Set Mean Estimation and Confidence Supersets using Oriented Distance Functions

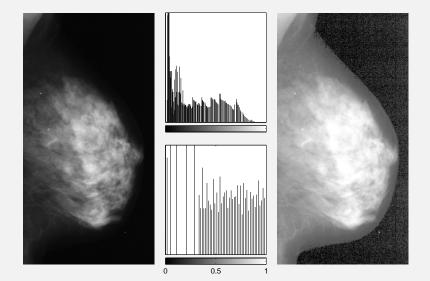
Hanna Jankowski

York University

joint work with Larissa Stanberry

Seattle Children's Research Institute

MOTIVATION



OUTLINE

- 1 distance functions and oriented distance functions (ODFs)
- 2 random closed sets (RCSs) and their expectation
 - selection expectation
 - Baddeley & Molchanov definition
 - ODF definition
- g properties of new definition
- 4 confidence regions/supersets
- 6 examples
 - sand grains
 - boundary reconstruction in a mammogram image

ORIENTED DISTANCE FUNCTION (ODF)

Fix $D \subset \mathbb{R}^d$, and let d(x,y) = |x-y| denote Euclidean distance.

The distance function of $A \subset D$ such that $A \neq \emptyset$ is

$$d_A(x) = \inf_{y \in A} d(x, y)$$
 for $x \in D$.

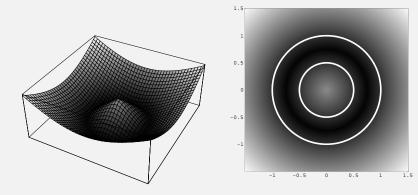
Note that $d_A(x) = d_C(x)$ iff $\overline{A} = \overline{C}$, and $A = \{x : d_A(x) = 0\}$.

The oriented distance function of $A \subset D$ such that $\partial A \neq \emptyset$ is

$$b_A(x)=d_A(x)-d_{A^c}(x).$$

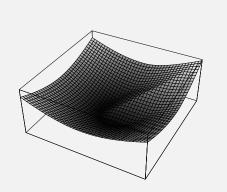
Here, $A = \{x : b_A(x) \le 0\}$ and $\partial A = \{x : b_A(x) = 0\}$.

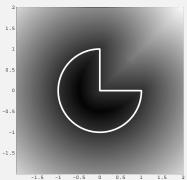
ODF OF A DONUT



$$\mathsf{donut} = \{x \in \mathbb{R}^2 : 0.5 \le |x| \le 1\}$$

ODF OF PACMAN





RANDOM CLOSED SET (RCS)

Let \mathcal{F} be the family of closed subsets of \mathbb{R}^d and \mathcal{K} be the family of all compact subsets of \mathbb{R}^d . Consider a probability space given by the triple (Ω, \mathcal{A}, P) .

Definition

A random closed set is the mapping $A:\Omega\mapsto\mathcal{F}$, such that for every compact set K

$$\{\omega: A(\omega)\cap K\neq\emptyset\}\in\mathcal{A}.$$

- Foundations laid by Choquet (1950s), Matheron (1975)
- Modern review by Molchanov (2005)
- As F is nonlinear, there is no natural way to define the expectation of a set.

SET EXPECTATION

Examples: Let
$$\mathbf{A} = \{x : |x| \leq \Theta\}$$
 and $\mathbf{B} = \{\xi\}$.

- 1 selection (Aumann) expectation
 - most studied
 - depends on structure of (Ω, \mathcal{A}, P)
 - gives convex answer
 - $E_A[A] = \{x : |x| \le E[\Theta]\}$ and $E_A[B] = \{E[\xi]\}$
- 2 Vorobe'ev expectation
 - most intuitive in terms of image analysis
 - $\mathsf{E}_V[\mathbf{A}] = \{x : |x| \le \sqrt{\mathsf{E}[\Theta^2]}\}$ and $\mathsf{E}_V[\mathbf{B}] = \emptyset$
- 3 Baddeley & Molchanov definition
 - depends on significant user input (choice of two metrics)
 - complicated to calculate
 - $E_{BM}[\mathbf{A}] = \{x : |x| \le E[\Theta]\}$ and $E_{BM}[\mathbf{B}] = \{E[\xi]\}$

