
Original conductivity

R = 3.0
Uncorrected

R = 5.0
Uncorrected

R = 6.0
Uncorrected

R = 3.0
Corrected

R = 5.0
Corrected

R = 6.0
Corrected

66% 60% 67%

59% 39% 75%
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Numerical results

Example 4
Original conductivity

R = 3.0
Uncorrected

R = 4.8
Uncorrected

R = 6.0
Uncorrected

R = 3.0
Corrected

R = 4.8
Corrected

R = 6.0
Corrected

25% 22% 49%

25% 21% 63%
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Numerical results

Thank you!
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