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Small Molecules

• biological products

• possible medical applications

• want to know structure

• look at C-C bonds, double-quantum 
structure
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Figure 1: The structure of sucrose, showing the six-membered glucose ring
and five-membered fructose ring with numbered carbons.

results for all other pairs of blocks look highly similar to the results shown
here.

4. Conclusion

We have a shown a method of solving for carbon bonds from INADE-
QUATE spectra by using image regularization and optimization techniques.
Despite the limited amount of testing so far, the early results of this method
of solving for carbon bonds from INADEQUATE spectra are promising. We
have shown that we can reduce the experiment time required to solve from
the spectrum of sucrose from over 48 hours using traditional methods to
around 12 using our method. We plan to expand our testing to a wide va-
riety of molecules as soon as possible and we expect similar speed-ups in all
cases.
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• Single Quantum = Bloch Equations
• Complex Form
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Double Quantum
• two nuclei, arrange by coherence level
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Measure 2Quantum

• create 2Q spin

• let it evolve (delay 1)

• put it back into 1Q

• measure (readout 2)

for the individual pathways potentially leads to
better artifact suppression.

All earlier phase cycles for the INADEQUATE
experiment can be applied to the new INADEQUATE
CR experiment, provided that the phase cycle applied
to the mixing pulse in the earlier experiment is applied
to the entire mixing sequence of the new experiment.

INSERTION OF ! PULSES

In most NMR experiments it does not matter what
the phases of the ! pulses are as long as they are x,
y, "x, or "y. Possible sign inversions are either
irrelevant or can be taken into account by an ap-
propriate setting of the receiver reference phase. In
contrast, composite rotation elements like INADE-
QUATE CR will only effect the desired coherence
transfers if the ! pulses and their phases are set
properly. Fortunately, this is easy to do if a few

obvious rules are followed. They can be written in
their simplest forms as pull-out:

#ε ! $!%ε$! " # %"ε ! $! " # %"ε$!%ε [21]

insert unity:

#ε ! $!%&ε#ε$!%'ε [22]

and transform:

#ε ! $!%ε&!/ 2#"ε$!%ε'!/ 2 [23]

A special case of the rules is # ( 0, where they are
all identical. This situation sometimes occurs in het-
eronuclear experiments with a pulse on only one of
the nuclei in the basic form of the pulse sequence (i.e.,
the version without ! pulses). Once the ! pulses have
been introduced according to Eqs. [21]–[23], they are
moved to the centers of the relevant delays to ensure
refocusing of the chemical shifts. In heteronuclear

Figure 6 (a) A full 2-D INADEQUATE CR pulse sequence in a nongradient version and (b) the
gradient version. Both versions require echo–antiecho Fourier transformation. The delay ) is (2J)"1

while )* is slightly shorter to compensate for transverse relaxation. The phases +i
0 represent the basic

phases that can be found in Table 2 for the mixing sequences. The phases ,i
0 are only relevant for

composite pulse implementations of the pulse sequences (see text).
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Isolated Signal

sequence to fail. Instead, global compensation (23–
25) in which these phase shifts compensate each other
should be applied. Levitt (25) outlined a strategy for
this, and that strategy is applied to the INADEQUATE
CR pulse sequence here.

The basic building block is an off-resonance com-
pensated composite pulse (25)

!"#$
nominal: !%#$&%!2%#$!%#$&%!3%

2 "
$
!%

2"
$&"

[24]

where the nominal flip angle " is what it should be in the
absence of off-resonance effects and $ is the phase.

In the global compensation strategy each individ-
ual pulse is replaced by its corresponding composite
pulse derived from Eq. [24]. There are four levels of
phases for the individual composite pulses. First, there
is a basic setting 'i

0 (with i used for numbering the

pulses from left to right in the pulse sequence) as, for
example, given by option (I) in Table 2. Second, the
global compensation scheme calls for additional
phases (i

0 equal to minus the accumulated nominal
rotation angles for all preceding pulses in the se-
quence (25). Third, phases )j serve to select the
desired coherence transfer pathways, which is select
2QC and suppress the responses from uncoupled 13C
nuclei. The subscript j indicates priority in the phase
cycle and does not refer to numbering of pulses.
Fourth, different phase settings can be chosen at the
level of 'i

