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The EIT Problem

Medical Applications in 2-D:
• Monitoring ventilation and perfusion in ARDS patients
• Detection of pneumothorax
• Diagnosis of pulmonary edema and pulmonary embolus



The 2-D EIT Problem

Given a bounded domain Ω ∈ R2, determine the conductivity
σ(z) where

∇ · (σ(z)∇u) = 0 in Ω,

u = f on ∂Ω

from knowledge of the Dirichlet-to-Neumann map

Λσf = σ
∂u
∂ν
|∂Ω

The approach presented here is based on the constructive
proof of Astala and Päivärinta [Ann. of Math. 163 (2006)].



CGO Solutions

The method is based on the existence of exponentially growing
solutions to the conductivity and resistivity equations

∇ · (σ(z)∇u1(z, k)) = 0, u1 ∼ eikz when |z| → ∞

∇ ·
(

1
σ(z)

∇u2(z, k)

)
= 0, u2 ∼ ieikz when |z| → ∞

The exponential behaviour of the CGO solutions is used for
nonlinear Fourier analysis for the inverse problem.

k can be thought of as a frequency-domain variable.



CGO Solutions

Defining
fµ(z, k) = u1(z, k) + iu2(z, k)

and

µ(z) =
1− σ(z)

1 + σ(z)

one can show fµ(z, k) satisfies the Beltrami equation

∂̄z fµ = µ∂z fµ

and the solutions can be written as

fµ(z, k) = eikz(1+ω(z, k)), with ω(z, k) = O
(

1
z

)
as |z| → ∞.



Computing CGO Solutions (FP)

A computation shows that ω satisfies the equation

∂̄zω − ν∂zω − αω − α = 0. (1)

Here ek (z) := exp(i(kz + kz)) and

ν(z, k) ≡ e−k (z)µ(z), (2)

α(z, k) ≡ −ike−k (z)µ(z), (3)

We will make a substitution, defining u ∈ Lp(Ω) such that

u = −∂̄zω.



Computing CGO Solutions (FP)

Then ω = −Pu and ∂ω = −Su, where

Pf (z) = −1
π

∫
C

f (λ)

λ− z
dm(λ), Sg(z) = −1

π

∫
C

g(λ)

(λ− z)2 dm(λ).

Then (1) becomes

u + (−νS − αP)u = −α

or

(I + Aρ)u = −α, with ρf = f̄ and A = −νS − αP

This is equation is then discretized and solved with GRMES
using a preconditioner.



An Example for the CGO Solutions

An example conductivity and corresponding resistivity



Computing CGO Solutions

Real and imaginary parts of ω(z, 1)



Computing CGO Solutions

Real and imaginary parts of ω(z,−4.9497− 4.9497i)



Overview of the reconstruction algorithm

The reconstruction procedure consists of these three steps:

(i) Recover traces of CGO solutions at the boundary ∂Ω
from the DN map by solving a boundary integral
equation given by Astala and Päivärinta.

(ii) Compute approximate values of CGO solutions inside
the unit disc using the low-pass transport matrix .

(iii) Reconstruct the conductivity. The approximate
conductivity is computed from the recovered values of the
CGO solutions inside Ω using differentiation and simple
algebra.



A Boundary Integral Formula for CGO Solutions

Defining
Mµ(z, k) = 1 + ω(z, k),

the following boundary integral equation holds:

Mµ( · , k)|∂Ω + 1 = (Pk
µ + P0)Mµ( · , k)|∂Ω, (4)

where Pk
µ and P0 are projection operators to be discussed.

Numerical solution of (4) is done by

• writing real and imaginary parts separately

• replacing all the operators by their (4N + 2)× (4N + 2)
matrix approximations

• solving the resulting finite linear system for |k | ≤ R where
R > 0 depends on the noise level.



The Hilbert Transform

Define the µ− Hilbert transform Hµ : H1/2(∂Ω) → H1/2(∂Ω) by

Hµ : u1|∂Ω −→ u2|∂Ω

To extend this to complex-valued functions in H1/2(∂Ω), define

Hµ(iu) = iH−µ(u)

Theorem [AP]: The Dirichlet-to-Neumann map Λσ uniquely
determines Hµ, H−µ, and Λσ−1 .



The Hilbert Transform

From the proof, in the weak sense for real-valued g ∈ H1/2(∂Ω)

∂THµg = Λσg

where ∂T is the tangential derivative map along the boundary.
It can be approximated in the trig basis by the matrix DT :

DT =



0 1
−1 0

0 2
−2 0

. . .
0 N

−N 0


. (5)



The Projection Maps

Define an averaging operator

Lφ := |∂Ω|−1
∫

∂Ω
φ ds.

