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EIT with resistor networks and optimal grids

Electrical Impedance Tomography: Physical problem

Physical problem: determine the electrical conductivity inside an
object from the simultaneous measurements of voltages and
currents on (a part of) its boundary
Applications:

Original: geophysical prospection
More recent: medical imaging

Both cases in practice have measurements restricted to a part of
object’s boundary

Accessible boundary

Electrode =

Lung

Heart

Lung

Accessible skin

Figures: Fernando Guevara Vasquez
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EIT with resistor networks and optimal grids

Partial data EIT: mathematical formulation

�

�

Two-dimensional problem Ω ⊂ R2

Equation for electric potential u

∇ · (σ∇u) = 0, in Ω

Dirichlet data u|B = φ ∈ H1/2(B)
on B = ∂Ω

Dirichlet-to-Neumann (DtN) map
Λσ : H1/2(B)→ H−1/2(B)

Λσφ = σ
∂u
∂ν

∣∣∣∣
B

Partial data case:

Split the boundary B = BA ∪ BI , accessible BA, inaccessible BI

Dirichlet data: suppφA ⊂ BA

Measured current flux: JA = (ΛσφA)|BA

Partial data EIT: find σ given all pairs (φA, JA)
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EIT with resistor networks and optimal grids

Existence, uniqueness and stability
Existence and uniqueness:

Full data: solved completely for any positive σ ∈ L∞(Ω) in 2D
(Astala, Päivärinta, 2006)

Partial data: for σ ∈ C4+α(Ω) and an arbitrary open BA
(Imanuvilov, Uhlmann, Yamamoto, 2010)

Stability (full data):

For σ ∈ L∞(Ω) the problem is unstable (Alessandrini, 1988)

Logarithmic stability estimates (Barcelo, Faraco, Ruiz, 2007)
under certain regularity assumptions

‖σ1 − σ2‖∞ ≤ C
∣∣log ‖Λσ1 − Λσ2‖H1/2(B)→H−1/2(B)

∣∣−a

The estimate is sharp (Mandache, 2001), additional regularity
of σ does not help

Exponential ill-conditioning of the discretized problem

Resolution is severely limited by the noise, regularization is required
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EIT with resistor networks and optimal grids

Numerical methods for EIT

1 Linearization: Calderon’s method, one-step Newton, backprojection.
2 Optimization: typically output least squares with regularization.
3 Layer peeling: find σ close to B, peel the layer, update Λσ, repeat.
4 D-bar method: non-trivial implementation.
5 Resistor networks and optimal grids

Uses the close connection between the continuum inverse problem
and its discrete analogue for resistor networks
Fit the measured continuum data exactly with a resistor network
Interpret the resistances as averages over a special (optimal) grid
Compute the grid once for a known conductivity (constant)
Optimal grid depends weakly on the conductivity, grid for constant
conductivity can be used for a wide range of conductivities
Obtain a pointwise reconstruction on an optimal grid
Use the network and the optimal grid as a non-linear preconditioner
to improve the reconstruction using a single step of traditional
(regularized) Gauss-Newton iteration
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EIT with resistor networks and optimal grids

Finite volume discretization and resistor networks

Pi,j

Pi,j+1

Pi,j−1

Pi+1,jPi−1,j

Pi+1/2,j+1/2

Pi+1/2,j−1/2

Pi−1/2,j+1/2

Pi−1/2,j−1/2

Pi,j+1/2

γ(1)

i,j+1/2 =
L(Pi+1/2,j+1/2,Pi−1/2,j+1/2)

L(Pi,j+1,Pi,j )

γi,j+1/2 = σ(Pi,j+1/2)γ(1)

i,j+1/2

Finite volume discretization,
staggered grid
Kirchhoff matrix
K = A diag(γ)AT � 0
Interior I, boundary B, |B| = n
Potential u is γ-harmonic
KI,:u = 0, uB = φ

Discrete DtN map Λγ ∈ Rn×n

Schur complement:
Λγ = KBB − KBIK−1

II KIB

Discrete inverse problem:
knowing Λγ , A, find γ
What network topologies
are good?
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EIT with resistor networks and optimal grids