OUR DEFINITION

Definition

Suppose that A is a random closed set such that $\partial A \neq \emptyset$ a.s. and $E|b_A(x_0)| < \infty$ for some $x_0 \in D$, then

$$E[A] = \{x : E[b_A(x)] \le 0\}$$

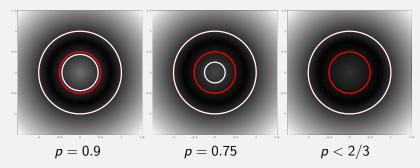
 $\Gamma[A] = \{x : E[b_A(x)] = 0\}$

- simple and intuitive, no user input
- algorithms for distance functions and level sets easily available (eg. MATLAB)
- includes definition for boundary
- $E[\mathbf{A}] = \{x : |x| \le E[\Theta]\}$ and $E[\mathbf{B}] = \emptyset$

EXAMPLE: MISSING TIMBIT

The RCS A is equal to

a circle: $\{x: |x| \le 1\}$ with probability 1-p a donut: $\{x: 0.5 \le |x| \le 1\}$ with probability p



 $\Gamma[A]$ is shown in white.

EXAMPLE: PACMAN

- (white) mean pacman with uniform radius
- (red) pacman with mean radius

- (white) mean pacman with uniform NE shift
- (red) pacman with mean NE shift

- (white) mean pacman with uniform E shift
- (red) pacman with mean E shift

Properties

- some basics:
 - E[A] is closed
 - $\partial E[A] \subset \Gamma[A]$
 - if $\mathbf{A} \subset \mathbf{B}$ a.s. then $\mathsf{E}[\mathbf{A}] \subset \mathsf{E}[\mathbf{B}]$
 - if $\mathbf{A} = A$ a.s. then $\mathsf{E}[\mathbf{A}] = A$ and $\mathsf{\Gamma}[\mathbf{A}] = \partial A$
 - if $\partial \mathbf{A} = B$ a.s. then $B \subset \Gamma[\mathbf{A}]$
- preservation of shape:
 - (translation) E[a + A] = a + E[A]
 - (dilation) $E[\alpha A] = \alpha E[A]$ for $\alpha \neq 0$
 - (equivariant w.r.t. orthogonal transformations) $E[g\mathbf{A}] = g E[\mathbf{A}]$, for $g(x) = \Lambda x + a$ and $\Lambda \in O(d)$
 - If **A** is convex a.s. then E[**A**] is convex.
- preservation of smoothness:
 - If $E[b_{\mathbf{A}}(x)]$ is smooth then $\Gamma[\mathbf{A}]$ is smooth.

ESTIMATION

Suppose that we observe the random sets A_1,\ldots,A_n under IID sampling. Define $\bar{b}_n(x)=\sum_{i=1}^n b_{A_i}(x)/n$, and

$$\overline{A}_n = \{x : \overline{b}_n(x) \le 0\}$$
 and $\overline{\Gamma}_n = \{x : \overline{b}_n(x) = 0\}$

Theorem

Suppose that $E[\mathbf{A}]$ satisfies $\partial E[\mathbf{A}^c] = \Gamma[\mathbf{A}]$ then

$$\overline{A}_n \to \mathsf{E}[\mathbf{A}]$$
 a.s..

If in addition we have that $\partial E[A] = \Gamma[A]$ then

$$\overline{\Gamma}_n \to \Gamma[\mathbf{A}]$$
 a.s..

CONFIDENCE REGIONS/SUPERSETS

- Let $\mathbb{Z}_n(x) = \sqrt{n} \left(\bar{b}_n(x) \mathbb{E}[b_{\mathbf{A}}(x)] \right)$ and assume that $\mathbb{E}[b_{\mathbf{A}}(x_0)^2] < \infty$ for some $x_0 \in D$ (compact).
- Then $\mathbb{Z}_n \Rightarrow \mathbb{Z}$, where \mathbb{Z} is a smooth Gaussian field.
- Let q_1 and q_2 denote numbers such that $P(\sup_{x \in D} \mathbb{Z}(x) \le q_1) = 0.95$ and $P(\sup_{x \in D} |\mathbb{Z}(x)| \le q_2) = 0.95$.

