A Survey of Compressed Sensing and Applications to Medical Imaging

Justin Romberg

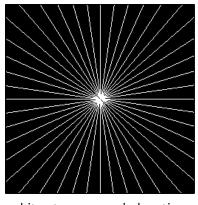
Georgia Tech, School of ECE

Fields-MITACS Conference on Mathematics of Medical Imaging
June 21, 2011
Toronto, Ontario

A simple underdetermined inverse problem

Observe a subset Ω of the 2D discrete Fourier plane

phantom (hidden)



white star = sample locations

 $N:=512^2=262,144$ pixel image observations on 22 radial lines, 10,486 samples, $\approx 4\%$ coverage

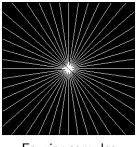
Minimum energy reconstruction

Reconstruct g^* with

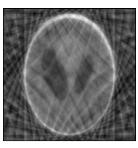
$$\hat{g}^*(\omega_1, \omega_2) = \begin{cases} \hat{f}(\omega_1, \omega_2) & (\omega_1, \omega_2) \in \Omega \\ 0 & (\omega_1, \omega_2) \notin \Omega \end{cases}$$

Set unknown Fourier coeffs to zero, and inverse transform

original



Fourier samples



Total-variation reconstruction

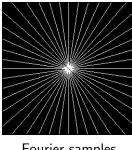
Find an image that

- Fourier domain: matches observations
- Spatial domain: has a minimal amount of oscillation

Reconstruct q^* by solving:

$$\min_{g} \sum_{i,j} |(\nabla g)_{i,j}| \quad \text{s.t.} \quad \hat{g}(\omega_1,\omega_2) = \hat{f}(\omega_1,\omega_2), \quad (\omega_1,\omega_2) \in \Omega$$

original

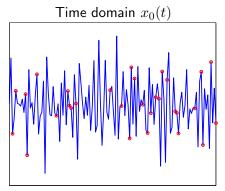


Fourier samples

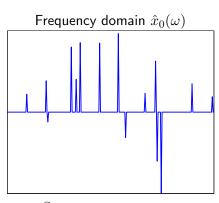
 $q^* = \text{original}$ perfect reconstruction

Sampling a superposition of sinusoids

We take ${\cal M}$ samples of a superposition of ${\cal S}$ sinusoids:



Measure M samples (red circles = samples)

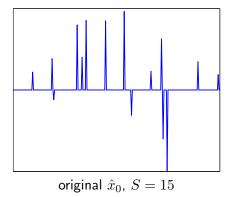


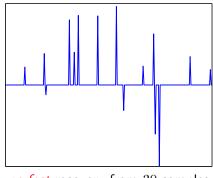
S nonzero components

Sampling a superposition of sinusoids

Reconstruct by solving

$$\min_{r} \|\hat{x}\|_{\ell_1} \quad \text{subject to} \quad x(t_m) = x_0(t_m), \quad m = 1, \dots, M$$

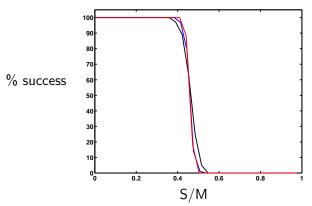




perfect recovery from 30 samples

Numerical recovery curves

- Resolutions N=256,512,1024 (black, blue, red)
- ullet Signal composed of S randomly selected sinusoids
- ullet Sample at M randomly selected locations



 \bullet In practice, perfect recovery occurs when $M\approx 2S$ for $N\approx 1000$

A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

- Unknown \hat{x}_0 is supported on set of size S
- ullet Select M sample locations $\{t_m\}$ "at random" with

$$M \ge \operatorname{Const} \cdot S \log N$$

- ullet Take time-domain samples (measurements) $y_m = x_0(t_m)$
- Solve

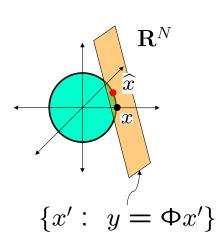
$$\min_{x} \|\hat{x}\|_{\ell_1}$$
 subject to $x(t_m) = y_m, m = 1, \dots, M$