Discrete inverse problem: circular planar graphs

C(5, 11)

Planar graph Γ

I embedded in the unit disk D

B in cyclic order on ∂D

Circular pair (P; Q), P ⊂ B, Q ⊂ B

π(Γ) all (P; Q) connected through
Γ by disjoint paths

Critical Γ: removal of any edge
breaks some connection in π(Γ)

Uniquely recoverable from Λ
iff Γ is critical (Curtis, Ingerman,
Morrow, 1998)

Characterization of DtN maps of
critical networks Λγ

Symmetry Λγ = ΛT
γ

Conservation of current
Λγ1 = 0
Total non-positivity
det[−Λγ(P; Q)] ≥ 0
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EIT with resistor networks and optimal grids

Discrete vs. continuum

Measurement (electrode) functions χj , suppχj ⊂ BA

Measurement matrixMn(Λσ) ∈ Rn×n: [Mn(Λσ)]i,j =
∫
B
χi ΛσχjdS, i 6= j

Mn(Λσ) has the properties of a DtN map of a resistor network
(Morrow, Ingerman, 1998)

How to interpret γ obtained from Λγ =Mn(Λσ)?

From finite volumes define the reconstruction mapping

Qn [Λγ ] : σ?(Pα,β) =
γα,β

γ(1)

α,β

, piecewise linear interpolation away from Pα,β

Optimal grid nodes Pα,β are obtained from γ(1)

α,β , a solution of the
discrete problem for constant conductivity Λγ(1) =Mn(Λ1).

The reconstruction is improved using a single step of preconditioned
Gauss-Newton iteration with an initial guess σ?

minσ‖Qn [Mn(Λσ)]− σ?‖
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EIT with resistor networks and optimal grids

Optimal grids in the unit disk: full data

0 0.2 0.4 0.6 0.8 1
r ∈ [0,1]

m=5, m
1/2

=1, n=25

Tensor product grids
uniform in θ, adaptive in r

Layered conductivity σ = σ(r)

Admittance Λσeikθ = R(k)eikθ

For σ ≡ 1 R(k) = |k |,
Λ1 =

√
− ∂2

∂θ2

Discrete analogue
Mn(Λ1) =

√
circ(−1,2,−1)

Discrete admittance Rn(λ) =
1

1
γ1

+
1

γ̂2λ2 + . . .+
1

γ̂m+1λ2 + γm+1

Rational interpolation

R(k) =
k
ω(n)

k
Rn(ω(n)

k )

Optimal grid R(1)

n (ω(n)

k ) = ω(n)

k

Closed form solution available
(Biesel, Ingerman, Morrow,
Shore, 2008)

Vandermonde-like system,
exponential ill-conditioning
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Conformal and quasi-conformal mappings

Transformation of the EIT under diffeomorphisms

Optimal grids were used successfully to solve the full data EIT in D
Can we reduce the partial data problem to the full data case?

Conductivity under diffeomorphisms G of Ω: push forward σ̃ = G∗(σ),
ũ(x) = u(G−1(x)),

σ̃(x) =
G′(y)σ(y)(G′(y))T

|det G′(y)|

∣∣∣∣
y=G−1(x)

Matrix valued σ̃(x), anisotropy!

Anisotropic EIT is not uniquely solvable

Push forward for the DtN: (g∗Λσ)φ = Λσ(φ ◦ g), where g = G|B
Invariance of the DtN: g∗Λσ = ΛG∗σ

Push forward, solve the EIT for g∗Λσ, pull back

Must preserve isotropy, G′(y)(G′(y))T = I ⇒ conformal G

Conformal automorphisms of the unit disk are Möbius transforms
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Conformal and quasi-conformal mappings

Conformal automorphisms of the unit disk

β = τ n+1
2

−β = τ n+3
2

α = θn+1
2

−α = θn+3
2

F : θ → τ , G : τ → θ. Primary ×, dual ◦, n = 13, β = 3π/4.
Positions of point-like electrodes prescribed by the mapping.
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Conformal and quasi-conformal mappings

Conformal mapping grids: limiting behavior

β = ξ−1

−β = ξ1

π = ξ0

ξ−2

ξ2

ξ−3

ξ3

ξ−4

ξ4

ξ−5

ξ5

ξ−6

ξ6

Primary ×, dual ◦, limits 5,
n = 37, β = 3π/4.

