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Overview

• Introduction of the clinical problem

• Overview of the proposed clinical solution

• Outline of the computational problem

• Description of the computational solution

• Demonstration of the program



The Clinical Problem

L1 vertebra with 

compression fracture



The Proposed Clinical Solution

Instrument (SpineJackTM) 

and surgical procedure

* From Vexim SAS web site

1) Insertion

2) Expansion

3) Cement



The Clinical Result

Sagittal Before Sagittal After



The Clinical Result

Axial After



The Computational Problem

• Measure vertebral endplate height restoration 

given pre- and post-surgery CT scans

• Must work across a range of image qualities, 

vertebral deformations, and protocols

• Computational procedure must be automated to 

the greatest extent possible

• Procedure must not take more than two minutes



The Computational Challenges

Extremely

noisy images

High intensity 

confounding

materials

Extremely large 

deformations



The Computational Challenges

Ex vivo protocol: completely different 
surrounding intensity context



The Computational Problem

Is this an image registration problem?

Seems like an image registration problem, but ...



The Computational Problem

1) Global rigid registration won’t work because:

(i) The spine is curved differently across scans

(ii) The vertebrae don’t have the same shape

2) Global deformable registration won’t work 

because:

(i) It will change the very shapes we are trying to 

measure

(ii) We could read the changes from the deformation 

field, but we won’t know which vectors to examine



The Computational Solution

Overall processing sequence:

1) Deformably register a segmented model vertebra to the 

pre- and post-surgery vertebrae in the CT scans

2) Use the correspondence to isolate the stable posterior 

regions based on segmentation of the model, and rigidly 

register these based on intensity

3) Use the correspondence to identify the vertebral 

endplates based on segmentation of the model, and 
measure the distance between them



The Computational Solution

Height
Restoration

Height

Restoration

• Segment the posterior region of target vertebra in before and after 

scans using the correspondence with the segmented model vertebra

• Rigidly register posterior regions using a standard intensity-based approach

• Use the rigid transformation on the whole image so that the vertebral 

bodies are carried “along for the ride”



The Computational Solution

1) 2)

3) 4)

Use correspondence between features extracted from model 
and features extracted from data to deformably register model to data



The Expectation-Maximization Algorithm

• Formalized by Dempster, Laird and Rubin in 1977 to 
allow maximum likelihood estimation of parameters from 

data sets with missing variables

Height Age Weight

183 cm

141 cm

?

165 cm

34 yrs

?

26 yrs

53 yrs

95 kg

67 kg

71 kg

?



The Expectation-Maximization Algorithm

• Repeat until (guaranteed) convergence:

1) E-Step: Compute expectation of log-likelihood, using probability 
distribution over missing variables given current MLE estimates
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The EM Algorithm: Feature Correspondence

?

?

?

?

?

?

Joint deformable registration and feature correspondence 

with EM. Answer two questions at the same time:

1)Which model features should be mapped to which data 
features?



The EM Algorithm: Feature Correspondence

Joint deformable registration and feature correspondence 

with EM. Answer two questions at the same time:

2)How should we deform the grid to make each model 
feature map to the correct data feature?



The EM Algorithm: Feature Correspondence

Joint deformable registration and feature correspondence with EM: 

•Let the deformation field vectors be the maximum likelihood 
parameters to be estimated

•Let the correspondence variables mapping each model feature to one 
of many possible data features be the “missing data”
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The EM Algorithm: Feature Correspondence

Joint deformable registration and feature correspondence with EM: 

• Let the deformation field vectors be the maximum likelihood 
parameters to be estimated

• Let the correspondence variables mapping each model feature to 
one of many possible data features be the “missing data”

M-Step
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• After discretization, can solve as a sparse linear system in one step



The EM Algorithm: Limitations

• EM is a gradient ascent algorithm, so while guaranteed to 

converge, it will only converge to the maximum closest to 
its starting point in the parameter space

• Can accommodate a certain amount of clutter by keeping 

the regularization stiff until convergence to the vicinity of 
the target, then allowing greater deformation to occur

• With greater amounts of clutter, the algorithm will likely 
converge to a spurious maximum



Belief Propagation

• First described by Judea Pearl in 1988 for finding marginals and
modes of probability distributions over tree-structured graphs
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• Converges to exact solution in finite number of steps for tree-
structured graphs

• Convergence for “loopy” graphs not well characterized – links to 
Bethe free energy of statistical physics – but often works well

• Has revolutionized some fields – turbo-codes



EM + Belief Propagation

• Instead of using probabilities pij from E-step directly in the 

M-step, use them as priors in a Markov Random Field

• Node variables are “missing data” from EM – mappings 

from each model feature i to its possible data features j

• Edges enforce coherence between pairs of mappings 
from two model features to their respective data features

Prior pij from E-step



EM + Belief Propagation

A

B

A1

A2

B1

B2

• Match coherence is computed as the sum of squares of the 

differences between three pairs of normal and separation vector 

angles. The measure is translation, rotation, and scale invariant

• Scale-dependence can be computed (and weighted) separately 
based on the difference in the lengths of the separation vectors



EM + BP: Iterations

Iteration 0 Iteration 1 Iteration 2



EM + BP: Iterations

Iteration 3 Iteration 5 Iteration 7



EM + Belief Propagation: Experience

• Belief propagation on the min-sum ring is used to find 
the approximate mode of the probability distribution

• The BP max-marginals are fed back to the M-step 
of EM to update the deformable registration field

• Schedule: best results are obtained when one iteration 
of EM is interleaved with one iteration of BP

• Convergence is rapid – typically 10-20 iterations

• Much more robust to surrounding clutter than EM alone

• Major limitation is computational complexity: O(MCD2) where

M = Number of features extracted from model
C = Number of neighbours for each model feature in MRF
D = Possible data feature matches for each model feature



EM + Belief Propagation: Demonstration

• Research conducted over the past year, software 

developed for Vexim SAS over the past six months

• Requires one mouse click at the approximate centre 
of the target vertebral body (to limit the volume of data 

that needs to be processed)

• Processing is completed in under two minutes 

for a typical 400 x 512 x 512 voxel CT scan



Conclusions

• Clinical problem: vertebral body height

restoration following compression fracture

• Proposed clinical solution: SpineJackTM by Vexim SAS

• Computational problem: measure the vertebral height 

restoration achieved in studies varying widely in image 
quality, degree of deformation, and protocol

• Computational solution: a hybrid application of the EM 
and BP algorithms to deformably register a segmented 

model vertebra to the CT data


