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A simple experiment
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Inverse problem

Problem: Reconstruct the optical absorption from
boundary measurements.
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Optical tomography

laser detectors

computer electronics

10?2 - 10° source detector pairs



Optical mammograms
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Noncontact optical tomography (2005)
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Large data sets

e Access to higher spatial frequencies

— increased resolution

e Fast Algorithms
— O(N) complexity

— special geometries



Waves in random media

Transport of electromagnetic waves in random media is very familiar

e light propagation in fog, milk, biological tissue, interstellar media ...

e microscopic, mesoscopic and macroscopic descriptions

A Wigner transform 14 s asymptotics v

Maxwell equations » RTE > Diffusion equation

ladder diagrams

Waves --------- = Particles



Length scales

Consider a suspension of scatterers (paint, milk, tissue)

L
> L
J ° absorption cross section o,
A > ¢ ° scattering cross section o
e ° number density p
>
.A/—lv /3
p
1 < >
by = — L
POa AN s < L4,
(. — 1 L > /¢, multiple scattering
¢ =



Radiative Transport Equation (RTE)

RTE describes conservation of specific intensity I(r, §)

§-VI+ pugl =ps | d*s' [p(8,8)I(r,8") —p(8,8)I(r,8
o

A/
/ te = 1/4, is the absorption coefficient
. us = 1/, is the scattering coefficient
do s
PN P = 49 / O
S /‘

RTE does not account for effects of interference and is not valid on the
scale of the wavelength A



No scattering (u, = 0)

§-VI+ pgl =0

I = Iyexp [—/ ,LLadT] :
L

where § is along the line L.

This exponential absorption law is the basis for CT.

Thus we can measure the 2D Radon transform

/1N

Rf(R,s) = /f(r)a(ﬁ-r — s)d*r,

which can be inverted

1 T o0 1 0 ~
F(r) = 57-1_-2-/0 d@/_oodsﬁ(g).r_SaSRf(n(H),s).
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Single-scattering regime

Incident
beam

Km:(en ray
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Ballistic ray




Collision expansion

Consider the RTE
50V 4 (1) + i (0(0,8) = as(x) [ p(5,8)1(5.8)d
The solution is given by
I(r,8) = Iy(r,8) + /d3rld23ld2s”G(r,§; r',8"p(8, 8" us ("I (x',8"),
where (7 is the ballistic Green’s function for the RTE with us = 0.

Collision expansion

I = - + + -

T T

single scattering double scattering



Single-scattering

Within the accuracy of the single-scattering approximation, the change in
specific intensity produced by a unidirectional point source is given by

AI(ry,81;12,82) = /dgrd2sd23’G(r2,§2;r,é)G(r,@;rl,él)p(é, § s (r") .

The ballistic Green’s function G is

where




Measurable quantities

Accounting only for single scattering, A is given by

P(81,82)us(R)

T21 sin ?91 sin 192

Ll L2
X exp [—/ ,LLt(I'l + fél)df — / ,LLt(R + gég)dﬁ] ,
0 0

Al(r17§13r27§2) — 5(|901 - 902’ - 7T)

where ¢ 5 are the azimuthal angles of §; 5
in a coordinate system whose z axis lies
along ro;. In an experiment, the observ-
able quantity is the angular integral of the
intensity over an aperture. Thus, the in-
tegral of ;1; along a broken ray is directly
measurable.




Broken-ray Radon transform

Let f be a sufficiently smooth function with compact support in the slab.
The broken-ray Radon transform is defined by

Rbf(rlaél;r27§2):/ fdz

BR(rl aél ;r23§2)

where BR(r1,81;r2,82) denotes the broken ray which begins at ry, travels
in the direction S; and ends at r5 in the direction S,.

If ry,ro,8; and 8, all lie in the same plane,

then the point of intersection R is uniquely
determined. It will suffice to consider the
inverse problem in the plane and to re-
construct the function f from two-dimensional
slices. Note that when §; = S, = 115, R}

reduces to the two-dimensional Radon trans-
form.




Inversion formula I

The problem of inverting R, is overdetermined. However, if the direc-
tions §; and §, are taken to be fixed, then the inverse problem is formally
determined. In the slab geometry

L,

L
Ry f(y1,92) = f(y1,2)dz +sect [ f((z— L)tan6 +y2,2) dz .
0 L,

An inversion formula can be derived by
making use of the translational invariance
of the slab in the source plane and intro-
ducing the Fourier transform f(k,z) of
f(y, z) with respect to y. It can then be
shown that f obeys a one-dimensional in-
tegral equation which can be solved ex-
plicitly.




