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Standard introduction to CT

X-ray source

LI0

I
∫

L
µ(~r)dℓ = − ln(I/I0)

Radon transform
X-ray transform



Reality of CT

* object function is simplified:

* data model also simplified:
   - X-ray scatter
   - X-ray source beam-spectrum
   - detector physics
   - random processes
   ....

* CT is a digital instrument:
       finite number of samples

µ(~r) → µ(~r, E, t)



Overview of image reconstruction algorithms

* An algorithm consists only of a number of data processing steps

* Data/imaging models and their methods of solution help guide their design  

* Trade-off  (see Foundations of Image Science by Barrett and Myers)

       simple model                                                        complex model
       easy to solve                                                          hard to solve
    model error is large                                                 model error is small

* Practical I.R. algorithms evaluated on imaging task
   Theoretical I.R. research based on model solution         



Implicit v. Explicit image reconstruction

g = X(f) f = X−1(g)

(example: compressive sensing)
solved iteratively
non-linear
complex models can be devised
zoology of data models
need to reconstruct whole image

(example: FBP)
one-shot processing
usually linear
modeling limited
models more uniform
can reconstruct point-by-point



Model zoology

Implicit / Iterative / CS

type of expansion elements:
    pixels, blobs, wavelets
number of expansion elements
ray sampling
measurement model
    line integration
        Siddon’s method, ray-tracing
    area-weighted integration

~g = X ~f
g(θi, ξi) =

∫

L(θi,ξi)
dℓf(~r)

Explicit / FBP/ FDK

continuous object function

                    ---
continuous data function
measurement model
    line integration
    

Radon/X-ray



Full solution v. point-by-point

implicit explicit
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X-ray Imaging for Breast Cancer Screening

Goal: Early detection

Task: image asymptomatic women and decide to recall or not

Imaging: suspicious mass (tumor) or micro-calcification cluster (DCIS)



X-ray Imaging for Breast Cancer Screening

Digital mammography

resolution
depth:      6.0 cm
in-plane: 0.1 mm
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X-ray Imaging for Breast Cancer Screening

Digital mammography Digital breast tomosynthesis Computed Tomography

resolution
depth:      6.0 cm
in-plane: 0.1 mm

resolution
depth:     1.0 mm
in-plane: 0.1 mm

resolution
depth:      0.3 mm
in-plane: 0.3 mm

     design constraint:    Equal X-ray dose



Projection image Digital breast tomosynthesis

in-plane depth

Courtesy: Massachusetts General Hospital
GE prototype DBT scanner

Mass imaging



Projection image Digital breast tomosynthesis

Courtesy: Massachusetts General Hospital
GE prototype DBT scanner

Microcalcification imaging

2 cm



Breast computed tomography (bCT)

512-view, bCT simulation
FBP reconstruction

unregularized Gaussian filtered



Breast computed tomography (bCT)

512-view, bCT simulation
FBP reconstruction

unregularized Gaussian filtered

Can CS help?
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Compressive sensing for CT with
gradient magnitude sparseness

~f ∗ = argmin‖~f‖TV such that X ~f = ~g

‖~f‖TV =
∑

i

|~∇fi|

de
te

ct
or

specifying X
Siddon’s method
square pixels
different array sizes



Compressive sensing for CT with
gradient magnitude sparseness
(comparison with FT/MRI image model)

discrete Cartesian FT        discrete X-ray transform
consistent                           may be inconsistent
discrete inverse                  no known direct discrete inverse
need NxN samples            need 2Nx2N samples?
incoherence                       partial incoherence

~g = X ~f



Inverse of the discrete X-ray transform?

1024x1024 discrete phantom FBP applied to 2048x2048 data set



Incoherence



image gradient CS for CT

~f ∗ = argmin‖~f‖TV | |X ~f − ~g|2 ≤ ǫ2 and fmax > ~f > 0

‖~f‖TV =
∑

i

|~∇fi|

* data inconsistency        -->    ε>0
* no discrete inverse        -->   challenge for algorithm development
* partial incoherence       -->   no exact recovery theorems, RIP, NSP
    (we have performed extensive tests...)

Algorithm alternates POCS with TV-steepest descent
PMB 2008 - Sidky and Pan
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PMB 2010
CS
algorithm

960-views



PMB 2010

Robustness to model error



TMI 2011

CS
60-views

FDK
360-views

FDK
60-views

POCS
60-views



Is CS really new?

* Edge-preserving TV regularization used since early 1990s
     Constrained, TV-minimization equivalent to
     TV-penalized unconstrained optimization

* Sparsity and L1-relaxation exploited for contrast-enhanced vessel imaging



PMB 2002

4-views!

L1-relaxation



Contributions of CS

* Expanded thinking on optimization based image reconstruction
         Traditional iterative: minimize  data fidelity + γ roughness penalty
         CS: Use penalty to break degeneracy of the solution space

* Novel rules for determining data sufficiency-based object sparsity

*Beating Nyquist Frequency??
     No.  
          Nyquist is only one form of interpolation
          Use of interpolation, followed by FBP yields the continuous image
          CS yields only discrete representation of the image
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Focus on bCT:
tradeoff between view-number and noise-per-view

1878-projections, 100 micron detector bins, low-intensity X-ray illumination

Courtesy XCounter



constrained, TV-minimization
First attempt: 100 micron pixel array



Second attempt: 25 micron pixel array

image array: 4096 x 4096
data samples: 1878 views x 1200 bins undersampled!!



CS-algorithm modifications

detector-coordinate
Fourier upsampling

constrain image
spatial frequencies

Sidky et al. 2011- arxiv.org/abs/1104.0909
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Preliminary investigation on sparsity-based
data sufficiency

* Aiming for an empirical Donoho-Tanner type study

* Accurate, first order TV-minimization solver
   Jakob Joergensen - Danish Technical University
   T. Jensen et al. ( arxiv.org/abs/1105.3723 )

* Computer-generated breast phantom



Phantom

256x256 pixelized array
65536 unknowns ~10000 non-zero pixels

gradient magnitude



Sampling sufficiency study

|~g − X ~f |2 + α|~f |2

|~g − X ~f |2 + α|~∇f |2

|~g − X ~f |2 + α‖~f‖TV

objectives

Tikhonov

CS

α extremely small -> data RMSE=10-5
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whole image error

ROI error

necessary samples/sparsity ~ 2.5 ??? What is fully sampled?
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Fourier sampling problems

νx

νyν2

ν1

νy

νx

ν2

ν1

interpolation extrapolation

"standard" CS
Chartrand, Sidky and Pan
math.lanl.gov/~rick/Publications/chartrand-2011-frequency.shtml

CS approach to an old problem



Papoulis-Gerchberg

time

sampling
interval

frequency

band-limited signal



Papoulis-Gerchberg reversed

spatial frequency

sampling
interval

space coordinate

compact support



Frequency extrapolation experiment

continuous object model
4Kx4K samples
of continuous FT

scaled FT samples

Problem: recover 4Kx4K FT sample grid
                from central set of 512x512 samples.



Frequency extrapolation method

ϕp(t) =

{

γ|t|2 if |t| ≤ α

γ|t|p/p − δ if |t| > α

x∗ = argmin
∑

i=1

ϕp(|∇x|i) + λ‖Ax − b‖2
2

Chartrand ISBI 2009 for details
*efficient solver



Results: no frequency extrapolation

inverse DFT zero pad zero pad and filter



Results: non-convex frequency extrapolation

p=1 p=0.25 p=-0.5



Results: non-convex frequency extrapolation

p=1 p=0.25 p=-0.5