0. That includes repeating the entire phase
cycling for option (II) in Table 2 and the options
indicated in Fig. 5. In all cases, the receiver reference
phase must be adjusted according to )rec * &()1 +
2)2 + 4)3), reflecting changes in a coherence order
of 1 or &3, ,2, and ,4 for )1, )2, and )3, respectively

Figure 8 Natural abundance 2-D 13C INADEQUATE CR spectrum (left doublet line) of (&)
menthol dissolved in DMSO-d6 (180 mg in 0.6 mL) recorded with the pulse sequence in Fig. 6(b)
on a Varian Unity Inova 500-MHz spectrometer. The parameters are the same as in Fig. 7 except
t1
max * 16.90 ms with 64 scans. For 1H decoupling a proton % pulse was applied in the middle of

the t1 period. A data matrix of 512 - 16,384 points covering 15,091.5 - 7545.0 Hz was zero filled
to 1024 - 16,384 prior to Fourier transformation using a cosine window function in both
dimensions. Positive F1 and F2 projections are printed next to the 2-D spectrum.
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INTRODUCTION

In the history of NMR, pulse sequences have been
developed by many different approaches. The clarity
of what a pulse sequence does and the ease of its
derivation depend on the approach. Spin manipula-
tions in terms of density matrices are cumbersome and
do not provide much physical insight. Product oper-
ators (1–4) are better in this respect because they have
exact physical meanings and can be manipulated eas-
ily according to a few transformation formulas. They
are useful for illustration of simple transformations or
when a pulse sequence is given and just needs to be
analyzed. However, it is rarely obvious how to design
overall spin manipulations by product operators if
they require a series of individual transformations.

Much better transparency and effective pulse se-
quence design is achieved by thinking in terms of

what effective Hamiltonian or propagator will pro-
duce the desired overall manipulation of the spin
system. The creative part of the work is quite simple
because it consists of a representation of the desired
spin manipulation in an energy level diagram. When
this representation is clear, the realization by an actual
pulse sequence merely amounts to a systematic appli-
cation of a few rules.

There are several examples in the literature of this
approach for pulse sequence design (4–13), so the
purpose of this article is to describe only one example,
INADEQUATE CR (7, 14–17), in great detail.
INADEQUATE CR nearly doubles the sensitivity for
detection of 13C–13C double-quantum coherence
(2QC) compared to the original experiment (18–20).
Off-resonance compensation of the entire pulse se-
quence is also described.

EFFECTIVE HAMILTONIAN FOR
EXCITATION OF 2QC

The first part of the INADEQUATE pulse sequence
converts longitudinal magnetization of the two 13C
spins into 2QC. To ease the understanding of that
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sequence to fail. Instead, global compensation (23–
25) in which these phase shifts compensate each other
should be applied. Levitt (25) outlined a strategy for
this, and that strategy is applied to the INADEQUATE
CR pulse sequence here.
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sequence to fail. Instead, global compensation (23–
25) in which these phase shifts compensate each other
should be applied. Levitt (25) outlined a strategy for
this, and that strategy is applied to the INADEQUATE
CR pulse sequence here.
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Box the Signal
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(a) Unmodified FT of two averaged data sets
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(b) Results of running our method on (a)

Figure 3: We can see here that running our method on two averaged data
sets gives us better information than the average of all eight using traditional
methods, constituting a decrease in experiment time of a factor of more than
four.
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carbons). Each of these boxes is made up of a series of entries, each referred

to as sk. This structure minimizes the number of variables we need to solve

to create a new image of the spectrum without a loss of data. A small scale

example of this structure is shown in Eq. (1). In order to simplify several later

equations, we use the notation Sij to refer to a sub-array of S corresponding

to the box centred at the location (ωi,ωi + ωj), where we could see a peak

indicating a bond of i to j.





0 s1 s2 s3 0 0 0 s4 s5 s6
0 0 0 0 0 0 0 0 0 0

s7 s8 s9 0 0 s10 s11 s12 0 0

0 0 0 0 0 0 0 0 0 0



 (1)

In the example in Eq. (1), the variables s1, s2, s3 correspond to one box (if

this represents a bond between carbons 1 and 2 we refer to it by S12). In a

real spectrum we will use wider boxes with many more variables per box.