Inversion formula II

The inversion formula for Ry is

0 0 0
f(y? Z) — A{ [8—A o (1+/€)8_y] w(yvA) +Ka_y¢(y+)‘Z9Amax)
o2 Amax
— k(l4+kK)=— Y|y +k(l—A)L dﬁ} :
ay2 /A ( ) A=(L—z)tan6

where A .x = Ltanf, A = cot(0/2) and k = cot(0/2) cot 0.

Remarks

¢ In contrast to computed tomography, it is unnecessary to collect pro-
jections along rays which are rotated about the sample.

e It is possible to derive an inversion formula in the backscattering
geometry in which the sources and detectors are located on the same
plane.



Reconstructions
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Scattering theory for the RTE

Consider an inhomogeneous absorbing medium with 1, = 19 + dp,.
I(r,8) = I;y(r,8) — /d3fr’d25’G(r,§;r’,é’)5,ua(r’)l(r’,§’)
G is the Green’s function for the RTE with p, = u®

The linearization of the above integral equation with respect to du, is
given by

¢(r1,81;12,82) = /d?’?“d2SG(1“1,§1;Taé)G(raé; r2,82)0pa(T)

where ¢ = I;,, — I. The approximation is accurate if du, is small and
supp(du) is small.



Exact solutions to the RTE

There are very few exact solutions to the RTE. The Green’s func-
tion is known analytically for only the following cases:

e [sotropic scattering in three dimensions without boundaries

e [sotropic scattering in one dimension with planar bound-
aries

e Approximate methods
— diffusion approximation

— P, approximation



Diffusion approximation

The diffusion approximation arises from accounting for the lowest-order
angular dependence of the Green’s function for the RTE. That is

G(I',é;r’,é’):i

(1405 V) (1 — %5 - Vi) G(r, 1)

T

where G(r,r’) is the diffusion Green’s function which obeys

(=DoV? + cpg) G(r,r’) = §(r — 1)

The DA is accurate when ¢*|V(G| < G, that is when the intensity varies
slowly on the scale of £*. This condition breaks down in thin layers, with
weak scattering and near boundaries.



Ditfusion approximation

Consider the integral equation
¢(I‘1, éla ra, §2) — / dS’I"d2SG(I'1, §17 r, é)G(I‘, év rs, §2)5:U’a (I') :

Within the accuracy of the DA, ¢ is given by

o(r1, —hi 19, 7)) — / PrG(r1,1)G(r, r2)da(r)

where da = cdp, and G(r,r’) is the Green’s function for the RTE within
the DA.



Diffusion Green’s function

2
G(r,r') = / (—C—Z——‘-’—< )g(ats 2, ')

27)?
withr = (p, 2).
. : S
Infinite medium
9(d; 2, 2') = 5505 exp[-Q(q)|z — #'|] D
Semi-infinite medium
1 ¢ —1
gz 7) = D = o (~Q(@)]z + 2']) + exp (~Q(a)] — 2]

~ 2Q(q)D [ Qg)t+1

with Q(q) = \/¢? + k2. Here k = \/3pqp, =~ lem™!



Inverse problem

The forward problem of optical tomography is to compute the scattering
data ¢ from the absorption da. The inverse problem is to recover da from
¢. The simplest approach is to solve the integral equation

¢p(ri,T2) = /G(rl,r)G(r,rg)doz(r)dBT

by a numerical method. This approach is computationally expensive and
not suitable for use with large data sets.

Instead, we make use of a direct method (invesion formula).



Fourier-Laplace structure of the DA

Recall the linearized integral equation in the diffusion approxima-
tion

o(ry,ro) = /dBTG(rl,r)G(r,r2)5a(r)

It can be seen that the Fourier transform of ¢ is given by

~

o(d1,q2) = /dST expli(qr — qz2) - p — (Qa1) + Q(az))z]da(r)
e ISP is exponentially ill-posed in depth direction

e ISP is well-posed in transverse direction

e Transverse resolution determined by the highest spatial fre-
quencies in the measurements. Implications for large data
sets
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Transmission through a slab

Scattered Field
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Reconstructions from experimental data

