

Compressive MUSIC for Diffuse Optical Tomography using Joint Sparsity

Jong Chul Ye, Ph.D

In collaboration with Okyun Lee, Jong Min Kim, Yoram Bresler

Bio-Imaging & Signal Processing Lab., Dept. Bio & Brain Engineering Korea Advanced Institute of Science & Technology (KAIST)

Contents

- Motivation
- Compressed sensing with joint sparsity
- Compressive MUSIC (CS-MUSIC)
- Applications to DOT
- Summary

Compressed sensing

- Incoherent projection
- Underdetermined system
- Sparse unknown vector

Figure from Dr. Dror Baron

Compressed Sensing Dynamic MRI

Jung et al, PMB 2007, MRM 2009, 2010, 2011, IJIT, 2011

fMRI

k-t FOCUSS for dynamic CS-MRI

(Jung et al, PMB, 20007, Jung et MRM, 2009)

Radial k-t FOCUSS

(Jung et MRM, 2010)

k-t FOCUSS for Cardiac T2 Mapping (Feng et al, 2011)

6 x accel. Conventional method

6 x accel. k-t FOCUSS

k-t FOCUSS for Cardiac T2 Mapping (Feng et al, 2011)

CS + Parallel Imaging

Recon.

CS + Parallel Imaging

How to solve aliasing?

Compressed Sensing for Joint Sparse Signals

Multiple measurement vector (MMV) problem

 $||X||_0$ denote the number of nonzero rows

r: number of snapshots

m: number of sensor elements

MMV for Medical Imaging

• Parallel MRI + CS

• EEG/MEG

Wave inverse scattering

Applications of DOT

Main applications: Molecular imaging, Neuroimaging

A. Custo et al. Neurolmage. 2010

Hitachi NIRS System

V. Ntziachristos et al. Breast Cancer Res. 2001

R. Weissleder et al. Radiology. 2001

A. Yodh Group

Diffusion Equation

The movement of photon can be described by

$$\frac{1}{c} \frac{\partial u(\mathbf{x},t)}{\partial t} = \nabla \cdot D(\mathbf{x}) \nabla u(\mathbf{x},t) - \mu_a(\mathbf{x}) u(\mathbf{x},t) + f(\mathbf{x},t)$$

Joint Sparse Model in DOT

Joint Sparse Recovery Model for DOT

(Ye et al, IEEE TMI, 2011)

minimize $||X||_0$

subject to Y = AX

r: number of snapshots

m: number of sensor elements

 $\parallel X \parallel_0$ denotes the # of nonzero rows

Exact & Non-iterative Reconstruction

(Lee, Ye, 2008, Ye, Bresler, Lee, 2008)

- 1^{st} step : estimate the active index set Λ

$$\Lambda = \{j \in \{1, 2, \cdots, n\} : \Delta \mu_a(\mathbf{x}_j) \neq 0\}$$

- 2nd step : reconstruct the $\Delta \mu_a(\mathbf{x})$

$$\tilde{X} = A_{\Lambda}^{\dagger} Y \quad \Longrightarrow \quad \Delta \tilde{\mu}_{a}(\mathbf{x}_{(j)}) = \frac{\sum_{L=1}^{r} \left(\tilde{u}(\mathbf{x}_{(j)}; L) \right)^{*} \tilde{X}(j, L)}{\sum_{L=1}^{r} |\tilde{u}(\mathbf{x}_{(j)}; L)|^{2}}$$

J.C. Ye et al, Proceedings of the IEEE ISBI 2008.

Foldy-Lax equation

$$u(\mathbf{x}_{(j)}; l) = u_0(\mathbf{x}_{(j)}; l) - \sum_{i \neq j} g_0(\mathbf{x}_{(j)}, \mathbf{x}_{(i)}) u(\mathbf{x}_{(i)}; l) \Delta \mu_a(\mathbf{x}_{(i)})$$

$$i, j = 1, \dots, k, \quad l = 1, 2, \dots, r$$

Io Uniqueness Result of MMV

Definition

Given a matrix A, let spark(A) denote the smallest number of linearly dependent columns of A.

Theorem (Chen, Huo (2006))

If a matrix X satisfies AX = B and

$$||X||_0 < \frac{spark(A) + rank(B) - 1}{2},$$

then X is the unique solution to the problem [P0].

With increasing number of snapshots, more non-zero el ements can be recovered

Conventional MMV Algorithms

- Compressive sensing approaches
 - p-thresholding
 - S-OMP
 - Convex relaxation with mixed norm
 - ReMBo (Reduce Mmv and Boost)
 - Model based CS using block sparsity
 - M-FOCUSS
 - ·M-SBL
 - etc
- Array signal processing approaches
 - MUSIC
 - ESPRIT
 - · IQML
 - Maximum likelihod
 - etc

Probabilistic guarantee

Deterministc guarantee

Counter Example

Why new MMV algorithm is necessary?