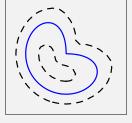
Definition

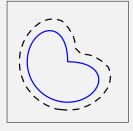
$$\left\{x: \overline{b}_m(x) \leq \frac{1}{\sqrt{m}} \ q_1 \right\} \quad \text{and} \quad \left\{x: |\overline{b}_m(x)| \leq \frac{1}{\sqrt{m}} \ q_2 \right\}$$

are 95% confidence regions for $E[\mathbf{A}]$ and $\Gamma[\mathbf{A}]$.

CONFIDENCE REGIONS: PACMAN

Suppose the random model is pacman of random radius Θ where $\Theta \sim$ Uniform[0, 1]. We observe 25 IID sets from this model.





LEFT: Estimated set (red) and the expected set (blue).

MID: Expected set boundary with 95% bootstrapped confidence interval.

RIGHT: Expected set with 95% bootstrapped confidence interval.

CONFIDENCE REGIONS: PROPERTIES

- Easy, visual way of describing variability around the mean
- CRs are conservative with a probability of at least 95% of capturing the expected set
- Quantiles are often intractable, but can be easily estimated via bootstrapping
- Immune to consistency conditions
- Allows for local changes in variability
- EQUIVARIANCE PROPERTIES: let C denote the confidence region for E[A]. Then
 - **1** The confidence region for $E[\alpha A]$ is αC , for $\alpha \neq 0$.
 - **2** The confidence region for E[gA] is gC, where g is a rigid motion.

EMPIRICAL COVERAGE PROBABILITIES

	n = 25		n = 100	
100(1 $- \alpha$)%	90%	95%	90%	95%
(A)	88.4/89.7	94.8/95.6	90.4/91.2	95.7/94.1
(B)	90.2/89.9	94.6/95.1	90.2/90.4	95.1/95.0
(C1)	90.1/91.2	94.4/95.1	91.6/91.1	95.3/95.3
(C2)	91.4/93.5	96.5/97.4	92.1/93.3	96.9/97.1
(D1)	92.0/91.0	96.3/95.7	91.8/91.7	96.2/95.7
(D2)	90.7/88.6	94.5/94.7	91.0/88.9	94.9/95.0

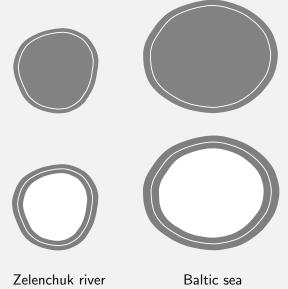
- (A) $\mathbf{A} = [0,1]$ or $\{0,1\}$ with equal probability
- (B) pacman with random radius
- (C1)/(C2) union of two discs
- (D1)/(D2) random ellipse

EXAMPLE: SAND GRAINS

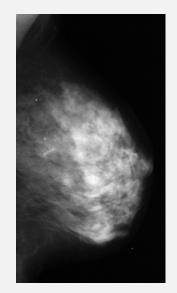
sand grains from the Baltic sea

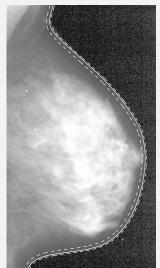
sand grains from the Zelenchuk river

EXAMPLE: SAND GRAINS



EXAMPLE: MAMMOGRAM





REFERENCES

- Stanberry, L. and Besag, J. (2009) Boundary reconstruction in binary images using splines. *Preprint*.
- Jankowski, H. and Stanberry, L. (2010) Expectations of random sets and their boundaries using oriented distance functions. *Journal of Mathematical Imaging and Vision* 36 291–303.
- Jankowski, H. and Stanberry, L. (2011) Condence Regions for Means of Random Sets using Oriented Distance Functions Scandinavian Journal of Statistics To appear.