2.2. Model

Our optimization problem minimizes the sum of the terms given from

(2)-(7) and is constrained by (8) and (9). The solution of this minimization

problem gives us both desired results; a low-noise image of the spectrum and

a list of carbon bonds present in the molecule.

min �m− S�2 (2)

+ λ1||δxS||2 (3)

+ λ2

�

ij

(1− pij)
2||Sij + Sji||2 (4)

+ λ3

�

ij

(||Sij||2 − ||Sji||2)2 (5)

+ µ1

�

i

�
2−

�

j �=i

pij

�4

(6)

+ µ2

�

ij

pij (7)

s.t. pij ≥ 0 (8)

pij ≤ 1 (9)
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Term (2) attempts to minimize the difference between the two-dimensional
Fourier transform of the measured spectrum (m) and the optimized image
of the spectrum (S). This gives us a final image whose peaks are located
and shaped in the same way as those in the original spectrum as their size
changes. This term also tends to minimize the difference in energy between
the two arrays, meaning that we redistribute the energy of the spectrum
rather than reducing or increasing it as we modify the values in the boxes of
S.

For term (3), we define

||δxS||2 =
�

i
s.t. si and si+1 are horizontally

adjacent in the same box

(si − si+1)
2,

as a short form for the L2 difference norm in the x (F2) dimension, taking
into account the sparsity of S. This will tend to minimize the differences
between adjacent points. Minimizing these differences promotes smoothness
of the lines in this direction without trying to fit the peak to a particular line
shape, which would require the incorporation of other variables. We do not
regularize in the F1 dimension as we do not generally expect smoothness in
this direction.

Term (4) penalizes signal in the boxes of S if they are considered unlikely
to correspond to a bond and penalizes the values in p if they correspond to
low-signal areas of S. These values will be increased in the opposite scenario.

Term (5) penalizes the signal in two paired boxes of S if the two boxes
have a large difference in signal level.

Term (6) is a quartic penalty function designed to keep the total number
of bonds for a single carbon between one and four with two bonds being the
most likely. The term achieves this by taking each carbon i and summing
over the bond probability between i and every other carbon, j to get the
total value of the bonds to i. This sum is then subtracted from 2 to shift the
center of the quartic to +2 and the result of this is put to the fourth power
to generate our function.

Term (7) penalizes the sum of the probabilities in p, or the number of
likely carbon bonds found. This function simply adds together all the bond
probability values and minimizes this value. This is necessary because we do
not have an a priori estimate for the peak heights, so we are only penalizing
peaks which we do not believe correspond to bonds and large differences in

5



Too Hard

• Non-quadratic + bi-quadratic terms

• takes to long to solve

• solve alternately for S and p (Gauss-Seidel)



Solve for S

paired peak heights. We would therefore expect a minimum in the objective
function when many bonds are predicted, even ones with very low intensity
peaks. This penalty prevents that non-descriptive minimum from occurring.
In practice, investigators will have a good estimate of the total number of
bonds in an unknown, or partially known, molecule and this information
would be incorporated into this penalty.

2.3. Implementation

The problem is dominated by bi-quadratic terms, being quadratic in both
S and p separately. This fact suggests that the problem can be split into
two parts and solved using an alternating Gauss-Seidel approach to solve
alternatively for S and for p.

In the first, unconstrained, problem (10) we solve for S. The second part
(11) is a constrained problem that estimates the likelihoods of all possible
bonds, thereby solving for p. The result of this split was a large increase
in the speed of the solution. In tests using the sucrose spectra at a size of
128 × 4096, the solution using the single (combined) problem took between
10 and 12 hours, while the split problem took between 2 and 10 minutes to
reach comparable solutions.

min
S

||m− S||2 + λ1||δxS||2 + λ2

�

ij

(1− pij)
2||Sij + Sji||2

+ λ3

�

ij

(||Sij||2 − ||Sji||2)2
(10)

The first (unconstrained) problem results in the redistribution of signal from
the original spectrum which causes an increase of peak area in the possible
bond locations and a decrease of peak area across the rest of the spectrum.
This means that we will achieve a clearer image of the spectrum.

min
pij

�

ij

(1− pij)
2||Sij + Sji||2 + µ1

�

i

�
2−

�

j �=i

pij

�4

+ µ2

�

ij

pij

s.t. pij ≥ 0

pij ≤ 1

(11)

The second (constrained) problem estimates the bond probabilities.