No conformal limiting mapping

Single pole moves towards ∂D
as n→∞

Accumulation around τ = 0

No asymptotic refinement
in angle as n→∞

Hopeless?

Resolution bounded by the
instability, n→∞ practically
unachievable
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Conformal and quasi-conformal mappings

Quasi-conformal mappings

Conformal w , Cauchy-Riemann:
∂w
∂z

= 0, how to relax?

Quasi-conformal w , Beltrami:
∂w
∂z

= µ(z)
∂w
∂z

Push forward w∗(σ) is no longer isotropic

Anisotropy of σ̃ ∈ R2×2 is κ(σ̃, z) =

√
L(z)− 1√
L(z) + 1

, L(z) =
λ1(z)

λ2(z)

Lemma
Anisotropy of the push forward is given by κ(w∗(σ), z) = |µ(z)|.

Mappings with fixed values at B and min ‖µ‖∞ are extremal

Extremal mappings are Teichmüller (Strebel, 1972)

µ(z) = ‖µ‖∞
φ(z)

|φ(z)| , φ holomorphic in Ω
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Conformal and quasi-conformal mappings

Computing the extremal quasi-conformal mappings

Polygonal Teichmüller mappings

Polygon is a unit disk with N marked points on the boundary circle

Can be decomposed as

W = Ψ−1 ◦ AK ◦ Φ,

where Ψ =
∫ √

ψ(z)dz, Φ =
∫ √

φ(z)dz, AK - constant affine stretching

φ, ψ are rational with poles and zeros of order one on ∂D

Recall Schwarz-Christoffel s(z) = a + b
z∫ N∏

k=1

(
1− ζ

zk

)αk−1
dζ

Ψ, Φ are Schwarz-Christoffel mappings to rectangular polygons

Φ AK Ψ−1
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Conformal and quasi-conformal mappings

Polygonal Teichmüller mapping: the grids

The optimal grid with n = 15 under the Teichmüller mappings.
Left: K = 0.8; right: K = 0.66.
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Pyramidal networks and sensitivity grids

EIT with pyramidal networks: motivation

v1

v2

v3 v4

v5

v6

v1

v2

v3

v4

v5

v6

v7

Pyramidal (standard) graphs Σn

Topology of a network accounts
for the inaccessible boundary
Criticality and reconstruction
algorithm proved for pyramidal
networks
How to obtain the grids?
Grids have to be purely 2D
(no tensor product)
Use the sensitivity analysis
(discrete an continuum)
to obtain the grids
General approach works for
any simply connected domain
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Pyramidal networks and sensitivity grids

Special solutions and recovery

Theorem
Pyramidal network (Σn, γ), n = 2m is uniquely recoverable from its DtN map Λ(n) using
the layer peeling algorithm. Conductances are computed with

γ(ep,h) =
(

Λp,E(p,h) + Λp,C Λ−1
Z ,C ΛZ ,E(p,h)

)
1E(p,h),

γ(ep,v ) =
(

Λp,E(p,v) + Λp,C Λ−1
Z ,C ΛZ ,E(p,v)

)
1E(p,v).

The DtN map is updated using
Λ(n−2) = −KS − KSB PT (

P (Λ(n) − KBB) PT )−1
P KBS .

The formulas are applied recursively to Σn,Σn−2, . . . ,Σ2.

Σ
n−2J

1
=0

J
p−1

=0

J
p
=γ(e

p,h
)

J
p+1

=0

J
m

=0

w
1

w
p−1

w
p

w
m−1

φ
m+2

φ
2m

Σ
n−2J

1
=0

J
p−1

=0

J
p
=γ(e

p,v
)

J
p+1

=0

J
m

=0

w
1

w
p−1

w
p

w
m−1

φ
m+2

φ
2m
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Pyramidal networks and sensitivity grids

Sensitivity grids: motivation
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Pyramidal networks and sensitivity grids

Sensitivity grids

Sensitivity grid, n = 16.

