Numerical Inverse Helmholtz Problems with Interior Data

Kui Ren

Department of Mathematics University of Texas at Austin

Supported by the National Science Foundation

Fields-MITACS Conference on Mathematics of Medical Imaging

June 20, 2011

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- Reconstruction of Both Coefficients
- Concluding Remarks

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- Reconstruction of Both Coefficients
- Concluding Remarks

Thermoacoustic Tomography (TAT): Setup

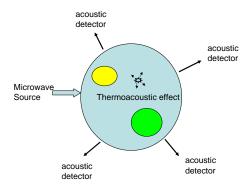


Figure 1: Thermoacoustic Tomography (TAT): To recover conductivity coefficient and refractive index properties of tissues from boundary measurement of acoustic signal. Two well-separated wave propgation processes: microwave radiation and acoustic radiation.

Thermoacoustic Tomography: Mathematical Models

Microwave Radiation (in Scalar Case):

$$\Delta u(\mathbf{x}) + k^2(1 + n(x))u(\mathbf{x}) + ik\sigma(x)u(x) = 0, \quad \text{in } X$$

 $u = g(\mathbf{x}), \quad \text{on } \partial X$

Acoustic Radiation:

$$\frac{\partial^{2} p}{\partial t^{2}} - c^{2}(\mathbf{x}) \Delta p = 0, \qquad \text{in } \mathbb{R}_{+} \times \mathbb{R}^{d}
p(0, \mathbf{x}) = \mathbf{H} \equiv \sigma(\mathbf{x}) |\mathbf{u}|^{2}(\mathbf{x}), \quad \text{in } \mathbb{R}^{d}
\frac{\partial p}{\partial t}(0, \mathbf{x}) = 0, \quad \text{in } \mathbb{R}^{d}$$

- Available Acoustic Data: $p(t, \mathbf{x})$ on $\mathbb{R}_+ \times \partial X$
- Objective: To reconstruct $\sigma(\mathbf{x})$ and $n(\mathbf{x})$ from measured data.

TAT: Acoustic Reconstructions

When c is constant, the Poisson-Kirchhoff formula gives

$$\rho(t,\mathbf{x}) = c \frac{\partial}{\partial t} \Big(t \Big(\int_{|\mathbf{y}|=1} H(\mathbf{x} + t\mathbf{y}) d\mu(\mathbf{y}) \Big) \Big)$$

- Acoustic reconstruction: The sphere mean operator can be inverted stably to recover H(x) with full (and sometimes partial) data: Agranovsky, Ambartsoumian, Ammari, Arridge, Finch, Haltmeier, Kuchment, Kunyansky, Nguyen, Patch, Quinto, Scherzer, Wang, and many more.
- When c is not constant, acoustic inversion is much more complicated: Hristova-Kuchment-Nguyen 08, Hristova 09, Stefanov-Uhlmann 09.
- In this talk, we assume that H is reconstructed alreday.

TAT: Qualitative vs. Quantitative

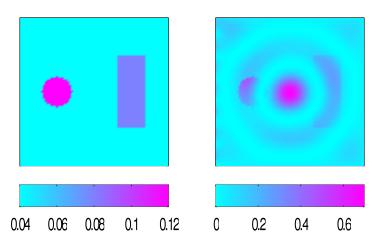


Figure 2: Necessarity of qTAT. Left: True conductivity coefficient $\sigma(\mathbf{x})$; Right: $H(\mathbf{x}) = \sigma(\mathbf{x})|u|^2(\mathbf{x})$.

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- Reconstruction of Both Coefficients
- Concluding Remarks

The Quantitative TAT Problem

Mathematical model is the Helmholtz equation:

$$\Delta u(\mathbf{x}) + k^2(1 + n(x))u + ik\sigma(\mathbf{x})u(\mathbf{x}) = 0, \quad \text{in } X$$

 $u = g(\mathbf{x}), \quad \text{on } \partial X$

• Interior data is the result from acoustic inversion:

$$H(\mathbf{x}) = \sigma(\mathbf{x})|u|^2(\mathbf{x})$$

- Objective: to reconstruct $\sigma(\mathbf{x})$ and $n(\mathbf{x})$ from interior data H.
- In general, more than one data sets are needed to reconstruct two coefficients simultaneously.
- Main assumptions: ∂X is smooth, $\Delta + k^2(1 + n(x))$, $\Delta + ik\sigma(x)$ and $\Delta + k^2(1 + n(x)) + ik\sigma(x)$ with the boundary conditions are invertible.

