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Standard introduction to CT

X-ray source
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Radon transform
X-ray transform



Reality of CT

* object function is simplified:

pu(r) — p(r, E, 1)
* datamodel also simplified.
- X-ray scatter
- X-ray source beam-spectrum
- detector physics
- random processes

* CT isadiqgital instrument:
finite number of samples



Overview of Image reconstruction algorithms

* An algorithm consists only of a number of data processing steps
* Datalimaging models and their methods of solution help guide their design

* Trade-off (see Foundations of Image Science by Barrett and Myers)

simple model complex model
easy to solve -« > hard to solve
model error islarge model error is small

* Practical |.R. algorithms evaluated on imaging task
Theoretical |.R. research based on model solution



Implicit v. Explicit iImage reconstruction

g=X(f)

(example: compressive sensing)
solved iteratively

non-linear

complex models can be devised
zoology of data models

need to reconstruct whole image

f=X"(9)

(example: FBP)

one-shot processing

usually linear

modeling limited

models more uniform

can reconstruct point-by-point



Model zoology

g=Xf
Implicit / Iterative / CS

type of expansion elements:
pixels, blobs, wavelets
number of expansion elements
ray sampling
measurement model
line integration
Siddon’ s method, ray-tracing
area-weighted integration

o(6:&) = [ dty(r) — Rador/X-ray

L(0;,&:)
Explicit / FBP/ FDK

continuous object function

continuous data function
measurement model
line integration



Full solution v. point-by-point

Implicit explicit

.



Outline

* CT and image reconstruction background
* Application: mammography

* Compressive sensing in CT versus MRl

* Some results with real CT data

* Ongoing studies:

- extremely small objects real data
- gparsity-based sampling sufficiency  theoretical study



X-ray Imaging for Breast Cancer Screening

Goal: Early detection
Task: image asymptomatic women and decide to recall or not

|maging: suspicious mass (tumor) or micro-calcification cluster (DCIS)



X-ray Imaging for Breast Cancer Screening

Digital mammography
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X-ray Imaging for Breast Cancer Screening

Digital mammography  Digital breast tomosynthesis
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X-ray Imaging for Breast Cancer Screening

Digital mammography  Digital breast tomosynthesis Computed Tomography
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X-ray Imaging for Breast Cancer Screening
design constraint. Equal X-ray dose

Digital mammography  Digital breast tomosynthesis Computed Tomography
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resolution resolution resolution
depth:  6.0cm depth: 1.0 mm depth: 0.3 mm
in-plane: 0.1 mm in-plane: 0.1 mm in-plane: 0.3 mm




Mass imaging

Projection image

Digital breast tomosynthesis

In-plane depth

Courtesy: Massachusetts General Hospital
GE prototype DBT scanner




Microcalcification imaging

Projection image Digital breast tomosynthesis

Courtesy: Massachusetts General Hospital
GE prototype DBT scanner



Breast computed tomography (bCT)
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Breast computed tomography (bCT)
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Can CS help?
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Compressive sensing for CT with
gradient magnitude sparseness

F* = argmin|| f||7v such that X f = ¢

| fllry = Z V£

\

Siddon’s method
square pixels
different array sizes



Compressive sensing for CT with
gradient magnitude sparseness
(comparison with FT/MRI image model)

discrete Cartesian FT

consli stent

discrete inverse
need NXN samples
|ncoherence

g=Xf

discrete X-ray transform

may be inconsistent

no known direct discrete inverse
need 2Nx2N samples?

partial incoherence



Inverse of the discrete X-ray transform?

1024x1024 discrete phantom FBP applied to 2048x2048 data set




| ncoherence

sparse image Fourier transform

sparse image fan-beam projection

source angle o

detector bin £



Image gradient CSfor CT

f* = argmin|| fllry | |IXf—F?<é and frae > f >0

I fllrv = Z IV fi]

* datainconsistency -> >0
* no discrete inverse --> challenge for algorithm development
* partial inconerence  --> no exact recovery theorems, RIP, NSP

(we have performed extensive tests...)