14.5mm 17.1mm 19.8mm

22 .4mm 25.0mm 27.6mm

30.2mm 32.9mm 35.5mm

-1 0 1

¢ 103 source-detector pairs

e 103 sources and 10° detectors

e 8 mm diameter black balls in 1% IL

e Balls in midplane of slab
e 50 mm slab thickness

¢ 2.6 mm slice separation

® 256 x 256 pixels per slice
® 15cm x 15 cm FOV

e Reconstruction time ~ 10 min



Resolution and bar targets




Reconstruction of shape

T po®

>

-1

4 x 107 source-detector pairs
6 cm slab thickness

Letters are 3 mm wide

3:1 absorption contrast

FOV=12cm x 12 cm

Reconstruction time ~ 1 min



Breakdown of diffusion approximation

o Optically thin samples
o Weakly scattering media
e Strongly absorbing media

e Boundary layers



Scattering theory for the RTE

Consider an inhomogeneous absorbing medium with 1, = 19 + dp,.
I(r,8) = I;y(r,8) — /d3fr’d25’G(r,§;r’,é’)5,ua(r’)l(r’,§’)
G is the Green’s function for the RTE with p, = u®

The linearization of the above integral equation with respect to du, is
given by

¢(r1,81;12,82) = /d?’?“d2SG(1“1,§1;Taé)G(raé; r2,82)0pa(T)

where ¢ = I;,, — I. The approximation is accurate if du, is small and
supp(du) is small.



Evanescent modes for the RTE I

We look for evanescent modes of the form I(r,8) = A(8)eX™, where k =
iq++/q? + 1/X2 2and k-k = 1/)?. These are the analogs of diffuse modes
or complex geometrical optics solutions.

(é K+ pa + us) A(8) = ps /p(& §')A(8")d*s’

We expand the amplitdude A into locally-rotated spherical functions:

l,m

m>

Here Y},,(8; k) is a spherical function in a reference frame whose z-axis
coincides with the k direction:

Yim(8;k) = ZD /(,0,0) Y7 (8)



Evanescent modes for the RTE II

The coefficients Cj,,, are determined by solving the generalized eigenprob-
lem

E R%%/Cl/m/ — AalClm .
l’,m/’

Here 0, = py + ps(1 — py) and

I
Ry = Omm' (bimOr.1—1 + bis1.mbrr1-1)

with by, = /(12 — m2) /(412 — 1).

The generalized eigenproblem for R can be transformed to an eigenprob-
lem for a symmetric block tridiagonal matrix W = S™'R™15~1 where

U'm’ _ [~
Sl,’,;;n’ — 5ll/5mm/ O-l.



Evanescent modes for the RTE III

e There is a discrete and continuous spectrum of eigenvalues and a
corresponding orthonormal basis of eigenvectors of V.

e For isotropic scattering, the three term recurrence relation for the
tridiagonal matrix W is solved by the Legendre functions.

e The Henyey-Greenstein phase function with

1
A A _ l ~ A/
p(8,8) = — El (20+1)g'P(8-8)

leads to a new family of orthogonal polynomials.



Green’s functions for the RTE

In three-dimensions with planar boundaries, the Green’s function can be
written in the form

G(r,§;r',§) = Z ghm'(z,2/;q)e'rP=Py, (3)YE (8,

lm l'm

where

gllm Z Z 7q Z Z le \IJIZLf mM(Qpae O>D£;L’M’(907870) exXp [—Qﬂ(q”Z—Z/H
w M, M’

and Q,(q \/q +1/A2.

U+ and ), are solutions to an eigenproblem for a tridiagonal matrix. D! ,,
are Wigner functions for SO(3).

The dependence on (r, 8) is analytical and the expansion can be obtained
for any phase function.



Angular measurements

The intensity measured in an experiment is given by the expression

I= /A(é)](r,g)é-ﬁd%,

where A accounts for the angular dependence of the optical system.

Two special cases are of interest:

e A(S) = 6(8 —1). This corresponds to a flat surface where the camera
is at infinity; the aperture selects only normally oriented rays.

e A(S) = 1. This corresponds to complete angular data.

A CCD




Inverse problem

The inverse transport problem of recovering the pair (u,, pts) with
complete angular data is well-posed.

If incomplete or angularly averaged data is available, as is the case
in experiments, the inverse problem is severely ill-posed. Low fre-
quency components of (1, tts) can be reconstructed with Holder
stability.



Fourier-Laplace structure of the RTE

Recall the linearized integral equation for ¢(r,81;r2,82). Using the plane-
wave decomposition of the Green'’s function and accounting for the angu-
lar dependence of the measurements, it can be seen that the Fourier trans-
form of p4(r1,r2) = [ A(82)¢(r1, —1;ra,82)d? 55 is given by

&A(thp) — Z M/m’(Ch,Ch) /d?)?“ exXp [i((h — Q2) P

s’

—(Quld1) + Qu (92))z|dpa(r) |

where r = (p, z) and we have assumed that the source is normally ori-
ented.

L S,

A ‘




RTE vs diffusion (simulation)

RTE Diffusion
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Structured illumination
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Lemon and lotus root
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