The Quantitative TAT Problem

Let us separate the amplitude and phase by introducing the notation $u=|u|e^{i\varphi}$. Then the Helmholtz equation becomes

$$\begin{array}{rclcrcl} \Delta |u| + k^2 (1+n) |u| & = & |u| |\nabla \varphi|^2, & \text{in } X \\ \nabla \cdot |u|^2 \nabla \varphi + k \sigma |u|^2 & = & 0, & \text{in } X \\ |u| = |g| & , & \varphi = \varphi_g & \text{on } \partial X \end{array}$$

Lemma

Let H and \tilde{H} be two data sets corresponding to (σ, n) and $(\tilde{\sigma}, \tilde{n})$. Then $H = \tilde{H}$ implies

$$\begin{split} \sqrt{\frac{\sigma\tilde{\sigma}}{H^2}}\nabla\cdot\frac{H}{\sigma}\nabla\sqrt{\frac{\tilde{\sigma}}{\sigma}}+k(n-\tilde{n})&=|\nabla\varphi|^2-|\nabla\tilde{\varphi}|^2,\quad \text{in } X\\ \nabla\cdot H(\frac{\nabla\varphi}{\sigma}-\frac{\nabla\tilde{\varphi}}{\tilde{\sigma}})&=0,\quad \text{in } X \end{split}$$

Unique Recovery of Refraction Index

- Uniqueness in Recovery of n(x). If $\sigma = \tilde{\sigma}$, then the second equation in the Lemma plus identical boundary data $\varphi_g = \varphi_{\tilde{g}}$ imply that $\varphi = \tilde{\varphi}$ in X. Then the first equation in the Lemma implies $n(x) = \tilde{n}(x)$ in X.
- The Reconstruction Strategy. The reconstruction can be done as follows
 - Solve the elliptic equation

$$\nabla \cdot \frac{H}{\sigma} \nabla \varphi + kH = 0, \text{ in } X$$

$$\varphi = \varphi_g \text{ on } \partial X$$

• Reconstructing 1 + n(x) as

$$1 + n(x) = \frac{|u||\nabla \varphi|^2 - \Delta |u|}{k^2 |u|}$$

Unique Recovery of Refraction Index: Simulation

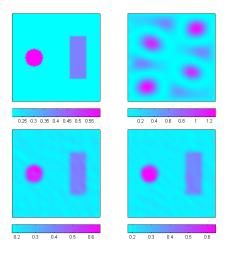


Figure 3: Top left to bottom right: real n, data H(x), reconstruction with minimization, and reconstruction with direct method.

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- 4 Reconstruction of Both Coefficients
- Concluding Remarks

Recovery of Conductivity

• The Recovery of $\sigma(x)$. If n(x) is known, then σ can be uniquely reconstructed if the following nonlinear system admits a unique solution

$$\begin{array}{rclcrcl} \Delta |u| + k^2 (1+n) |u| & = & |u| |\nabla \varphi|^2, & \text{in } X \\ \nabla \cdot |u|^2 \nabla \varphi + k H & = & 0, & \text{in } X \\ |u| = |g| & , & \varphi = \varphi_g & \text{on } \partial X \end{array}$$

- The Reconstruction Strategy. The following fixed point iteration works very well numerically.
 - j = 0, guess σ_0 , construct $|u|_0 = \sqrt{H/\sigma_0}$
 - *j* ≥ 1

$$\begin{array}{lcl} \Delta |u|_j + k^2 (1+n) |u|_j &=& |u|_j |\nabla \varphi_j|^2, & \text{in } X \\ \nabla \cdot |u|_{j-1}^2 \nabla \varphi_j + kH &=& 0, & \text{in } X \\ |u|_j = |g| &, & \varphi_j = \varphi_g & \text{on } \partial X \end{array}$$

• reconstruct σ as $\sigma = H/|u|_{\infty}^2$.

Unique Recovery of Conductivity

The following result on the unique determination of the conductivity has been proven using a different strategy.

Theorem (Bal-R.-Zhou-Uhlmann, IP 11)

Let $\sigma, \tilde{\sigma} \in \mathcal{M} \equiv \{f \in \mathcal{H}^p(X) | \|f\|_{\mathcal{H}^p(X)} \leq M\}$ be two conductivity coefficients. There exists an illumination $g \in \mathcal{H}^{p-\frac{1}{2}}(\partial X)$ such that

$$H = \tilde{H} \implies \sigma = \tilde{\sigma}.$$

Moreover,

$$\|\sigma - \tilde{\sigma}\|_{\mathcal{H}^p(X)} \le C\|H - \tilde{H}\|_{\mathcal{H}^p(X)},$$

with C is independent of σ and $\tilde{\sigma}$ in \mathcal{M} .