6



Solve for p
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(b) Results of running our method on (a)

Figure 3: We can see here that running our method on two averaged data
sets gives us better information than the average of all eight using traditional
methods, constituting a decrease in experiment time of a factor of more than
four.
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Figure 2: Averaged Fourier transform of all eight collected data sets. Here we

can see most of the structure, but several bonds remain difficult to detect,

most notably: F2 ↔ F1, F3 ↔ F4 and G5 ↔ G6. Red boxes indicate

locations at which we should see peaks related to these bonds, but cannot.
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Protein NMR
• Know DNA Sequences

• Defines Strings of Amino Acids

• Missing Info:   

• Protein Structure

• only works if folded

• Protein Function

• interaction = wiggling
20 http://en.wikipedia.org/wiki/Protien
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Figure 2. Two-dimensional HMQC spectra of amikacin (a) with
the standard purging sequence followed by a relaxation delay,
(b) with WURST-2 cross-polarization, and (c) with
cross-polarization and the equivalent of Ernst-angle excitation
(see text). Note the suppression of noisy F1 ridges in (b) and
(c). Measurement duration: 40 s. The typical traces (at a
frequency indicated by the arrows) show signal enhancement
factors of (b) 2.1 and (c) 3.4.

CONCLUSIONS

The benefits of the ASAP modification in heteronuclear
NMR correlation spectroscopy are threefold. First, cross-
polarization causes a net transfer of longitudinal magnetiza-
tion from the donor protons to the acceptor protons during
the interval normally devoted to spin-lattice relaxation;
this interval can thus be shortened significantly. Secondly,

WURST mixing retains more residual Z-magnetization than
the customary purging sequence and therefore improves
enhancement factors relative to the control spectra. Thirdly,
WURST mixing proves to be more effective in suppressing
the noisy F1 ridges that often mar two-dimensional spec-
tra recorded with short relaxation delays. All three factors
contribute to the usefulness of this simple modification of
standard pulse sequences. In practice, the overall timesaving
achieved by ASAP is as much as an order of magnitude in
the two examples studied. It is expected that this technique
will be particularly suited to NMR of small molecules where
cross-relaxation rates tend to be slow in comparison with
Hartmann–Hahn transfer rates. Higher-dimensional exper-
iments will clearly benefit from the same innovation. The
ASAP method can complement other fast multidimensional
techniques.

Supplementary material
Supplementary electronic material for this paper is available
in Wiley InterScience at: http://www.interscience.wiley.
com/jpages/0749-1581/suppmat/
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The speed of multidimensional NMR spectroscopy can be significantly increased by drastically shortening
the customary relaxation delay between scans. The consequent loss of longitudinal magnetization can be
retrieved if ‘new’ polarization is transferred from nearby spins. For correlation spectroscopy involving
heteronuclei (X = 13C or 15N), protons not directly bound to X can repeatedly transfer polarization to the
directly bound protons through Hartmann–Hahn mixing. An order of magnitude increase in speed has
been observed for the 600 MHz two-dimensional HMQC spectra of amikacin and strychnine using this
technique, and it also reduces the noisy F1 ridges that degrade many heteronuclear correlation spectra
recorded with short recovery times. Copyright  2007 John Wiley & Sons, Ltd.

Supplementary electronic material for this paper is available in Wiley InterScience at http://www.interscience.wiley.com/
jpages/0749-1581/suppmat/
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INTRODUCTION

Of the recent schemes for speeding up multidimensional
NMR spectroscopy, perhaps the simplest of all is to shorten
or even eliminate the customary relaxation delay,1 – 5 the
time allowed for recovery of longitudinal magnetization
between repetitions of the sequence. However, this approach
is only really effective for relatively fast-relaxing nuclei,
and can lead to serious radio-frequency heating problems
if the relaxation delay is very short. We demonstrate
here an alternative scheme, which speeds the recovery of
longitudinal proton magnetization by sharing polarization
with nearby protons. We call this method acceleration by
sharing adjacent polarization (ASAP).