The operator Pµ : H1/2(∂Ω) → H1/2(∂Ω) is defined by

Pµ g =
1
2
(I + iHµ)g +

1
2
Lg,

where g may be complex-valued. Further, denote

Pk
µg := e−ikzPµ(eikzg)



Boundary Data
For n = 1, . . . , 2N, define a set of trigonometric basis functions:

φn(θ) =

{
π−1/2 cos ((n + 1)θ/2) , for odd n,

π−1/2 sin (nθ/2) , for even n.

Any function g ∈ L2(∂Ω) representing current density on the
boundary can then be approximated by

g(θ) ≈
2N∑

n=1

〈g, φn〉φn(θ),

where the inner product is defined for real-valued functions
f , g ∈ L2(∂Ω) by

〈f , g〉 :=

∫ 2π

0
f (θ)g(θ) dθ.



Boundary Data

Now define the 2N × 2N matrix approximation [Rmn] to the ND

map by
Rmn = 〈un|∂Ω, φm〉

where un|∂Ω is the solution to the Neumann problem with
g = φn. Define

L̃σ := [Rmn]
−1;

Now we can approximate Hµ acting on real-valued, zero-mean
functions expanded in the trig basis by

H̃µ := D−1
T Lσ.



Step 2: The Low-Pass Transport Matrix

Useful Facts:

• The function fµ is harmonic outside the unit disc since µ is
supported inside Ω.

• We know the trace of fµ on ∂Ω.

• Thus, the Fourier coefficients of fµ can be used to expand
fµ as a power series outside Ω.

The transport matrix is the matrix in a 2× 2 linear system that
connects the CGO solutions inside Ω to their values outside Ω.



Step 2: The Low-Pass Transport Matrix

For any z0 ∈ R2 \ Ω̄, set ν
(R)
z0

(k) = 0 if |k | ≥ R, and if |k | < R

ν
(R)
z0

(k) :=
−fµ(z0, k) + f−µ(z0, k)

fµ(z0, k) + f−µ(z0, k)

We solve the truncated Beltrami equations

∂̄kα(R) = ν
(R)
z0

(k) ∂kα(R), α(R)(z, z0, k) = eik(z−z0)+kφ(k),

∂̄kβ(R) = ν
(R)
z0

(k) ∂kβ(R), β(R)(z, z0, k) = ieik(z−z0)+k eφ(k),

where φ(k) → 0 as k →∞. We also have the conditions

α(R)(z, z0, 0) = 1 and β(R)(z, z0, 0) = i .



Step 2: The Low-Pass Transport Matrix

For any z0 ∈ R2 \ Ω̄, set ν
(R)
z0

(k) = 0 if |k | ≥ R, and if |k | < R
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(R)
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(R)
z0

(k) ∂kα(R), α(R)(z, z0, k) = eik(z−z0)+kφ(k),
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(R)
z0
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Step 2: The Low-Pass Transport Matrix

Fix any nonzero k0 ∈ C and choose any point z inside the unit
disc. We can now use the approximate transport matrix

T (R) = T (R)
z,z0,k0

:=

(
a(R)

1 a(R)
2

b(R)
1 b(R)

2

)
(6)

to compute

u(R)
1 (z, k0) = a(R)

1 u1(z0, k0) + a(R)
2 u2(z0, k0), (7)

u(R)
2 (z, k0) = b(R)

1 u1(z0, k0) + b(R)
2 u2(z0, k0),

where α(R) = a(R)
1 + ia(R)

2 and β(R) = b(R)
1 + ib(R)

2 .



Step 3: Reconstructing the Conductivity

From [AP] for any fixed k0 ∈ C, µ(z) is related to fµ by

µ(z) =
∂̄fµ(z, k0)

∂fµ(z, k0)
.

Thus, the conductivity σ(z) can be recovered by

σ(z) = −i
∂̄(=f )
∂̄(<f )

This can be computed independently for each z in the ROI.



Example: Heart-and-Lungs Phantom

Ideal Conductivity From ideal data From 0.01% noise

Background : 1.0 ∼ 1.2 ∼ 1.2
Lungs : 0.7 0.637 0.637
Heart : 2.0 1.997 1.870

Relative error: 11.6% 12.7%
Dynamic range: 105% 95%



Example: Heart-and-Lungs + Spine

Ideal Conductivity From ideal data

Background : 1.0 ∼ 1.1
Spine : 0.2 0.373 (min)
Lungs : 0.7 ∼ 0.7
Heart : 2.0 2.273 (max)

Relative error: 16.3%
Dynamic range: 106%



Example: Heart-and-Lungs + Spine + Tumor

Ideal Conductivity From ideal data

Background : 1.0 ∼ 1.1
Spine : 0.2 0.378 (min)
Lungs : 0.7 ∼ 0.7
Heart : 2.0 2.332 (max)

Relative error: 16.7%
Dynamic range: 109%



Subtract the previous images:

Ideal Difference Reconstruction



Example 3: Layered Medium

Top Layer: 1.2 Middle Layer: 2.0 Bottom Layer: 0.3

Ideal Reconstruction Relative error

21.7%

24.7%
Dynamic range: 134%