Unique Recovery of Conductivity: Simulation

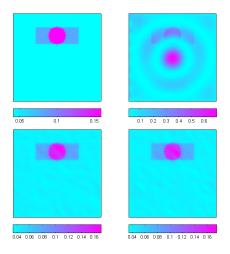


Figure 4: Top left to bottom right: real σ , data H, σ reconstructed with fixed point iteration and the method in Bal-R.-Zhou-Uhlmann, IP 11.

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- Reconstruction of Both Coefficients
- Concluding Remarks

Quantitative TAT Problem

• Let us assume we have N_S illuminations g_s , $1 \le s \le N_S$. The scalar Helmholtz equation:

$$\Delta u_s(\mathbf{x}) + k_s^2 (1 + n(x)) u_s + i k_s \sigma(\mathbf{x}) u_s(\mathbf{x}) = 0, \quad \text{in } X$$

 $u_s = g_s(\mathbf{x}), \quad \text{on } \partial X$

• Interior data is the result from acoustic inversion:

$$H_{s}(\mathbf{x}) = \sigma(\mathbf{x})|u_{s}|^{2}(\mathbf{x}), \qquad 1 \leq s \leq N_{s}$$

- Objective: to reconstruct $\sigma(\mathbf{x})$ and $n(\mathbf{x})$ simultaneously.
- Main assumptions: ∂X is smooth, $\Delta + k_s^2(1 + n(x))$, $\Delta + ik_s\sigma(x)$ and $\Delta + k_s^2(1 + n(x)) + ik_s\sigma(x)$ with the boundary conditions are invertible.

Reconstruction Strategy I: Numerical Optimization

 Least-square formulation. We formulate the inverse problem as the following nonlinear least-square problem. That is, to minimize the following mismatch functional

$$\mathcal{F}(n,\sigma) = \frac{1}{2} \sum_{s=1}^{N_S} \|\sigma u_s u_s^* - H_s\|_{L^2(X)}^2 + \beta \mathcal{R}(n,\sigma)$$

subject to the constraints

$$\Delta u_s(\mathbf{x}) + k_s^2 (1 + n(x)) u_s + i k_s \sigma(\mathbf{x}) u_s(\mathbf{x}) = 0, \quad \text{in } X$$
 $u_s = g_s(\mathbf{x}), \quad \text{on } \partial X$

where N_S is the number of illuminations used, and H_S is the data collected under illumination s.

• The regularization term (with strength β) can vary case by case.

Reconstruction Strategy I: Numerical Optimization

Theorem

Let $z_s = \sigma u_s u_s^* - H_s$ and let w_s be the unique solution of

$$\Delta w_s + k_s^2 (1+n) w_s + i k_s \sigma w_s = \sigma z_s u_s^*, \text{ in } X$$

 $w_s = 0, \text{ on } \partial X$

Then the Fréchet derivatives of $\mathcal F$ with respective to n and σ are given respectively as

$$\langle \frac{\partial \mathcal{F}}{\partial n}, \hat{n} \rangle = -\sum_{s=1}^{N_S} k_s^2 \langle u_s w_s + u_s^* w_s^*, \hat{n} \rangle$$

$$\langle \frac{\partial \mathcal{F}}{\partial \sigma}, \hat{\sigma} \rangle = \sum_{s=1}^{N_{S}} \langle z_{s} u_{s} u_{s}^{*}, \hat{\sigma} \rangle - i k_{s} \langle u_{s} w_{s} - u_{s}^{*} w_{s}^{*}, \hat{\sigma} \rangle.$$

Reconstruction Strategy I: Numerical Optimization

- Quasi-Newton for Minimization. The optimization problem is solved with a quasi-Newton method using the BFGS updating rule for Hessian, so that no real Hessian need to be calculated.
- PDE Solvers. All elliptic PDEs are solved with a first order finite element method.
- Scaling. Due to the difference between the sensitivity of the solutions to the two parameters, scaling are needed in a few places in the optimization scheme and fixed point iterations
- Multifrequency Data. If σ(x) is independent of k in a frequency regime, data with different frequencies can be used in the reconstruction. The reconstruction procedure keeps the same with mixed data.

