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EIT with resistor networks and optimal grids

Electrical Impedance Tomography: Physical problem

@ Physical problem: determine the electrical conductivity inside an
object from the simultaneous measurements of voltages and
currents on (a part of) its boundary

@ Applications:

e Original: geophysical prospection
@ More recent: medical imaging

@ Both cases in practice have measurements restricted to a part of

object’s boundary

Accessible boundary Accessible skin
m

Electrode =

Figures: Fernando Guevara Vasquez
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EIT with resistor networks and optimal grids

Partial data EIT: mathematical formulation

@ Two-dimensional problem Q ¢ R?

@ Equation for electric potential u
Ba
V- (cVu)=0, inQ

@ Dirichlet data u|s = ¢ € H'/?(B)
on B =0Q

@ Dirichlet-to-Neumann (DtN) map

Ao - H'3(B) = H™'/2(B)

Br 5
u
Ao—¢ = Ua

B

Partial data case:
@ Split the boundary B = B4 U By, accessible B4, inaccessible 5
@ Dirichlet data: supp¢a C Ba
@ Measured current flux: Ja = (As¢a)l5,

@ Partial data EIT: find o given all pairs (¢4, Ja)
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EIT with resistor networks and optimal grids

Existence, uniqueness and stability

Existence and uniqueness:

@ Full data: solved completely for any positive o € L>(Q) in 2D
(Astala, Paivéarinta, 2006)

@ Partial data: for o € C*+*(Q) and an arbitrary open B,
(Imanuvilov, Uhlmann, Yamamoto, 2010)

Stability (full data):
@ For o € L*°(Q) the problem is unstable (Alessandrini, 1988)
@ Logarithmic stability estimates (Barcelo, Faraco, Ruiz, 2007)
under certain regularity assumptions
los = o2lloc < C[10G 1Ay = Ayl r2(8) s 1728 |

@ The estimate is sharp (Mandache, 2001), additional regularity
of o does not help

@ Exponential ill-conditioning of the discretized problem ﬂ.
@ Resolution is severely limited by the noise, regularization is required
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EIT with resistor networks and optimal grids

Numerical methods for EIT

@ Linearization: Calderon’s method, one-step Newton, backprojection.
@ Optimization: typically output least squares with regularization.

© Layer peeling: find o close to B, peel the layer, update A,, repeat.
© D-bar method: non-trivial implementation.

© Resistor networks and optimal grids

o Uses the close connection between the continuum inverse problem
and its discrete analogue for resistor networks
Fit the measured continuum data exactly with a resistor network
Interpret the resistances as averages over a special (optimal) grid
Compute the grid once for a known conductivity (constant)
Optimal grid depends weakly on the conductivity, grid for constant
conductivity can be used for a wide range of conductivities
Obtain a pointwise reconstruction on an optimal grid
e Use the network and the optimal grid as a non-linear preconditio%

to improve the reconstruction using a single step of traditional
(regularized) Gauss-Newton iteration

A.V. Mamonov (UT Austin, ICES) 6/37



EIT with resistor networks and optimal grids

Finite volume discretization and resistor networks

@ Finite volume discretization,
: : staggered grid
Lo | @ Kirchhoff matrix
R H oo K = Adiag()AT = 0
b @ Interior /, boundary B, |B| = n

@ Potential u is y-harmonic
Pt j-12 K/,Zu = 0’ UB = ¢

""?""""? _____ @ Discrete DIN map A, € R™"
! Pt @ Schur complement:
A, = Kgg — KeiK; 'Kig
) _ UPu1ja i1/2.Pi1/2012) @ Discrete inverse problem:
Vij+1/2 L(Pij1,P) knowing A, A, find v

N _ y 0 @ What network topologies -'U-
Vi, 12—UP, 1/2)7}

ij+1/ ( ij+1/ ) ij+1/2 are good?
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EIT with resistor networks and optimal grids

Discrete inverse problem: circular planar graphs

@ Circular pair (P;Q),Pc B, QcCB

@ =(IN) all (P; Q) connected through
I" by disjoint paths

@ Critical I': removal of any edge
breaks some connection in 7(I")

