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Outline 

•  Suggested in-depth review papers 
–  See particularly review papers for the mathematical details 
–  Some details in “hidden” slides of electronic copy 

•  General description of “beamformers” 
–  A versatile approach to spatial filtering 

•  The “minimum norm” approach 
–  Transform sensor data in more interpretable “images” of activity 

•  The recommended workflow 

Slide 1 
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VSM CTF Omega (MIND) 

4-D Magnes 
(UMN) 

Neuromag Vectorview 
(MGH) 

SIS (LANL) 

Example of MEG Arrays - MIND Institute Partner Sites: 
Mass General Hospital, U New Mexico, U Minn., LANL 

 A goal is to 
demonstrate the 
removal of the 
effects of site and 
instrument from the 
estimation. 



John C. Mosher, Epilepsy Center, Neurological Institute                                   MITACS-Fields Workshop 2011 

Magnetometer	
  Arrays	
  –	
  (single	
  coil,	
  planar/axial	
  gradiometers)	
  

	
  
	
  

Generally hundreds of sensors 
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Biomagnetism Review Paper - 1981 

•  Williamson and Kaufman 1981 Journal of Magnetism and 
Magnetic Materials 
–  281 references, 73 pages  
–  PDF available online from PUB-MED 
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1982 NATO Proceedings 

•  “Proceedings of a NATO 
Advanced Study Institute on 
Biomagnetism” Sep 1-12, 
1982, Rome conference 

•  Williamson, Romani, Kaufman, 
Modena, Eds. 

•  Excellent introduction by David 
Cohen. 

•  Excellent reference material on 
source modeling, forward 
modeling as related to dipoles. 

•  Amazon.com 
–  ISBN: 0-306-41369-8 
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1993 Review 

•  Reviews of Modern Physics, April 1993 
–  85 pages, hundreds of references of the primary contributions, 

available online as PDF 

•  Minimum norms, least-squares of multiple dipoles, 
MUSIC, Sarvas spherical model, boundary element 
solutions 
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Tutorial 
Overview 

IEEE Signal 
Processing 
Magazine, Nov 2001 
 
Baillet, Mosher, 
Leahy 
 
See also web site at 
University of  
Southern California: 
neuroimage.usc.edu. 
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Software Packages Mentioned in This Talk 

•  See http://neuroimage.usc.edu 

•  MRI Processing 
–  BrainSuite (University of Southern California / University of 

California Los Angeles) 
–  Freesurfer (Massachusetts General Hospital) 

•  MEG Processing 
–  BrainStorm (University of Southern California) 
–  MNE (Massachusetts General Hospital) 
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Additional Reading 

•  “Multiple dipole modeling and localization from spatio-
temporal MEG data” IEEE Trans. BME 1992 

•  “Recursive MUSIC: A Framework for EEG and MEG 
Source Localization,” IEEE Trans BME 1998 

•  “Electromagnetic Brain Mapping” IEEE SP Magazine 
2001 

•  “Equivalence of linear approaches in bioelectromagnetic 
inverse solutions” IEEE Workshop in Statistical Signal 
Processing 2003 

•  See http://neuroimage.usc.edu for others 
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How do we interpret these images? 

•  “Reconstruction,” “Significance,” “Scan,” “Detection” 

•  Particularly: What does the extent of the “blur” mean? 

•  Answers: 
–  Could be evidence of a distributed source in the region 
–  Could be evidence of the location uncertainty of a point source 

Min Norm           Dipole Scan               Min Norm                                 dSPM 



John C. Mosher, Epilepsy Center, Neurological Institute                                   MITACS-Fields Workshop 2011 Slide 11 

The Acquisition Challenge Today 

•  Hundreds of MEG and 
EEG sensors 
simultaneously 
collecting thousands of 
samples per second 

•  Detailed high-resolution 
MRI routinely available 

•  Segmentation and 
surface extraction tools 
automatically generate 
500K tesselated 
surfaces 
–  Reduction to 10K for 

easier computing 

Source Space 
~10,000 cortical sources 

Vectorview 

Omega 275 
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Comparison of Surface Extraction Algorithms 
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Smoothing of Pial Surface:  
Visualization into Depths of Sulcal Folds 

 13  
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The Recommended Workflow 

•  Noise rejection schemes 
–  Spatial filters, beamformers 

•  Imaging estimators 
–  Statistical parametric maps 

•  Adaptive beamformers 
–  Statistical parametric maps 

•  Low order parametric models 
–  Scanning for solutions 

Progressively harder steps! 
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Beamformer Signal Processing Reference 

•  IEEE ASSP Magazine 1988 

•  Algorithmic details and references 
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What is a “beamformer”? 