- S-OMP, Convex relaxation using mixed norm
 - Worst case analysis
 - no improvement over SMV

$$\max_{j \in \text{supp} X} \|A_S^{\dagger} \mathbf{a}_j\|_1 < 1$$

$$||X||_0 < \frac{1}{2} \left(\frac{1}{\mu} + 1 \right)$$

- Average case analysis
 - improvement with increasing number of snapshot
 - Simulation results show saturation effects

Why new MMV algorithm is necessary?

ReMBo (Reduce MMV and Boost)

Theorem (Mishali, Eldar (2008))

Let \overline{X} be the unique k-sparse solution matrix of AX = B with k < spark(A)/2. In addition, let $\mathbf{a} \in \mathbb{R}^r$ be a random vector with an absolutely continuous distribution and define $\mathbf{b} = B\mathbf{a}$ and $\overline{\mathbf{x}} = \overline{X}\mathbf{a}$. Then for a random SMV system $A\mathbf{x} = \mathbf{b}$, we have

- For every **a**, the vector $\overline{\mathbf{x}}$ is the unique k-sparse solution.
- $\mathcal{P}(supp(\overline{\mathbf{x}}) = supp(\overline{X})) = 1.$

The performance of ReMBo is dependent on randomly chosen input vectors so that it takes long time to reproduce the exact solution and its L0-performance is same as the SMV problem.

Why new MMV algorithm is necessary?

- MUSIC Algorithm
 - If rank(B)=k, the following MUSIC criterion holds

$$Q^*\mathbf{a}_j = 0$$
$$j \in \operatorname{supp} X$$

- Dichotomy:
 - •Achieves I0 bound when rank(B) = k

$$||X||_0 < \operatorname{spark}(A) - 1$$

- Fails when rank(B) < k
 - -> coherent source problem

Research Goal

The Best of Both Worlds

- •At rank(B)=k, it should be red uced to MUSIC
- •At rank(B) →1, it should be re duced to CS
- •At all rank(B), it should be su perior to all existing methods

Generalized MUSIC Criterion (Kim, Lee, Ye, 2010, Lee, Bresler, 2010)

Theorem

Assume that $A \in \mathbb{R}^{m \times n}$ satisfies $0 < \delta_{2k-r+1}(A) < 1$. If $I_{k-r} \subset \operatorname{supp} X$ and $A_{I_{k-r}}$ is a matrix which consists of columns whose indexes are in I_{k-r} . Then for any $j \in \{1, \dots, N\} \setminus I_{k-r}$,

$$rank(Q^*[A_{I_{k-r}}, a_j]) = k - r$$

if and only if

$$j \in \operatorname{supp} X$$

where supp $X = \{i : X^i \neq 0\}.$

For the canonical form MMV, $A \in \mathbb{R}^{m \times n}$ satisfies RIP with $0 \le \delta_{2k-r+1}^L < 1$ if and only if

$$k < \frac{\operatorname{spark}(A) + \operatorname{rank}(B) - 1}{2}.$$

Kim et al, "Compressive MUSIC: Missing link between compressive sensing and array signal processing", Arxiv preprint arXiv:1004.4398, 2010

Lee et al, 'Subspace augumented MUSIC for sparse recovery",

Arxiv preprint arXiv:1004.3071, 2010

Geometry of Generalized MUSIC Criterion

Corollary

Assume that $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{n \times r}$, $B \in \mathbb{R}^{m \times r}$, $I_{k-r} \subset \text{supp} X$. Then,

$$\mathbf{a}_{j}^{*}\left[P_{R(Q)}-P_{R(P_{R(Q)}A_{I_{k-r}})}\right]\mathbf{a}_{j}=0$$

if and only if $j \in \text{supp} X$.

Geometry of Generalized MUSIC Criterion

Theorem

Let $U \in \mathbb{R}^{m \times r}$ and $Q \in \mathbb{R}^{m \times (m-r)}$ consist of orthonormal columns such that R(U) = R(B) and $R(Q)^{\perp} = R(B)$. Then the following properties hold:

- (a) $UU^* + P_{R(QQ^*A_{I_{k-r}})}$ is equal to the orthogonal projection onto $R(B) + R(QQ^*A_{I_{k-r}})$.
- (b) $QQ^* P_{R(QQ^*A_{I_{k-r}})}$ is equal to the orthogonal projection onto $R(Q) \cap R(QQ^*A_{I_{k-r}})^{\perp}$.
- (c) $QQ^* P_{R(QQ^*A_{l_{k-r}})}$ is equal to the orthogonal complement of $R([U A_{l_{k-r}}])$ or $R([B A_{l_{k-r}}])$.

Compressive MUSIC Algorithm

- 1st Step: Compressive sensing step
 - Find I_{k-r} with existing MMV-algorithm such as 2-thresholding and SOMP and let $S = I_{k-r}$.

Probabilistic performance guarantee

- 2nd Step: generalized MUSIC step
 - For $j \in \{1, \dots, N\} \setminus I_{k-r}$, calculate $\mathbf{g}_j^* P_{G_{I_{k-r}}}^{\perp} \mathbf{g}_j = 0$:
 - If $\mathbf{g}_j^* P_{G_{l_{\nu-r}}}^{\perp} \mathbf{g}_j = 0$, then add j into S.

