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Motivation

* VVascular disease location is associated with
haemodynamic factors (e.g. WSS)
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Motivation

* VVascular disease location is associated with
haemodynamic factors (e.g. WSS)

* VVascular geometry strongly affects these factors
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Atherosclerosis

* Chronic inflammatory disease of the arterial lumen
* Good correlation with low or oscillatory WSS

* Particularly prevalent on the inner wall of curved
arteries and the outer wall of bifurcations
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Helical geometries

*Vascular geometry affects the risk of occlusion of prothesis
(e.g. bypass grafts, stents and arterio-venous shunts) and
surgical vascular reconstructions
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Asymptotic solutions

* Data reduction to a few parameters by
constructing asymptotic solutions

* £.g9. Dean flow: fully developed steady and
laminar flow in a bend of constant curvature
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Asymptotic solutions

* Data reduction to a few parameters by
constructing asymptotic solutions

* £.g9. Dean flow: fully developed steady and
laminar flow in a bend of constant curvature
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Asymptotic solutions

* Data reduction to a few parameters by
constructing asymptotic solutions

* £.g9. Dean flow: fully developed steady and
laminar flow in a bend of constant curvature

* The degree of validity of these solutions in
blood vessels is unknown

* |n the human vasculature we have
sequences of non-planar bends with
changing curvature and torsion
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Our goal
e Reduce the amount of data whilst retaining the clinically

relevant mechanisms

e Quantify the effect of vascular geometry on primary and
secondary flows in curved vessels and their association
with velocity profiles, vortical structures and wall stresses
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Centreline analysis
1. Solve N-S equations in Cartesian coordinates
(incompressible flow, Newtonian fluid and fixed geometry)

2. Transform the Cartesian velocity and pressure fields (and
their derivatives) into an orthogonal (local) coordinate

system following the vessel centreline ‘M

Imperial College Fields-MITACS, 20 June 2011




Centreline analysis
1. Solve N-S equations in Cartesian coordinates
(incompressible flow, Newtonian fluid and fixed geometry)

2. Transform the Cartesian velocity and pressure fields (and
their derivatives) into an orthogonal (local) coordinate

system following the vessel centreline ‘M

x=P—-—0=R—rsin(0+ )N +rcos (0 +¢)B,

7(s): torsion

k(S): curvature
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Centreline analysis
1. Solve N-S equations in Cartesian coordinates
(incompressible flow, Newtonian fluid and fixed geometry)

2. Transform the Cartesian velocity and pressure fields (and
their derivatives) into an orthogonal (local) coordinate

system following the vessel centreline ‘M

3. Express the N-S equations in local o

coordinates,

Du 1
. —— = ——Vp+vV?
XV, Z. D1 p p+rv-u

X: CAx = PGy + VFy
y. CAy = PGy + VFy
Z. CAz = PGZ + VFz
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Centreline analysis
1. Solve N-S equations in Cartesian coordinates
(incompressible flow, Newtonian fluid and fixed geometry)

2. Transform the Cartesian velocity and pressure fields (and
their derivatives) into an orthogonal (local) coordinate

system following the vessel centreline ‘M

3. Express the N-S equations in local

coordinates,
T. CAr=Co + PG+ VFr

N: CAN=CFn + TEN+ PGy + VEN
B: CAs =TFg+ PGg + VF5
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Centreline analysis
1. Solve N-S equations in Cartesian coordinates
(incompressible flow, Newtonian fluid and fixed geometry)

2. Transform the Cartesian velocity and pressure fields (and
their derivatives) into an orthogonal (local) coordinate

system following the vessel centreline ‘M

3. Express the N-S equations in local

coordinates,
T. CAr=Co + PG+ VFr

N: CAN=CFn + TEN+ PGy + VEN
B: CAs =TFg+ PGg + VF5

4. Take cross-sectional
averages of the local

guantities to reduce the
terms onto the centreline X
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Single bend
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Flow development (s—4D)
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Average in-plane velocities and CAs
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Average in-plane velocities and CAs
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Cross-sectional averages in the direction of the normal (N) and binormal (B).
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Average in-plane velocities and CAs
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Vy mainly governedby CAy = CFy + TEFx + PGy + VEy
Vg  mainly governedby CAp = TFp + PGp + VEp
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Average in-plane forces - Single bend
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Close to full flow development

Poiseuille 0
a v (8+2m)D
inflow d ;

e For fully developed flow we have:

VN =CAn =0
PGy = —CFn — VEx

, 4D!E Torsion = 0: CAy = CFy +x_|_PGN+VFN
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Analogy with an underdamped oscillator

90°

Vi and CA  play the role of the velocity and
acceleration of an underdamped oscillator around

the fully-developed state, with

CF p : driving force
PG p : restoring force
VF y :frictional force
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Higher Reynolds numbers
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Vy mainly governedby CAy = CFy +TFy + PGy + VEN

Vg mainly governedby CAp =TFg +PGg + VEg
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Torsional force
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Axial vorticity
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Average in-plane forces and CAs
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Flow development

13.1D
7.1D

—>

outflow

Poiseuille

inflow S3

Re=125
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* For fully developed flow we have:
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Analogy with two coupled underdamped

oscillators 13.1D
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Axial balance of momentum
s=2D
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Coriolis force - Inlet
s=2D

Co = —K—; lwsin (0 + ¢) + wcos (0 + ¢)]
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Co accelerates if P is centripetal

Co decelerates if Vy 1s centrifugal
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Coriolis force - Flow development
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Changing velocity profiles
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Coriolis force in double bends
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Effect of torsion on WSS

Without torsion With torsion
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Azimuthal wall stresses and PG forces
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Axial wall stresses and peak velocities

Single bend
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Conclusions

e Effect of vessel curvature and torsion on blood flow from a
local linear momentum perspective

*Roles assigned to in-plane forces and accelerations based on
the physics of underdamped oscillations

* The centrifugal force generates normal motions

* The torsional force couples normal and binormal motions,
enhancing in-plane mixing and reducing azimuthal VWSS

e The Coriolis force links normal motions to axial accelerations
that shape the velocity profile

e Quantification of the level of flow development and flow
coupling across different bends
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