•  Microwave antenna example 

•  The size of the dish is the 
“spatial aperture” or “spatial 
extent” of the receiver 
–  Bigger is better 

•  The primary reception is along 
the direction of the main 
“beam” 

•  Note the presence of smaller 
“sidelobes” of the receiver  

van Veen and Buckley 88 

Main  
“beam” 

Sidelobes 
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Beamformer from Arrays of Sensors 

•  Sonar towed array example 
•  Each of the hydrophones is 

isotropic and identical to the 
others 

•  The output of each hydrophone 
is weighted and delayed 
relative to the others, then all 
are summed together into a 
single output 

•  The result is high sensitivity to 
a “direction of arrival” (e.g. 20 
degrees here) to the array, and 
diminished sensitivity to the 
other directions 

•  Again, note “sidelobes” 
van Veen and Buckley 88 

Main beam Sidelobes 
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The Linear MEG Beamformer 

•  An array of sensors  
–  151 or 275 1st-order MEG gradiometers (VSM Medtech Omega) 
–  204 1st-order planar + 102 magnetometers (Elekta Neuromag) 

•  The measurement vector “d(t)” 
–  Arrange the measurements at a single time instance 

•  A set of weights “w” 
–  To be derived, as many weights as there are sensors 

•  The beamformer output: x(t) = wt * d(t) 
–  A linear combination of the data into a scalar output 

•  Goal: Point the beam at a tiny spot on the cortex 
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The MEG Sensor as a Beamformer 

•  10,000 cortical sources, each individually generates an external magnetic 
field 

•  The MEG sensor sees the linear combination of ALL of these sources 
–  Red is positive weight, blue is negative weight 

Sensor Position 
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The Simple Math of the Linear Beamformer 

•  We have 10,000 cortical dipoles 
–  Make a vector “j(t)” 10,000 x 1, as a function of time 

•  We know the forward model for each dipole to the sensor 
point 
–  Make a vector “l” 10,000 x 1, aka the “lead field model” 

•  The sensor response, by electromagnetic superposition 
and quasistatics, is simply 

d(t) = lt * j(t) 

•  In other words, we weight each of the dipoles by the 
correct weight, then sum 
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Good News, Bad News 

•  Good: If activity in the cortex 
happens anywhere in the 
colored region, we see it in the 
sensor 
–  “Synoptic”, i.e. global view 

•  Bad: If activity in the cortex 
happens anywhere in the 
colored region, we see it in the 
sensor 
–  Ambiguous 

•  Goal: We would like to know 
WHERE the activity occurred 
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The Dense Sensor Array 

•  Modern EEG and MEG sensor 
arrays now comprise 100’s of 
locations 

•  Each sensor has its own 
unique “lead field” that relates 
how each of the 10,000 dipoles 
generates a field at that sensor 

•  1st-order gradiometers (shown 
here) have a second coil further 
from the head to reduce 
environmental noise 
–  It’s effect is automatically built 

into the lead field model Omega 275 
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The Data “Butterfly” Plot 
•  Overlay all 275 sensor outputs as a function of time 
•  The “spatio-temporal” data matrix, here 275 x 1,441 samples 

–  (MEG response to left median nerve stimulation, ~100 averages) 
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The Lead Field Matrix 

•  For each of the 275 sensors, calculate the lead field for the 10,000 
dipoles 

–  The “forward problem”, a separate topic. Use spheres, boundary 
elements, finite elements, etc, include gradiometer effects. 