@ Uniquely recoverable from A
iff I" is critical (Curtis, Ingerman,
Morrow, 1998)

@ Characterization of DtN maps of
critical networks A,

(5, 11) o Symmetry A, = AT

o Conservation of current
AMN1=0
@ / embedded in the unit disk D o Total non-positivity 'v

@ Bin cyclic order on 9D det[-A,(P; Q)] = 0
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EIT with resistor networks and optimal grids
Discrete vs. continuum

@ Measurement (electrode) functions x;, suppx; C Ba
@ Measurement matrix Mn(Ay) € R™™ [Mn(As)];; = [ xif\ox;dS, i # ]
B

@ M,(A,) has the properties of a DN map of a resistor network
(Morrow, Ingerman, 1998)

@ How to interpret v obtained from A, = M,(A,)?
@ From finite volumes define the reconstruction mapping

On[N\y]: 0*(Pag) = T8 piecewise linear interpolation away from P, 3

M

a,p

@ Optimal grid nodes P, s are obtained from 'y B a solution of the
discrete problem for constant conductivity A, = Mp(A1).

@ The reconstruction is improved using a smgle step of preconditioned
Gauss-Newton iteration with an initial guess o* ﬂ'

ming||Qn [Mn(As)] — o*||
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EIT with resistor networks and optimal grids

Optimal grids in the unit disk: full data

x o x o x o x 0O x O x0e
x o x o x o x O %X O %08
. ,

0 0.2 0.4 0.6 0.8 1

rof.1]
@ Tensor product grids
uniform in 0, adaptive in r
@ Layered conductivity o = o(r)
@ Admittance A, e*? = R(k)e?
@ Foro =1 R(k) = |k|,
M=y -2

@ Discrete analogue
Mp(Ay) = (/cire(=1,2,—-1)

@ Discrete admittance R,(\) =
1

1 1

il :
1 ~ \2

AN+
7 Fm+1A2 + Y1

@ Rational interpolation

@ Optimal grid RY (wy’) = w}”

@ Closed form solution available
(Biesel, Ingerman, Morrow,
Shore, 2008)

@ Vandermonde-like system,
exponential ill-conditioning
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Conformal and quasi-conformal mappings

Transformation of the EIT under diffeomorphisms

@ Optimal grids were used successfully to solve the full data EIT in D

@ Can we reduce the partial data problem to the full data case?

@ Conductivity under diffeomorphisms G of Q: push forward 7 = G.(¢0),
u(x) = u(G™'(x)),

L GWeGE W)
e T 07 R PP

@ Matrix valued &(x), anisotropy!

@ Anisotropic EIT is not uniquely solvable

@ Push forward for the DiIN: (g.A,)¢ = As (¢ 0 g), where g = G|z

@ Invariance of the DiN: g.A, = Ag,,»

@ Push forward, solve the EIT for g.A,, pull back

@ Must preserve isotropy, G'(y)(G'(y))" = | = conformal G

@ Conformal automorphisms of the unit disk are Mébius transforms v
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F:0—7,G:7— 6. Primary x,dual o, n=13, 5 = 37/4.
Positions of point-like electrodes prescribed by the mapping. -'W-




Conformal and quasi-conformal mappings

Conformal mapping grids: limiting behavior

@ No conformal limiting mapping

@ Single pole moves towards 0D
as n— oo

@ Accumulation around 7 =0

@ No asymptotic refinement
in angle as n — oo

@ Hopeless?

@ Resolution bounded by the
Primary x, dual o, limits <, |nstab|.I|ty, n — oo practically
n=237, 3 = 3r/4. unachievable '-U_
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Conformal and quasi-conformal mappings

Quasi-conformal mappings

@ Conformal w, Cauchy-Riemann: (Z—g = 0, how to relax?

ow ow
° f | w, Bel — =
Quasi-conformal w, Beltrami: 55 = u(z )62
@ Push forward w, (o) is no longer isotropic
, - . L(z) -1 M(2)
@ Anisotropy of ¢ € R?*?is k(7,2) = Y~———, L(z
py of We.2) = Yo U = 55
Anisotropy of the push forward is given by k(w.(c), z) = |u(2)]