Reconstruction Strategy II: Fix Point Iteration

Alternatively, we can start with the amplitude-phase formulation

$$\begin{array}{rcl} \Delta |u|_{s} + k_{s}^{2}(1+n)|u|_{s} & = & |u|_{s}|\nabla\varphi_{s}|^{2}, & \text{in } X \\ \nabla \cdot |u|_{s}^{2}\nabla\varphi_{s} + k_{s}H_{s} & = & 0, & \text{in } X \\ |u|_{s} = |g_{s}| & , & \varphi_{s} = \varphi_{g_{s}}, & \text{on } \partial X \end{array}$$

where $1 \le s \le N_S$. We construct the following fixed point iteration:

- Step 0: guess initial value σ_0
- Step *j*:
 - Solve the elliptic equation for φ_s , $1 \le s \le N_S$

$$\nabla \cdot \frac{H_s}{\sigma_j} \nabla \varphi_s + k_s H_s = 0, \quad \text{in } X$$
$$\varphi_s = \varphi_{g_s} \quad \text{on } \partial X$$

• Reconstruct
$$n_j(x) = \frac{1}{N_S} \sum \frac{|u|_s |\nabla \varphi_s|^2 - \Delta |u|_s - k_s^2 |u|_s}{k_s^2 |u|_s}$$
.

Reconstruction Strategy II: Fix Point Iteration

- Step *j* + 1
 - Solve the nonlinear system for $|u|_s$, $1 \le s \le N_s$

$$\begin{array}{rclcrcl} \Delta |u|_s + k_s^2 (1+n_j) |u|_s & = & |u|_s |\nabla \varphi_s|^2, & \text{in } X \\ \nabla \cdot |u|_s^2 \nabla \varphi_s + k_s H_s & = & 0, & \text{in } X \\ |u|_s = |g_s| & , & \varphi_s = \varphi_{g_s} & \text{on } \partial X \end{array}$$

• Reconstruct $\sigma_{j+1} = \frac{1}{N_S} \sum \frac{H_s}{|u|_s^2}$.

Reconstruction Strategy II: Remarks

- Double Iteration. The fixed point iteration is a double iteration since at step j + 1 we need to solve the nonlinear system by another fixed point iteration as mentioned before.
- Initial Guess. It turns out that the iteration only converges when the intial guess is very close to the true solution.
- Illuminations. In practice, we observe that for a fixed number of illumination, we should choose illuminations that generate very different amplitude and phase functions to produce high quality reconstructions.
- The advantage of this approach is that it is extremely easy to implement. Only a few elliptic solver are needed.

Two Coefficients: Simulation I

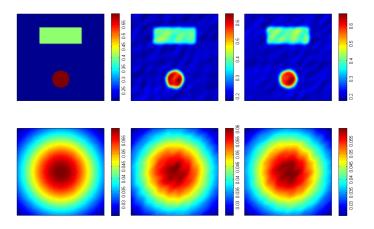


Figure 5: Left to right: real (n, σ) , reconstructed (n, σ) with optimization, reconstructed (n, σ) with fix point iteration. Four line sources are used.

Two Coefficients: Simulation II

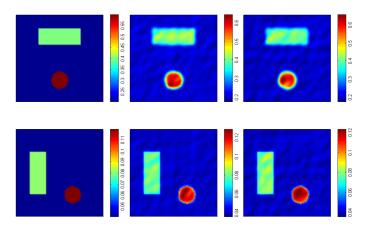


Figure 6: Left to right: real (n, σ) , reconstructed (n, σ) with optimization, reconstructed (n, σ) with fix point iteration. Eight sources are used.

Two Coefficients: Simulation III

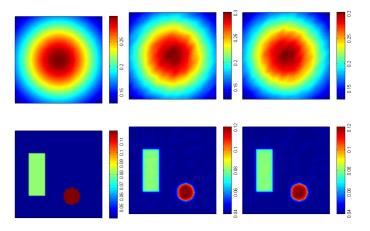


Figure 7: Left to right: real (n, σ) , reconstructed (n, σ) with optimization, reconstructed (n, σ) with fix point iteration. Eight line sources (of two different frequencies, assuming $\sigma(\mathbf{x})$ independent of frequency) are used.

- Motivation by TAT
- Reconstruction of Refractive Index
- Reconstruction of Conductivity
- 4 Reconstruction of Both Coefficients
- Concluding Remarks

Concluding Remarks

- We reported some numerical investigation of the inverse Helmholtz problem with interior data aiming at the reconstruction of the conductivity coefficient and refraction index.
- We show that the reconstruction of either coefficient is unique and stable.
- The optimization and fix point algorithm to reconstruct two coefficients converges only when initial guess is very close to true coefficients, usually when

$$||(n, \sigma)_{guess} - (n, \sigma)_{true}|| / ||(n, \sigma)_{true}|| < 0.1.$$

 Detailed mathematical analysis of the two-coefficient problem (uniqueness and stability) is still missing.