Algorithm alternates POCS with TV -steepest descent
PMB 2008 - Sidky and Pan
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Evaluation of sparse-view reconstruction from
flat-panel-detector cone-beam CT
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Robustness to model error
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Algorithm-enabled Low-dose Micro-CT Imaging

Xiao Han, Student Member, IEEE, Junguo Bian, Student Member, IEEE, Diane R. Eaker,
Timothy L. Kline, Student Member, IEEE, Emil Y. Sidky, Erik L. Ritman, and Xiaochuan Pan, Fellow, IEEE

CS FDK FDK POCS
60-views 360-views 60-views 60-views

TMI 2011



s CSreally new?

* Edge-preserving TV regularization used since early 1990s
Constrained, TV-minimization equivalent to
TV -penalized unconstrained optimization

* Sparsity and L 1-relaxation exploited for contrast-enhanced vessel imaging



INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BI10LOGY

Phys: Med. Biol. 47 (2002) 2399-2609 PIL: 5003 1-9 155(02)30445-5

PMB 2002

An accurate iterative reconstruction algorithm for
sparse objects: application to 3D blood vessel
reconstruction from a limited number of projections

Meihua Li', Haiquan Yang” and Hiroyuki Kudo®

The solution by
the ART method
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Contributions of CS

* Expanded thinking on optimization based image reconstruction
Traditional iterative: minimize datafidelity + y roughness penalty
CS. Use penalty to break degeneracy of the solution space

* Novd rules for determining data sufficiency-based object sparsity

*Beating Nyquist Frequency??
No.
Nyquist isonly one form of interpolation
Use of interpolation, followed by FBP yields the continuous image
CSyields only discrete representation of the image
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Focus on bCT:
tradeoff between view-number and noise-per-view

1878-projections, 100 micron detector bins, low-intensity X-ray illumination

Courtesy X Counter



constrained, TV-minimization
First attempt: 100 micron pixel array




Second attempt: 25 micron pixel array

Image array: 4096 x 4096

data samples: 1878 views x 1200 bins undersampl ed!!



CS-agorithm modifications

detector-coordinate cons_:trai ni mage
Fourier upsampling spatial frequencies

Sidky et al. 2011- arxiv.org/abs/1104.0909
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Preliminary investigation on sparsity-based
data sufficiency

* Aiming for an empirical Donoho-Tanner type study
* Accurate, first order TV-minimization solver

Jakob Joergensen - Danish Technical University

T. Jensen et al. (arxiv.org/abs/1105.3723)

* Computer-generated breast phantom



Phantom

gradient magnitude

256x256 pixelized .
e m—— ~10000 non-zero pixels



Sampling sufficiency study

objectives data: 32-512 views x 512 bins

S = =g ROI error
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necessary samples/sparsity ~ 2.5 77? What is fully sampled?



the group workingon CSin CT

University of Chicago applied math experts

Xiaochuan Pan  Emil Sidky

Rick Chartrand
Students: LANL
Junguo Bian
Xiao Han Jakob Joergensen: | |
Eric Pearson student at the Danish Technical Univ.
Zheng Zhang

Adrian Sanchez



Fourier sampling problems

Interpolation

® O O
O O O
O @ @

S

o I

"standard" CS

O O O @ P O O O O
® O 6 O e 6 6 O
O O O O O O O OO e
O @ O e @ O O O

extrapolation

A V2

CS approach to an old problem

Chartrand, Sidky and Pan
math.lanl.gov/~rick/Publications/chartrand-2011-frequency.shtmli



Papoulis-Gerchberg

sampling
Interval

time p—

band-limited signal

D ad 15N

frequency




Papoulis-Gerchberg reversed

sampling
interval

TP

spati al freqtéjency

o compact support

space coordinate



Frequency extrapolation experiment

4K x4K samples
of continuous FT

continuous object model

Problem: recover 4Kx4K FT sample grid
from central set of 512x512 samples.




Frequency extrapolation method

A argminz 0p(|Vz|;) + || Az — b5

1=1

v|¢|? if [t] < a
90p<t> = :
YtP/p—6 if|t| >«

Chartrand 1SBI 2009 for details
* efficient solver



Results. no frequency extrapolation

Inverse DFT Zero pad zero pad and filter




Results. non-convex frequency extrapolation

p=1 p=0.25 p=-0.5




Results: non-convex freguency extrapolation

p=0.25