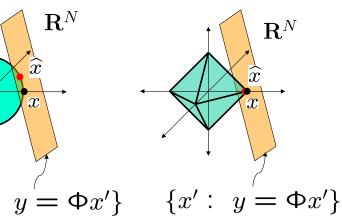
- ullet Solution is *exactly* f with extremely high probability
- In total-variation/phantom example, S=number of jumps

Graphical intuition for ℓ_1

$$\min_{x} ||x||_2$$
 s.t. $\Phi x = y$

$$\min_x \|x\|_1$$
 s.t. $\Phi x = y$





Acquisition as linear algebra



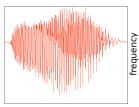
- Small number of samples = underdetermined system
 Impossible to solve in general
- If x is *sparse* and Φ is *diverse*, then these systems can be "inverted"

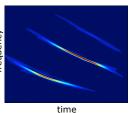
Sparsity/Compressibility

 $N \\ {
m pixels}$

 $S \ll N$ large wavelet coefficients

N wideband signal samples





 $S \ll N$ large Gabor coefficients

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$||Ax||_2^2 \approx ||x||_2^2$$
 for all $x \in \mathbb{R}^N$

i.e. A preserves *lengths*

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$||A(x_1-x_2)||_2^2 \approx ||x_1-x_2||_2^2$$
 for all $x_1, x_2 \in \mathbb{R}^N$

i.e. A preserves distances

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$(1 - \delta) \le \sigma_{\min}^2(A) \le \sigma_{\max}^2(A) \le (1 + \delta)$$

i.e. A has clustered singular values

• Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2$$

for some $0 < \delta < 1$

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a keeps sparse signals separated

$$(1-\delta)\|x_1-x_2\|_2^2 \le \|\Phi(x_1-x_2)\|_2^2 \le (1+\delta)\|x_1-x_2\|_2^2$$

for all S-sparse x_1, x_2

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \ \leq \ \|\Phi x\|_2^2 \ \leq \ (1+\delta)\|x\|_2^2 \quad \mbox{for all } 2S\mbox{-sparse } x$$

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all $2S$ -sparse x

• To recover x_0 , we solve

$$\min_{x} \|x\|_{0} \quad \text{subject to} \quad \Phi x \approx y$$

 $||x||_0 = \text{number of nonzero terms in } x$

• This program is intractable

 \bullet Now we have an underdetermined $M\times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all $2S$ -sparse x

A relaxed (convex) program

$$\min_{x} \|x\|_1 \quad \text{subject to} \quad \Phi x \approx y$$

$$||x||_1 = \sum_k |x_k|$$

• This program is very tractable (linear program)

Sparse recovery algorithms

- Given y, look for a sparse signal which is consistent.
- One method: ℓ_1 minimization (or *Basis Pursuit*)

$$\min_{x} \|\Psi^{T} x\|_{1} \quad \text{s.t.} \quad \Phi x = y$$

 $\Psi = \text{sparsifying transform}, \ \Phi = \text{measurement system}$

- \bullet 2S-RIP for $\Phi\Psi \ \Rightarrow \ \text{perfect recovery of }S\text{-sparse signals}$
- Convex (linear) program, can relax for robustness to noise...

Stable recovery

- Despite its nonlinearity, sparse recovery is stable in the presence of
 - modeling mismatch (approximate sparsity), and
 - measurement error
- If we observe $y = \Phi x_0 + e$, with $||e||_2 \le \epsilon$, the solution \hat{x} to

$$\min_{\boldsymbol{x}} \| \boldsymbol{\Psi}^T \boldsymbol{x} \|_1 \quad \text{s.t.} \quad \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \|_2 \leq \epsilon$$

will satisfy

$$\|\hat{x} - x_0\|_2 \le \operatorname{Const} \cdot \left(\epsilon + \frac{\|x_0 - x_{0,S}\|_1}{\sqrt{S}}\right)$$

where

- $x_{0,S} = S$ -term approximation of x_0
- S is the largest value for which $\Phi\Psi$ satisfies the RIP
- Similar guarantees exist for other recovery algorithms
 - greedy (Needell and Tropp '08)
 - ▶ iterative thresholding (Blumensath and Davies '08)

What types of matrices are restricted isometries?