POLARIZATION SHARING

In many experiments, notably those involving a heteronu-
clear species X (such as 13C or 15N) the protons can be divided
into two distinct groups (hereafter called ‘donors’ and ‘accep-
tors’) that behave differently with respect to spin-lattice
relaxation. To fix ideas, consider the case of a heteronuclear
multiple-quantum correlation (HMQC) experiment where X
is the 13C nucleus. The acceptor protons are those directly
bound to 13C with large spin–spin couplings; they are the
spins that eventually give rise to the final spectrum. By con-
trast, the donor protons have negligible couplings to 13C

ŁCorrespondence to: Ray Freeman, Jesus College, Cambridge CB5
8BL, United Kingdom. E-mail: rf110@hermes.cam.ac.uk

and are therefore essentially unaffected by this polarization
transfer sequence, which simply returns them to the C Z axis.

In many practical cases with natural isotopic abundance,
there are many more donors than acceptors. They provide
a replenishable ‘reservoir’ that may be repeatedly tapped
to cross-polarize the acceptor proton. A dynamic balance
is established between loss of donor polarization through
transfer, and its recovery through spin-lattice relaxation
during the acquisition interval. In this manner, replacement
of the usual relaxation delay with a short cross-polarization
interval offers a significant reduction in cycle time and an
improvement in overall sensitivity.

The mechanism for this cross-polarization is the homonu-
clear Hartmann–Hahn (HOHAHA) effect.6,7 The equivalent
effect is well known in solid-state NMR where the donor
protons constitute a tightly coupled reservoir, and polariza-
tion is transferred through dipole–dipole interactions with a
low-abundance heteronucleus. The situation is quite differ-
ent in liquid samples where the mixing is mediated by the
scalar coupling, and the interchange of polarization is cyclic,
with a period set by the appropriate proton–proton coupling
constant. The consequent enhancement of the detected signal
contains oscillatory components, in general, a superposition
of several sinusoids. However, there is a net transfer of
polarization in the desired direction whatever mixing inter-
val is used, although some choices will be more effective
than others. Experimentally, we have found that a mixing
interval of the order of 40 ms sets up a satisfactory dynamic
balance between the gains and losses of polarization of the
donor protons, and is short enough to avoid appreciable

Copyright  2007 John Wiley & Sons, Ltd.

Kupčes, Freeman
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come from a complete rectangular grid discretization. In general, inverting the
linear signal generation transformation produces estimates for model variables
with different variances, corresponding to condition numbers greater than one.
In some cases, the transformation is not invertible at all, and some model vari-
ables cannot be estimated.

Anand et al. (2007) introduced a method of optimizing a set of steady-
state MRI experiments with respect to expected noise. The same eigenvalue
maximization approach using a semi-definite constraint applies to efficient k-
space sampling, but the other (non-convex) constraints are quite different.
The sampling problems in this paper are, in general, much larger than the
problem considered in the previous paper, with no realistically-sized problem
being solvable with a straight-forward model. All of the sampling problems
we propose to solve carry a lot of additional structure. In this paper, the
structure of the multi-dimensional NMR problem is used to decompose the
natural problem into a series of sub-problems which are each optimizable by a
trust-region method using a semi-definite/linear sub-problem solved by CSDP
(Borchers 1999).

Organization. In section 2, the general model is presented in complex and
real forms. It is translated into a problem with semidefinite constraints, lin-
earized to form a trust region subproblem, and implemented using CSDP, in
section 3. The next section, 4, details the application to multi-dimensional
NMR, including a further decomposition into hyperplane subproblems. Sec-
tion 5 follows with numerical results showing that realistic problem sizes can
be solved by this method, comparing different strategies, and showing that the
quality of solution increases with dimension.

2 Nonlinear Problem

Let {xj} ⊂ r be a set of discrete points of interest for a model function
f : r → (the real-valued case can be treated as a special case, or be solved
by similar methods). The values of f are not directly measurable, but the
values of

f̃(ki) =
m�

j=1

f(xj)e
√
−1�ki,xj�,

its Fourier Transform, are measurable. Let n be the number of such measure-
ments, and m the number of model variables.

Notes: This assumes that the support is a discrete set of points. This may be
strictly true, the support may be well-approximated by a discrete set of points,
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or the contribution outside a discrete set may be removable by filtering the
data. In cases such as projection imaging, the directly measured data is not
the the Fourier Transform, but is equivalent to knowing the Fourier Transform
on a restricted set.

Adding noise, we can write this as the affine transformation




f̃(k1)

...
f̃(kn)



 = S




f(x1)

...
f(xm)



 +




�1
...
�n





where S is the complex n×m matrix

Si,j = e
√
−1�ki,xj�.