@ Mappings with fixed values at 5 and min ||u||- are extremal
@ Extremal mappings are Teichmuller (Strebel, 1972)

1(2) = ||l o |ZE ;| ¢ holomorphic in Q "1’.
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Conformal and quasi-conformal mappings

Computing the extremal quasi-conformal mappings

@ Polygonal TeichmUller mappings
@ Polygon is a unit disk with N marked points on the boundary circle
@ Can be decomposed as
W=wv"0Axo0o,
where ¥ = [ \/4(2)dz, ® = [ \/$(z)dz, Ak - constant affine stretching
@ ¢, v are rational with poles and zeros of order one on 9D

2

z N ak—1
@ Recall Schwarz-Christoffel s(z) =a+ b [ [] (1 — C) ’ dc
k=1

@ V., & are Schwarz-Christoffel mappings to rectangular polygons

- A*‘jjmﬂl@v
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The optimal grid with n = 15 under the Teichmdller mappings.
Left: K = 0.8; right: K = 0.66. 'WI'




Pyramidal networks and sensitivity grids

EIT with pyramidal networks: motivation

@ Pyramidal (standard) graphs ¥,

s va @ Topology of a network accounts
for the inaccessible boundary
v2 vs @ Criticality and reconstruction
algorithm proved for pyramidal
v V6 networks

U4 @ How to obtain the grids?
@ Grids have to be purely 2D
3 Us (no tensor product)
@ Use the sensitivity analysis
U2 Y6 (discrete an continuum)
to obtain the grids

v " @ General approach works for .'v.
any simply connected domain
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Pyramidal networks and sensitivity grids

Special solutions and recovery

Pyramidal network (X,,), n = 2m is uniquely recoverable from its DtN map A using
the layer peeling algorithm. Conductances are computed with

V(€p,h) = (/\p,E(p,n) +Moc A /\z,E(p,m) 1e(p.n),
V(€pv) = (/\p,E(p,v) +Moc Az /\z,E(p,v)) 1e(p,0)-
The DtN map is updated using

N2 = _Ks — Ksg PT (P (A” — Kgg) PT) ™" P Kas.
The formulas are applied recursively to ¥p, X n_2,...,%5.
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Pyramidal networks and sensitivity grids

Sensitivity grids: motivation
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Pyramidal networks and sensitivity grids
Sensitivity grids

@ Proposed by F. Guevara Vasquez

@ Sensitivity functions

a8 _ % - 6&
do [( Oy Mn (55
where A, = M,(As)

@ The optimal grid nodes P, 3 are
roughly

Mo,
P..3 ~ arg max,.q &Tﬂ (x)

@ Works for any domain and any
Sensitivity grid, n = 16. network topology! ,'W.
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Two-sided problem and networks
Two sided problem and networks

Two-sided problem: B4 consists of two disjoint segments of the
boundary. Example: cross-well measurements.
@ Two-sided optimal grid problem is
I S known to be irreducible to 1D
(Druskin, Moskow)
@ Special choice of topology is needed
@ Network with a two-sided graph T, is
proposed (left: n = 10)
@ Network with graph T, is critical and
well-connected
@ Can be recovered with layer peeling
@ Grids are computed using the
sensitivity analysis exactly like in
the pyramidal case -v.

x"1 x"2

V10 Vg Vg vr V6
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Two-sided problem and networks

Sensitivity grids for the two-sided problem

Two-sided graph T, lacks the top-down symmetry. Resolution can be
doubled by also fitting the data with a network turned upside-down.