•  Put all of these lead field vectors into a matrix 
–  Rows are the sampled lead field, columns are the sampled dipolar field 

•  The 275 sensor outputs d(t) can now be related to the 10,000 dipoles 
j(t) by a 275 x 10,000 matrix, the “lead field matrix” L 
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The Matrix Model 

•  Spatio-temporal Data Matrix “D” (275 x 1,441) 

•  The Lead Field Matrix “L” (275 x 10,000) 
–  the forward model relating source to sensor 

•  The Source Matrix “J” (10,000 x 1,441) 

•  The Noise Matrix “V” (275 x 1,441) 
–  “other stuff” 

•  By electromagnetic superposition and noise assumption, 
the data are linear in the sources and additive in the noise 

VLJD += )()()( ttt vLjd +=
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The Ideal (Impossible) Estimator 

•  Given the 275 channels of data, reconstruct exactly the 
10,000 dipole signals 

•  Generally impossible, not enough sensors 
–  Indeed, not enough information, so more sensors won’t help 

•  Primary physical limitations:  
Distance to the quasistatic source,  
–  limited by skull thickness, scalp, CSF, Dewar, helmet shape, etc. 

))(())(()(ˆ tftft Ljdj ==
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The Further Complication – “Noise” 

•  Environmental Noise – cars, elevators, power lines 

•  Sensor Noise – thermal, electronics, vibrations 

•  Biologic Noise – heartbeat, eyeblink, respiration 

•  “Brain” Noise – brain activity “not of interest” 
–  “One researcher’s signal is another researcher’s noise.” 

•  For simplicity, we generally assume noise is additive: 

)()()( ttt vLjd +=
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Common Statistical Assumptions 

•  We generally assume some convenient 2nd order statistics about 
these vectors 

–  Also, for convenience, we assume zero-mean 

•  The “noise covariance” is the expected cross-correlation of the noise 
vector 

–  Since noise is “random,” we can only rely on its statistics 

•  We assume some sort of source covariance among the dipoles 
–  Key Question: where does this assumption come from? 

•  Finally, we assume that the noise is independent of the dipoles, so 
that the data covariance has a simple relationship 

})()({ tttE vvCv =})()({ tttE jjCj =

vjd CLLCddC +== ttttE })()({
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The Simple Min Norm Estimator 

•  Because our data model in linear in the lead-field, to estimate j(t), 
simply “pseudo-invert” L 

•  The 275 channel measurements are simultaneously converted into 
10,000 separate little beamformers, each representing one dipole 

   

  (BUT, this is a generally terrible estimator, since noise is mishandled) 

)()()( ttt vLjd +=

)()()()(ˆ ††† tttt vLLjLdLj +==

1tt† )( != LLLL
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The Min Norm as a Static Beamformer 

•  Look at the “ith” estimated dipole, find the weight vector for just it. 

•  The weights tell us how the original 10,000 dipoles were linearly 
combined to make the output seen at the ith dipole in the estimate 

)()()()(ˆ 1t tttj t
i

t
ii jwLjLLa == !
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What’s Wrong with That? 

•  The min norm beamformer certainly looks good, relatively focal 
around the true location 

•  BUT, weights are also applied to the NOISE: 

•  The Short Answer on how to fix: Include the noise and source 
statistics (see “Equivalence Paper” by Mosher, ref’d in hidden 
notes) 

becomes 

+= )()(ˆ ttj t
ii jw )()( 1t tt

i vLLa −

)()()(ˆ 1 tt tt dLLLj !=

)()()(ˆ 1 tt tt dCLLCLCj vjj
!+=
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Statistically Optimum  Beamformer 

•  Our goal is to minimize the means squared error in our 
estimate, given just the second order statistics, subject to 
the constraint we want a linear solution: 

–  Minimize for 

•  The Linear Minimum Mean-Square (LMMS) solution is  

•  If variables are multivariate Gaussian: LMMS = MAP 

Slide 32 

)()()(ˆ 1 tt tt dCLLCLCj vjj
!+=

))}(ˆ)(())(ˆ)({( ttttE T jjjj !!)(ˆ tj
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AKA: Weighted Regularized Minimum Norm
  

•  The noise stabilization helps suppress noise boosting. 

•  Example: Left median nerve stimulation, N20 response 

“min norm” “Regularized” 
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The Min Norm “Movie” - 1 

•  View a portion of the estimation as a sequence of images 
–  But what about those annoying color changes? 