Without noise, the Moore-Penrose pseudo-inverse reconstructs the model f




f(x1)

...
f(xm)



 = (S∗S)−1S∗




f̃(k1)

...
f̃(kn)



 (1)

exactly. But noise in the measurements is also transformed. The worst-case
expected error (including correlated error involving multiple model variables)
corresponds to the singular vector of (S∗S)−1S∗ with the minimum singular
value. Maximizing sampling efficiency therefore corresponds to maximizing the
minimum eigenvalue of S∗S:

(S∗S)i,j =
n�

l=1

e
√
−1�kl,xj−xi�

Note that all diagonal values are n, which is an upper bound on the minimum
eigenvalue. If the minimum eigenvalue is equal to n, then S∗S must be diag-
onal. Very small problems could be solved in this form using a derivative-free
optimizer. The minimum eigenvalue is a continuous function with discontinu-
ities in its derivative at matrices with minimal eigenvalues with multiplicity
greater than one, so smooth methods are not applicable. Non-smooth methods
are generally slower, and were not tried.
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exactly. But noise in the measurements is also transformed. The worst-case
expected error (including correlated error involving multiple model variables)
corresponds to the singular vector of (S∗S)−1S∗ with the minimum singular
value. Maximizing sampling efficiency therefore corresponds to maximizing the
minimum eigenvalue of S∗S:
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Note that all diagonal values are n, which is an upper bound on the minimum
eigenvalue. If the minimum eigenvalue is equal to n, then S∗S must be diag-
onal. Very small problems could be solved in this form using a derivative-free
optimizer. The minimum eigenvalue is a continuous function with discontinu-
ities in its derivative at matrices with minimal eigenvalues with multiplicity
greater than one, so smooth methods are not applicable. Non-smooth methods
are generally slower, and were not tried.
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The Real Problem. The Hermitian m×m matrix S∗S can be represented as

a real symmetric 2m× 2m matrix A with elements:

A2i−1,2j−1 =

n�

l=1

cos�kl, xj − xi�

A2i,2j =

n�

l=1

cos�kl, xj − xi�

A2i,2j−1 =

n�

l=1

sin�kl, xj − xi�

A2i−1,2j = −
n�

l=1

sin�kl, xj − xi�

(2)

where i = 1...m and j = 1...m.

The real matrix A has the same eigenvalues as S∗S with each multiplicity

doubled. So maximizing the minimum eigenvalue of A is equivalent to maxi-

mizing the minimum eigenvalue of S∗S.

2.1 Nonlinear/Semidefinite Problem

Maximizing the minimum eigenvalue of A can be formulated as a semidefinite

programming problem: given parameters xi ∈ m
,

min
{ki}

− λ (3)

subject to A− λI � 0 (4)

A satisfies (2) (5)

In different applications, the components of ki ∈ n
must satisfy different

constraints, given by the physical limits of the measurement hardware, basic

physics, or practical limits on experiment time. If the constraints are simple

bounds, which is the case for multi-dimensional NMR, the bounds can be

added trivially, and will not be carried through the problem formulation.

3 Semidefinite/Linear Trust Region Subproblem

Trust Region methods (Conn et al. 2000) are commonly used for non-linear

problems. Define a semidefinite/linear trust region subproblem by linearizing

July 30, 2007 11:27 Engineering Optimization AnandSharmaOptK

k-Space Sampling Patterns 5

The Real Problem. The Hermitian m×m matrix S∗S can be represented as

a real symmetric 2m× 2m matrix A with elements:

A2i−1,2j−1 =

n�

l=1

cos�kl, xj − xi�

A2i,2j =

n�

l=1

cos�kl, xj − xi�

A2i,2j−1 =

n�

l=1

sin�kl, xj − xi�

A2i−1,2j = −
n�

l=1

sin�kl, xj − xi�

(2)

where i = 1...m and j = 1...m.

The real matrix A has the same eigenvalues as S∗S with each multiplicity

doubled. So maximizing the minimum eigenvalue of A is equivalent to maxi-

mizing the minimum eigenvalue of S∗S.

