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Outline of the talk

1. Backscatter data, sweep data and their motivation.

2. Localization of inhomogeneities.
(a) Analytic continuation of the data.

(b) Numerical examples.



1. Backscatter and sweep data



General form of the considered data

Let D C R? be the open unit disk with a strictly positive conductivity
o € L>®(D) such that 2 := supp(c — 1) is a compact subset of D. We
consider the Neumann problem

V-(oVu) =0 1in D, %:f on 0D

where f € H(OD), s € R, is the input current density. These equations
define the potential u € H™M{1:5+3/2}( D) /C uniquely.

We denote the reference potential, i.e., the solution for 0 = 1, by
ug € H*13/2(D)/C.



It follows from the regularity theory for elliptic partial differential
equations that the difference Neumann-to-Dirichlet map

A—Ap: fr—(u—up)lsp

is bounded (and compact) between HS(0D) and H"(0D)/C for any
s, 7 € R.

In what follows, we consider two types of EIT boundary measurements

that can be presented in the form

data(@) — <f97 (A _ AO)f¢9>8D7

for suitable families of distributional boundary currents { fy}

parametrized by 6.



Backscatter measurement




Backscatter data

Let d, € H<>_3/2_€(8D), ¢ > 0, be a dipole boundary current applied at
zg := (cosf,sinf) € D, i.e.,

9
(8, @op = —8—2(;;9) for g € H3/?*<(aD),

where 7 is the arc length parameter of 0D.

We define the backscatter data of electric impedance tomography to be
the function

b:zp <5é, (A — A0)5é>ap, oD — R,

or in other words,

0
b(zo) = —22019D (),

where wy := u — ug is the relative potential corresponding to the dipole
boundary current f = ¢; at zp.



Motivation of the backscatter data

Suppose that the available measurement M (zy) is the reading of the
voltmeter on the left minus that on the right. According to the so-called
complete electrode model, it holds that

M (zg) = 4h*b(zg) + O(h?).

Hence, the backscatter data may be approximated by real-world
electrode measurements — at least to a certain extent.



Sweep measurement




Sweep data

Let 09 — dg € H§1/2_€(8D), ¢ > 0, be difference of two point currents
at zg, 29 € 0D, respectively, i.e.,

(09 — b0, 9)op = g(20) — g(20) for g € H1/2+6(8D)-

We define the sweep data of electric impedance tomography to be the

function
CiZg > <69 — 507 (A o AO)((S@ — 60)>8D7 oD — Ra
or in other words,

S(z9) = wa(zg) — wa(z0),

where wy := u — ug is the relative potential corresponding to the

boundary current f = dg — dy.



Motivation of the sweep data

Suppose that the available measurement M (zy) is the reading of the
voltmeter on the left minus that on the right. According to the so-called
complete electrode model of electrical impedance tomography, it holds
that

M (29) = <(z0) + O(h*),

where h > 0 is the width of the electrodes.



Differences/similarities between the two data types

e The backscatter data uniquely determines a simply connected
insulating cavity within D (but not an ideally conducting inclusion!).
There are currently no analogous results for the sweep data.

e |t can be shown that both the backscatter data and the sweep data
are boundary values of holomorphic functions living in the exterior of
the conductivity inhomogeneity.

e As sweep data arguably corresponds to a more practical
measurement setting, we will consider it in the following.



2. Localization of inhomogeneities



(a) Analytic continuation of the data
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A factorization of A — Ay

Let Qo C R? consist of m smooth, well separated and simply connected
components and be such that = supp(c — 1) C Qy and Qy C D. We
define an auxiliary operator

B:fHu0|aQO, Hj(@D)%HT(aﬁo)/Cm, s,r € R,

where ug is the reference potential corresponding to the boundary

current f.

It turns out that A — Ay obeys the factorization
A — Ay = B*GB,

where G : H"(0€)/C™ — H;J(0€)y) is bounded for any r € R and
coincides with it own dual operator.



Analytic continuation of B(dy — dy)

The reference potential corresponding to the current density dy9 — dg can
be given explicitly, which results in the representation

1
(B(dg — 6p))(x) = ;(log |z — zo| — log |z — zg]), x € 0€).
By introducing the complex numbers £(z) = x1 + ize and ¢ = €', this
can be written as

2
(B0~ ) (w) = 5 (1og |} T

where log denotes the principal value of the complex logarithm.

), ZEG(?Q(),



Taking advantage of the fact that we are allowed to consider B(dy — dp)
as an element of H"(0€2y)/C™, we may add a suitable function of { to

B(dy9 — dp) on each component of 9€ in order to move the branch cut
of the latter logarithm of the above expression entirely inside Q4. (This

is actually an oversimplification of the employed procedure.)

This results in the representation (¢ = e'?)
(B8 — 60))(x) = g(5,C),  (2,C) € I x OD,

which extends as a continuous function to 9y x D \ Qy. Moreover,
g(x, () is complex differentiable with respect to its second variable.



Analytic continuation of the sweep data

Due to the above material, we have
C(C) — <B(69 — 60)7 GB((S@ — 50)>390 — /8(2 g(ﬂf, C)[Gg(a C)](x) dsxa

where ¢ = €'?. It thus follows ‘easily’ from basic results on (complex)
line integrals that ¢ extends as a holomorphic function to D \ €.

Since () is an (rather) arbitrary set enclosing 2 = supp(c — 1), it is
straightforward to conclude that ¢ actually extends as a univalent

holomorphic function to D \ €2, under only mild topological conditions
on ().



Non-complex interpretation

By considering the real part of the extension of ¢ to D \ 2 and noting
that the corresponding imaginary part (and thus its tangential
derivative) vanishes on 0D, we obtain the following theorem.

Theorem. There exists a solution to the Cauchy problem

Au=0 in D\ Q, u=¢ on dD, %:O on 0D,
v

if Q = supp(o — 1) is regular enough. (Otherwise, we may consider
some slightly larger set instead of €2, e.g., its convex hull.)

This result generalizes for a general smooth and simply connected
domain D C R? since conformal maps can be used to transfer sweep
data between boundaries of different domains.



(b) Numerical examples



A reconstruction algorithm

Due to the above theorem, the localization of the inhomogeneity €2 from
sweep data can be recast as an inverse source problem for the Poisson
equation.

The following reconstructions have been computed using the so-called
convex source support algorithm (Kusiak and Sylvester, 2003; Hanke, H,
Reusswig, 2008). To put it very short, the leading idea is to use suitable
Mobius transformations and Fourier series representations to test
whether the Cauchy data (¢,0) can be continued harmonically up to the
boundary of a given closed disk B C R?. The intersection of the disks
having this property is then dubbed the reconstruction.



Reconstructions from exact data




Comparison of exact and CEM data for h ~ 0.2
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Reconstructions from simulated CEM data
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