Left: single optimal grid; right: double resolution grid; n = 16. ;W.
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Numerical results

Numerical results: test conductivities

B T S0 e
1 1.2 1.4 1.6 1.8 0.5 1 1.5 2
Left: smooth; right: piecewise constant chest phantom. 'W"
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Numerical results
Numerical results: smooth o + conformal

1 12 14 16 1.8 1 12 14 16 1.8

Left: piecewise linear; right: one step Gauss-Newton, .'w.
B =0.65m, n=17,wy = —7/10.
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Numerical results

Numerical results: smooth ¢ + quasiconformal

1 1.2 1.4 1.6 1.8 1 1.2 1.4 1.6 1.8
Left: piecewise linear; right: one step Gauss-Newton, .'U.
B =0.657, K=0.65n=17,wy = —7/10.
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Numerical results
Numerical results: smooth ¢ + pyramidal

, A—.
'§f

1 1.2 1.4 1.6 1.8 1 1.2 1.4 1.6 1.8
Left: piecewise linear; right: one step Gauss-Newton, .W'.
B =0.657, n=16, wy = —7/10.
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Numerical results
Numerical results: smooth o + two-sided

BT T ST e
1 12 14 16 18 1 12 14 16 1'8"@'

Left: piecewise linear; right: one step Gauss-Newton,
n =16, B, is solid red.
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Numerical results

Numerical results: piecewise constant o + conformal

0.5 1 1.5 2 0.5 1 1.5 2
Left: piecewise linear; right: one step Gauss-Newton,
8 =0.657,n=17, wy = =37 /10. -W.
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Numerical results

Numerical results: piecewise constant o + quasiconf.

0.5 1 1.5 2 0.5 1 1.5 2
Left: piecewise linear; right: one step Gauss-Newton,
g =0.657, K=0.65,n=17, wy = —3x/10. -W.
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Numerical results

Numerical results: piecewise constant ¢ + pyramidal

0.5 1 1.5 2 0.5 1 1.5 2
Left: piecewise linear; right: one step Gauss-Newton,
B =0.657, n =16, wg = —37/10. ﬂ.
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Numerical results

Numerical results: piecewise constant o + two-sided

05 1 1.5 2 0.5 1 1.5 2
Left: piecewise linear; right: one step Gauss-Newton, 'w"
n =16, B, is solid red.
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Numerical results

Numerical results: high contrast conductivity

T 05 0 0.5 1

2000 4000 6000 8000 10000

Test conductivity,
contrast 10%.
A.V. Mamonov (UT Austin, ICES)

@ We solve the full non-linear
problem

o No artificial regularization
@ No linearization

e Big advantage: can capture
really high contrast behavior

o Test case: piecewise constant
conductivity, contrast 10*

@ Most existing methods fail

@ Our method: relative error
less than 5% away from
the interface 'W'
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Numerical results

Numerical results: high contrast conductivity

0.5

2000 4000 6000 8000 10000

High contrast reconstruction, n = 14, wy = —117/20, contrast 10%. W.
Left: reconstruction; right: pointwise relative error.
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Numerical results

Numerical results: EIT in the half plane

0
-0.1
-0.2
-0.3
-04

Can be used in different domains. Example: half plane smooth o.

-0.5
-0.6
-0.7
-0.8
-0.9

Left: true; right: reconstruction, n = 16. W.
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Numerical results

Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, layered o.

0 XX ssXep XX gdigKeNgip Xa s X ssXas X 5
0.1 01} = *° °:::':: :'. ..._': *e .. .,
-0.2 -0.2
-0.3 -0.3
-0.4 -0.4
-0.5 -0.5
-0.6 -0.6
-0.7 -0.7
0.8 -0.8 21.1%

-0.9 -0.9
X 05 0 05 1 I 05 0 05 1
H T e .
2 3 4 5 6 2 3 4 5 6
Left: true; right: reconstruction, n = 16. W.
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Conclusions
Conclusions

Two distinct computational approaches to the partial data EIT:
@ Circular networks and (quasi)conformal mappings

o Uses existing theory of optimal grids in the unit disk

o Tradeoff between the uniform resolution and anisotropy

e Conformal: isotropic solution, rigid electrode positioning, grid
clustering leads to poor resolution

e Quasiconformal: artificial anisotropy, flexible electrode positioning,
uniform resolution, some distortions

o Geometrical distortions can be corrected by preconditioned
Gauss-Newton

© Sensitivity grids and special network topologies (pyramidal,
two-sided)
@ No anisotropy or distortions due to (quasi)conformal mappings
Theory of discrete inverse problems developed

Sensitivity grids work well W‘
Independent of the domain geometry
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