2.1 Nonlinear/Semidefinite Problem

Maximizing the minimum eigenvalue of A can be formulated as a semidefinite

programming problem: given parameters xi ∈ m
,

min
{ki}

− λ (3)

subject to A− λI � 0 (4)

A satisfies (2) (5)

In different applications, the components of ki ∈ n
must satisfy different

constraints, given by the physical limits of the measurement hardware, basic

physics, or practical limits on experiment time. If the constraints are simple

bounds, which is the case for multi-dimensional NMR, the bounds can be

added trivially, and will not be carried through the problem formulation.

3 Semidefinite/Linear Trust Region Subproblem

Trust Region methods (Conn et al. 2000) are commonly used for non-linear

problems. Define a semidefinite/linear trust region subproblem by linearizing



Anand - INADEQUATE - MITACS-Field’s 2011

Trust Region + SDP Step

27

July 30, 2007 11:27 Engineering Optimization AnandSharmaOptK

6 Anand, Sharma

the nonlinear constraints (5), using the first-order Taylor series for A at a
previous guess k̃. Substituting it into the previous problem produces

min
k

− λ

subject to A|k̃ +
�

α = 1...n
β = 1...r

(kα,β − k̃α,β)
∂A

∂kα,β

����
k̃

− λI � 0, (6)

in which

∂A2i−1,2j−1

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (7)

∂A2i,2j

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (8)

∂A2i,2j−1

∂kα,β
= (cos�kα, xj − xi�)(xj,β − xi,β) (9)

∂A2i−1,2j

∂kα,β
= − (cos�kα, xj − xi�)(xj,β − xi,β). (10)

In the trust region method, this problem is solved with additional constraints
requiring the solution to stay within a region of trust where the linearization
is a good estimate of the non-linear constraints. Commonly, the region is a
sphere, which works well in general, but for the particular constraint (5), it is
possible to tune the shape of the region to the problem. The set of k such that

|kα,β − k̃α,β | ≤ π/2
max|xj,β − xi,β| (11)

has the property that the restrictions of the trigonometric components go
through at most a quarter phase. This is a cheap way of scaling the trust-
region to the curvature in different directions. Although it is not invariant un-
der changes of co-ordinates, the co-ordinates have physical meaning for some
problems, notably the NMR problem, and scale differently. Scaling this par-
ticular trust region builds in the relative sensitivity of A to changes in the
components of k.

The trust region algorithm starting with an initial set of sample points k̃, at
which λ̃ is the minimum eigenvalue of A, and trust region T defined by (11) is

(i) solve (6) plus bounds constraints and k ∈ T for k with objective λ
(ii) calculate the minimum eigenvalue, λmin of A at the point k

July 30, 2007 11:27 Engineering Optimization AnandSharmaOptK

6 Anand, Sharma

the nonlinear constraints (5), using the first-order Taylor series for A at a
previous guess k̃. Substituting it into the previous problem produces

min
k

− λ

subject to A|k̃ +
�

α = 1...n
β = 1...r

(kα,β − k̃α,β)
∂A

∂kα,β

����
k̃

− λI � 0, (6)

in which

∂A2i−1,2j−1

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (7)

∂A2i,2j

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (8)

∂A2i,2j−1

∂kα,β
= (cos�kα, xj − xi�)(xj,β − xi,β) (9)

∂A2i−1,2j

∂kα,β
= − (cos�kα, xj − xi�)(xj,β − xi,β). (10)

In the trust region method, this problem is solved with additional constraints
requiring the solution to stay within a region of trust where the linearization
is a good estimate of the non-linear constraints. Commonly, the region is a
sphere, which works well in general, but for the particular constraint (5), it is
possible to tune the shape of the region to the problem. The set of k such that

|kα,β − k̃α,β | ≤ π/2
max|xj,β − xi,β| (11)

has the property that the restrictions of the trigonometric components go
through at most a quarter phase. This is a cheap way of scaling the trust-
region to the curvature in different directions. Although it is not invariant un-
der changes of co-ordinates, the co-ordinates have physical meaning for some
problems, notably the NMR problem, and scale differently. Scaling this par-
ticular trust region builds in the relative sensitivity of A to changes in the
components of k.