John C. Mosher, Epilepsy Center, Neurological Institute                                   MITACS-Fields Workshop 2011 Slide 35 

The Min Norm “Movie” - 2 

•  Use only the absolute values, ignore sign 
–  But what about those small values? 
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Looking for Peaks in the Min Norm 

•  Simply slide the colorbar level to truncate the small values 
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The Min Norm “Movie” - 3 

•  Truncate smaller values in the presentation 
–  But the region is fractured across several sulci 
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White Noise Gain Power 
•  Run the prestim or other “noise-only” regions of data through the 

exact same estimator 
–  Estimate the standard deviation of each point in the image 
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The Min Norm “Movie” - 3 
•  Highlight the “Significant” portions 

–  Use the prestim noise to rebalance all peaks (“Z-Score” ) by their “white noise 
gain power”,  

–  “dSPM”, “sLORETA” use  somewhat different rebalancers 
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Specific White-noise Gain Power Calculation 

•  Recall that the ith pixel in the image is simply a linear 
weight (beamformer) of the data, 

•  Consider if this ith source saw only noise, not data 

•  Weight (score) by same function with noise instead 

Slide 40 
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Independent Sources Assumption 

•  Common assumption in community is that Cj is diagonal 
–  Easier storage, simpler prior that sources are independent 

(cf. Box in 2003 paper) 

•  Average z2 is therefore 

•  NOTE: Diagonal covariance term gone! 

Slide 41 
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Statistical Parametric Maps 

•  Determine what sources in the image are “significant.” 

•  First step towards identifying “regions of interest” 

•  Z-score, dSPM and sLORETA can produce very similar results with 
real data 

Freesurfer / MNE Processing	



- Auditory MEG data	


Source locations 
constrained to 
the cortex.	


- No orientation 
constraint	



“Reconstruction Image” “Significance Map” 
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Different Linear Imaging Estimator Viewpoints 

•  Also known as:  
–  Minimum norm least squares with weighting and regularization 
–  Generalized least-squares with priors 
–  Maximum a Posteriori (MAP) or Bayesian estimation with 

Gaussian priors 
–  Linear minimum mean square 
–  LORETA, LAURA, other variations 

•  cf. Mosher, Baillet, Leahy, "Equivalence of Linear Approaches in 
Bioelectromagnetic Inverse Solutions", 2003 IEEE Workshop on 
Statistical Signal Processing, St. Louis, Missouri, Sep 28 - Oct 1, 
2003. 
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Other Imaging Estimators 

•  Can impose more difficult constraints/priors yielding 
generally nonlinear estimators 

•  Iterative source covariance adjustments 
–  MFT (one), FOCUSS (multi) 

•  Exponential prior instead of Gaussian (“L1” estimation) 
–  MCE, VESTAL 

•  Other Non-Gaussian priors 
–  Phillips 1997, Baillet 1997, Schmidt 1999 
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Strong Prior Example Viewpoint 

•  Primary issue among all of these imaging estimators:  
The strong prior required to estimate ~10,000 parameters 
from 200 measurements 

•  From a least-squares perspective, we have ~200 
measurements, but 10,000 unknowns. 
–  Problem is unsolvable for unique solution 

•  Solution: Add 10,000 virtual measurements! 
–  Problem now solvable from a least-squares point of view 
–  10,200 measurements and 10,000 unknowns 

•  But only 2% of our data came from the laboratory!  
The rest came from our theory. 
–  Careful what you wish for: Imaging vs. Imagining. 
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So Why “Image” if the Prior is so Strong! 

•  EEG Example:  
Ten-Twenty array is a standardized adaptable array 
–  10%, 20% of distance of subjects aricular and inion/nasion lines 
–  Common ground 
–  “Cz” “Fp” etc universally understood among all researchers 

•  Today’s arrays are denser, rigid (MEG), more differential 
pairs (EEG), gradiometric, with adaptive noise schemes 

•  Imaging allows us to transform sensor data into a more 
interpretable format in order to “peak under the data and 
gain insight into its processes” 
–  Tukey 1976 Exploratory Data Analysis 

•  Reversible Linear Transformations preserve information 
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The Recommended Workflow 

•  Noise rejection schemes 
–  Spatial filters, beamformers 

•  Imaging estimators 
–  Statistical parametric maps 

•  Adaptive beamformers 
–  Statistical parametric maps 

•  Low order parametric models 
–  Scanning for solutions 

Progressively harder steps! 
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