Proposed by F. Guevara Vasquez

Sensitivity functions

δγα,β
δσ

=

[(
∂Λγ
∂γ

)−1

Mn

(
δΛσ
δσ

)]
α,β

where Λγ =Mn(Λσ)

The optimal grid nodes Pα,β are
roughly

Pα,β ≈ arg maxx∈Ω

δγα,β
δσ

(x)

Works for any domain and any
network topology!
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Two-sided problem and networks

Two sided problem and networks

Two-sided problem: BA consists of two disjoint segments of the
boundary. Example: cross-well measurements.

Two-sided optimal grid problem is
known to be irreducible to 1D
(Druskin, Moskow)
Special choice of topology is needed
Network with a two-sided graph Tn is
proposed (left: n = 10)
Network with graph Tn is critical and
well-connected
Can be recovered with layer peeling
Grids are computed using the
sensitivity analysis exactly like in
the pyramidal case
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Two-sided problem and networks

Sensitivity grids for the two-sided problem

Two-sided graph Tn lacks the top-down symmetry. Resolution can be
doubled by also fitting the data with a network turned upside-down.

Left: single optimal grid; right: double resolution grid; n = 16.
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Numerical results

Numerical results: test conductivities

Left: smooth; right: piecewise constant chest phantom.
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Numerical results

Numerical results: smooth σ + conformal

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, n = 17, ω0 = −π/10.
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Numerical results

Numerical results: smooth σ + quasiconformal

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, K = 0.65, n = 17, ω0 = −π/10.
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Numerical results

Numerical results: smooth σ + pyramidal

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, n = 16, ω0 = −π/10.
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Numerical results

Numerical results: smooth σ + two-sided

Left: piecewise linear; right: one step Gauss-Newton,
n = 16, BA is solid red.
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Numerical results

Numerical results: piecewise constant σ + conformal

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, n = 17, ω0 = −3π/10.
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Numerical results

Numerical results: piecewise constant σ + quasiconf.

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, K = 0.65, n = 17, ω0 = −3π/10.
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Numerical results

Numerical results: piecewise constant σ + pyramidal

Left: piecewise linear; right: one step Gauss-Newton,
β = 0.65π, n = 16, ω0 = −3π/10.
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Numerical results

Numerical results: piecewise constant σ + two-sided

Left: piecewise linear; right: one step Gauss-Newton,
n = 16, BA is solid red.
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Numerical results

Numerical results: high contrast conductivity

Test conductivity,
contrast 104.

We solve the full non-linear
problem
No artificial regularization
No linearization
Big advantage: can capture
really high contrast behavior
Test case: piecewise constant
conductivity, contrast 104

Most existing methods fail
Our method: relative error
less than 5% away from
the interface
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Numerical results

Numerical results: high contrast conductivity

High contrast reconstruction, n = 14, ω0 = −11π/20, contrast 104.
Left: reconstruction; right: pointwise relative error.
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Numerical results

Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, smooth σ.

Left: true; right: reconstruction, n = 16.
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Numerical results

Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, layered σ.

Left: true; right: reconstruction, n = 16.
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Conclusions

Conclusions

Two distinct computational approaches to the partial data EIT:
1 Circular networks and (quasi)conformal mappings

Uses existing theory of optimal grids in the unit disk
Tradeoff between the uniform resolution and anisotropy
Conformal: isotropic solution, rigid electrode positioning, grid
clustering leads to poor resolution
Quasiconformal: artificial anisotropy, flexible electrode positioning,
uniform resolution, some distortions
Geometrical distortions can be corrected by preconditioned
Gauss-Newton

2 Sensitivity grids and special network topologies (pyramidal,
two-sided)

No anisotropy or distortions due to (quasi)conformal mappings
Theory of discrete inverse problems developed
Sensitivity grids work well
Independent of the domain geometry
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Conclusions
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