Deterministic performance guarantee

Compressive MUSIC (r=1)

Array Signal Processing

(deterministic world)

Compressive Sensin

g(probabilistic world)

Compressive MUSIC

Compressive MUSIC (r=k/2)

Array Signal Processing
(deterministic world)

Compressive Sensin
g(probabilistic world)

Compressive MUSIC

Compressive MUSIC (r=k)

Array Signal Processing

(deterministic world)

Compressive MUSIC

Compressive Sensin

g(probabilistic world)

Number of Sensor Elements

Partial Support Recovery using SS-OMP

Theorem

- (a) r is a fixed finite number.
- (b) Let $SNR_{min}(Y)$ satisfy

$$SNR_{min}(Y) > 1 + \frac{4k}{r}(\kappa(B) + 1).$$

If we have

$$m > k(1+\delta) \left[1 - \frac{4k}{r} \frac{(\kappa(B)+1)}{\mathsf{SNR}_{\mathsf{min}}(Y)-1}\right]^{-1} \frac{2\log(n-k)}{r},$$

then we can find k - r correct indices of supp X by applying subspace S-OMP.

Number of Sensor Elements

Partial Support recovery using SS-OMP

Theorem

- (a) r is proportionally increasing with respect to k so that $\alpha := \lim_{n \to \infty} r(n)/k(n) > 0$ exist.
- (b) Let $SNR_{min}(Y)$ satisfy

$$\mathsf{SNR}_{\mathsf{min}}(Y) > 1 + \frac{4}{\alpha}(\kappa(B) + 1).$$

Then if we have

$$m > k(1+\delta)^2 \frac{1}{\left[1 - \frac{4}{\alpha} \frac{\kappa(B)+1}{\mathsf{SNR}_{\mathsf{min}}(Y)-1}\right]^2} \left[2 - F(\alpha)\right]^2,$$

for some $\delta > 0$ where $F(\alpha)$ is an increasing function such that F(1) = 1 and $\lim_{\alpha \to 0^+} F(\alpha) = 0$. Then we can find k - r correct indices of $\operatorname{supp} X$ by applying subspace S-OMP.

MMV Coding Region

Phase Transition

Joint Sparse Model in DOT

Exact & Non-iterative Reconstruction

(Lee, Ye, 2008, Ye, Bresler, Lee, 2008)

- 1st step: estimate the active index set ∧ using

compressed MUSIC

$$\Lambda = \{j \in \{1, 2, \cdots, n\} : \Delta \mu_a(\mathbf{x}_j) \neq 0\}$$

- 2nd step : reconstruct the $\Delta \mu_a(\mathbf{x})$

$$\tilde{X} = A_{\Lambda}^{\dagger} Y \quad \Longrightarrow \quad \Delta \tilde{\mu}_{a}(\mathbf{x}_{(j)}) = \frac{\sum_{L=1}^{r} \left(\tilde{u}(\mathbf{x}_{(j)}; L) \right)^{*} \tilde{X}(j, L)}{\sum_{L=1}^{r} |\tilde{u}(\mathbf{x}_{(j)}; L)|^{2}}$$

J.C. Ye et al, Proceedings of the IEEE ISBI 2008.

Foldy-Lax equation

$$u(\mathbf{x}_{(j)}; l) = u_0(\mathbf{x}_{(j)}; l) - \sum_{i \neq j} g_0(\mathbf{x}_{(j)}, \mathbf{x}_{(i)}) u(\mathbf{x}_{(i)}; l) \Delta \mu_a(\mathbf{x}_{(i)})$$
$$i, j = 1, \dots, k, \quad l = 1, 2, \dots, m$$

Revisit the Counter Example

Simulation for Molecular Imaging

$$p(x) = \frac{a(x)^* a(x)}{a(x)^* (P_{R(Q)} - P_{R(P_{R(Q)} A_{I_{k-r}})}) a(x)}, \quad x \in \Omega$$

* Generalized MUSIC spectrum

Source and Detector geometry

Original Phantom

	proposed method	Tikhonov regularization	l1-penalty regularization
MSE [10 ⁻⁷]	5.8696	7.6837	7.5802

Hausdorff distance [mm]	proposed method	Tikhonov regularization	l1-penalty regularization
Liver	1.5	2.5	2.1794
Lung (left)	1.118	∞	∞
Kidney (left)	1	2.4495	2.5495
Kidney (right)	1.4142	∞	1.8708

MUSIC

Compressive MUSIC

Tikhonov Regularization L1-penalty Regularization

Conclusion

- Diffuse optical tomography can be formulated joint sparse recovery problem
 - Non-iterative and exact reconstruction algorithm exists!
- Compressive MUSIC outperforms the all existing methods in joint sparse recovery problems
 - Apply compressive MUSIC for DOT
- Due the the simplicity and effectiveness, the proposed method would open a new direction in DOT research

Acknowledgements

Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No.20 10-0000855).

Thank you