The trust region algorithm starting with an initial set of sample points k̃, at
which λ̃ is the minimum eigenvalue of A, and trust region T defined by (11) is

(i) solve (6) plus bounds constraints and k ∈ T for k with objective λ
(ii) calculate the minimum eigenvalue, λmin of A at the point k

July 30, 2007 11:27 Engineering Optimization AnandSharmaOptK

6 Anand, Sharma

the nonlinear constraints (5), using the first-order Taylor series for A at a
previous guess k̃. Substituting it into the previous problem produces

min
k

− λ

subject to A|k̃ +
�

α = 1...n
β = 1...r

(kα,β − k̃α,β)
∂A

∂kα,β

����
k̃

− λI � 0, (6)

in which

∂A2i−1,2j−1

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (7)

∂A2i,2j

∂kα,β
= − (sin�kα, xj − xi�)(xj,β − xi,β) (8)

∂A2i,2j−1

∂kα,β
= (cos�kα, xj − xi�)(xj,β − xi,β) (9)

∂A2i−1,2j

∂kα,β
= − (cos�kα, xj − xi�)(xj,β − xi,β). (10)

In the trust region method, this problem is solved with additional constraints
requiring the solution to stay within a region of trust where the linearization
is a good estimate of the non-linear constraints. Commonly, the region is a
sphere, which works well in general, but for the particular constraint (5), it is
possible to tune the shape of the region to the problem. The set of k such that

|kα,β − k̃α,β | ≤ π/2
max|xj,β − xi,β| (11)

has the property that the restrictions of the trigonometric components go
through at most a quarter phase. This is a cheap way of scaling the trust-
region to the curvature in different directions. Although it is not invariant un-
der changes of co-ordinates, the co-ordinates have physical meaning for some
problems, notably the NMR problem, and scale differently. Scaling this par-
ticular trust region builds in the relative sensitivity of A to changes in the
components of k.

The trust region algorithm starting with an initial set of sample points k̃, at
which λ̃ is the minimum eigenvalue of A, and trust region T defined by (11) is

(i) solve (6) plus bounds constraints and k ∈ T for k with objective λ
(ii) calculate the minimum eigenvalue, λmin of A at the point k



Anand - INADEQUATE - MITACS-Field’s 2011

Works
well

 in 3D!

• SDP optimization = 100% efficient
• greedy random < 80% efficient

• 2x more samples with greedy random
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Figure 2. Trust region method does much better than random sampling, whether applied once in a

final step, or after each additional random point.

plane number of peaks number of samples efficiency
1 7+2 26 0.99
2 38+2 119 0.72
3 26+2 83 0.82
4 15+2 50 0.87
5 22+2 71 0.80
6 2+2 11 1.00

Figure 3. Efficiencies found by greedy random + trust method for all planes clustered from 3d

RIa (119-244) peaks.

than justified.
When 512-point FIDS with µs sampling are collected for the union of these

360 k-space points, the sampling efficiency as measured by the minimal eigen-
value of A will be 88.2%. This number is higher than the efficiency for the
38-peak plane because (1) the clustered peaks are only partially overlapping,
and (2) more than half the total points optimized for other planes also con-
tribute.

The 3D experiment used to determine the peak positions used 64× 64 sam-
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Figure 1. Efficiency of optimized sampling grows almost linearly with dimension.

points, and suggests that higher-dimensional NMR be used when optimizing
sampling patterns.

Single plane. The full set of 113 points with measured H, N and C resonances
was used to test the clustered hyperplane approach. To compare the relative
efficiency and variability of the three methods, a clustered plane with 7 peaks
(and the 2 sentinel peaks) was used in 8 runs of greedy random optimization,
3 runs of greedy trust optimization, and 16 runs of greedy random + single
trust region step optimization, to show the variability of each method. Figure 2
shows that without continuous optimization 80% is the limit of the expected
efficiency. Both single- and multiple-step trust region methods reach 80% ef-
ficiency with a third as many sample points. They also show less variability,
with the variability decreasing as more points are added.

Full experiment. Applying the greedy random + trust algorithm to all planes
(with 2 sentinel peaks), using a single set of samples with triple the cardinality
of the plane, resulted in efficiencies shown in figure 3. Efficiency decreases as
the cardinality of the plane increases. This computation took three hours on
a 2.6GHz, 8 Dual Core Opteron server in a shared environment. To optimize
NMR experiments which can run days on expensive spectrometers, this is more

Better in 
Higher 

Dimensions

• 17 peaks with full frequency information

• Efficiency increases with dimension (34 samples)

• fewer samples required in higher dimensions 
29
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To Do

• Celebrate 4X faster experiments

• Design mixed C-O-N experiments

• Make delay optimization numerically 
robust
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