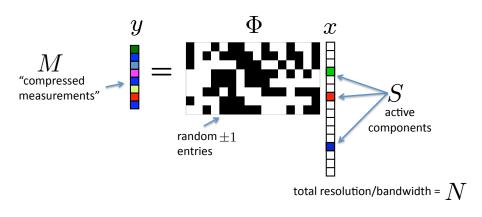
Three examples:

- Random matrices (iid entries)
- Random subsampling
- Random convolution

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated

Random matrices (iid entries)

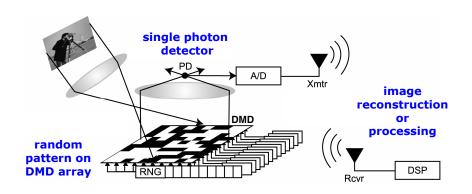


- Random matrices are provably efficient
- ullet We can recover S-sparse x from

$$M \gtrsim S \cdot \log(N/S)$$

measurements

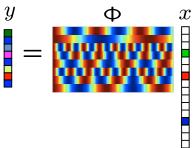
Rice single pixel camera



(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk '08)

Random matrices

Example: Φ consists of *random rows* from an *orthobasis* U



Can recover S-sparse x from

$$M \gtrsim \mu^2 S \cdot \log^4 N$$

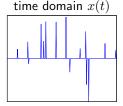
measurements, where

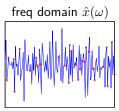
$$\mu \ = \ \sqrt{N} \max_{i,j} |(U^T \Psi)_{ij}|$$

is the coherence

Examples of incoherence

• Signal is sparse in time domain, sampled in Fourier domain





S nonzero components

measure m samples

• Signal is sparse in wavelet domain, measured with noiselets

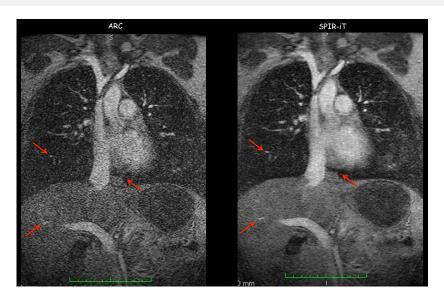
(Coifman et al '01)

example noiselet

wavelet domain

noiselet domain

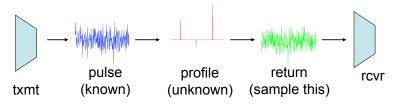
Accelerated MRI



(Lustig et al. '08)

Random convolution

 Many active imaging systems measure a pulse convolved with a reflectivity profile (Green's function)



- Applications include:
 - radar imaging
 - sonar imaging
 - seismic exploration
 - channel estimation for communications
 - super-resolved imaging
- Using a *random pulse* = compressive sampling (Tropp et al. '06, R '08, Herman et al. '08, Haupt et al. '09, Rauhut '09)

Random convolution for CS, theory

- ullet Signal model: sparsity in any orthobasis Ψ
- Acquisition model: generate a "pulse" whose FFT is a sequence of random phases (unit magnitude), convolve with signal, sample result at m random locations Ω

$$\Phi = R_{\Omega} \mathcal{F}^* \Sigma \mathcal{F}, \quad \Sigma = \operatorname{diag}(\{\sigma_{\omega}\})$$

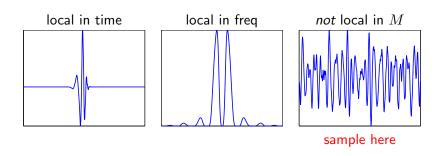
• The RIP holds for (R '08)

$$M \gtrsim S \log^5 N$$

Note that this result is universal

 Both the random sampling and the flat Fourier transform are needed for universality

Randomizing the phase



Dynamic Sparse Recovery

Streaming sparse recovery

• Solving an optimization program like

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y\|_2^2$$

can be costly

 We want to <u>update</u> the solution when the underlying signal changes slightly

Time-varying sparse signals

Initial measurements. Observe

$$y_0 = \Phi x_0 + e_0$$

Initial reconstruction. Solve

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y_0\|_2^2$$

A new set of measurements arrives:

$$y_1 = \Phi x_1 + e_1$$

• Reconstruct again using ℓ_1 -min:

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y_1\|_2^2$$

 We can gradually move from the first solution to the second solution using homotopy

min
$$\tau \|x\|_{\ell_1} + (1 - \epsilon) \frac{1}{2} \|\Phi x - y_0\|_2^2 + \epsilon \frac{1}{2} \|\Phi x - y_1\|_2^2$$

Take ϵ from $0 \to 1$

Update direction

min
$$\tau \|x\|_{\ell_1} + \frac{1-\epsilon}{2} \|\Phi x - y_{\text{old}}\|_2^2 + \frac{\epsilon}{2} \|\Phi x - y_{\text{new}}\|_2^2$$

- Path from old solution to new solution is piecewise linear
- Optimality conditions for fixed ϵ :

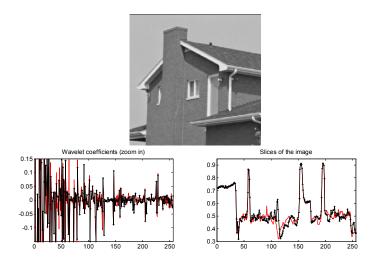
$$\Phi_{\Gamma}^{T}(\Phi x - (1 - \epsilon)y_{\text{old}} - \epsilon y_{\text{new}}) = -\tau \operatorname{sign} x_{\Gamma}$$
$$\|\Phi_{\Gamma^{c}}^{T}(\Phi x - (1 - \epsilon)y_{\text{old}} - \epsilon y_{\text{new}})\|_{\infty} < \tau$$

 $\Gamma = \mathsf{active} \ \mathsf{support}$

• Update direction:

$$\partial x = \begin{cases} -(\Phi_{\Gamma}^T \Phi_{\Gamma})^{-1} (y_{\text{old}} - y_{\text{new}}) & \text{on } \Gamma \\ 0 & \text{off } \Gamma \end{cases}$$

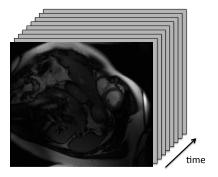
Experiments



Average number of applications of Φ or Φ^T : DynamicX 26.2, GPSR-BB: 92.24, FPC_AS: 90.9

Reconstructing time-varying images

We want to acquire a "data cube" X_0 (a time series of 2D images)



The structure across time is different than that across space...

Motion-compensated reconstruction

 \bullet Regularize in space using sparsity, regularize in time using a motion model, $X_{k+1} \approx M_k(X_k)$

$$\min_{X} \sum_{k} (\|\Phi_{k} X_{k} - Y_{k}\|_{F}^{2} + \tau \operatorname{Sparsity}(X_{k}) + \eta \|M_{k} X_{k} - X_{k+1}\|_{2}^{2})$$

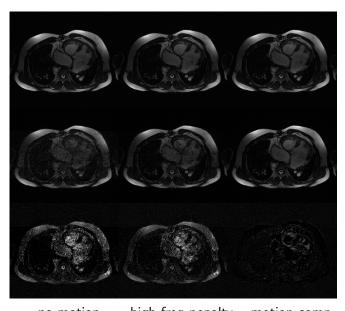
- Given the image sequence $\{X_k\}$, we can use standard techniques from video coding (block matching, local phase etc.) to estimate the motion operators M_k
- Strategy:
 - ▶ Reconstruct a "smoothed" version of $\{X_k\}$
 - Estimate the motion from this smoothed version
 - ▶ Reconstruct a more accurate version using motion compensation
 - Repeat (if desired) ...

Single frame of reconstruction

original

reconstruct

error



no motion

high-freq penalty

motion comp. $_{42/43}$

Questions?

jrom@ece.gatech.edu