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A simple underdetermined inverse problem

Observe a subset Ω of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10, 486 samples, ≈ 4% coverage
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Minimum energy reconstruction

Reconstruct g∗ with

ĝ∗(ω1, ω2) =

{
f̂(ω1, ω2) (ω1, ω2) ∈ Ω

0 (ω1, ω2) 6∈ Ω

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g∗
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Total-variation reconstruction

Find an image that

Fourier domain: matches observations
Spatial domain: has a minimal amount of oscillation

Reconstruct g∗ by solving:

min
g

∑
i,j

|(∇g)i,j | s.t. ĝ(ω1, ω2) = f̂(ω1, ω2), (ω1, ω2) ∈ Ω

original Fourier samples g∗ = original
perfect reconstruction
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Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain x0(t) Frequency domain x̂0(ω)

Measure M samples S nonzero components
(red circles = samples)
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Sampling a superposition of sinusoids

Reconstruct by solving

min
x
‖x̂‖`1 subject to x(tm) = x0(tm), m = 1, . . . ,M

original x̂0, S = 15 perfect recovery from 30 samples
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Numerical recovery curves

Resolutions N = 256, 512, 1024 (black, blue, red)

Signal composed of S randomly selected sinusoids

Sample at M randomly selected locations
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In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000
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A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

Unknown x̂0 is supported on set of size S

Select M sample locations {tm} “at random” with

M ≥ Const · S logN

Take time-domain samples (measurements) ym = x0(tm)

Solve

min
x
‖x̂‖`1 subject to x(tm) = ym, m = 1, . . . ,M

Solution is exactly f with extremely high probability

In total-variation/phantom example, S=number of jumps
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Graphical intuition for `1

minx ‖x‖2 s.t. Φx = y minx ‖x‖1 s.t. Φx = y!"#$L2 %&'()*+$!&,-$

.'/(+$(01/,'(2
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random orientation
dimension N-M
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Acquisition as linear algebra

= 
resolution/ 
bandwidth 

# samples 

data 

unknown 
signal/image 

acquisition 
system 

Small number of samples = underdetermined system
Impossible to solve in general

If x is sparse and Φ is diverse, then these systems can be “inverted”
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Sparsity/Compressibility

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor
coefficients

time
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

‖Ax‖22 ≈ ‖x‖22 for all x ∈ RN

i.e. A preserves lengths
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

‖A(x1 − x2)‖22 ≈ ‖x1 − x2‖22 for all x1, x2 ∈ RN

i.e. A preserves distances
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ) ≤ σ2
min(A) ≤ σ2

max(A) ≤ (1 + δ)

i.e. A has clustered singular values
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for some 0 < δ < 1
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a keeps sparse signals separated

(1− δ)‖x1 − x2‖22 ≤ ‖Φ(x1 − x2)‖22 ≤ (1 + δ)‖x1 − x2‖22

for all S-sparse x1, x2

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

To recover x0, we solve

min
x
‖x‖0 subject to Φx ≈ y

‖x‖0 = number of nonzero terms in x

This program is intractable
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

A relaxed (convex) program

min
x
‖x‖1 subject to Φx ≈ y

‖x‖1 =
∑

k |xk|

This program is very tractable (linear program)
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Sparse recovery algorithms

Given y, look for a sparse signal which is consistent.

One method: `1 minimization (or Basis Pursuit)

min
x
‖ΨTx‖1 s.t. Φx = y

Ψ = sparsifying transform, Φ = measurement system

2S-RIP for ΦΨ ⇒ perfect recovery of S-sparse signals

Convex (linear) program, can relax for robustness to noise...
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Stable recovery

Despite its nonlinearity, sparse recovery is stable in the presence of
I modeling mismatch (approximate sparsity), and
I measurement error

If we observe y = Φx0 + e, with ‖e‖2 ≤ ε, the solution x̂ to

min
x
‖ΨTx‖1 s.t. ‖y − Φx‖2 ≤ ε

will satisfy

‖x̂− x0‖2 ≤ Const ·
(
ε+
‖x0 − x0,S‖1√

S

)
where

I x0,S = S-term approximation of x0
I S is the largest value for which ΦΨ satisfies the RIP

Similar guarantees exist for other recovery algorithms
I greedy (Needell and Tropp ’08)
I iterative thresholding (Blumensath and Davies ’08)
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What types of matrices are restricted isometries?

Three examples:

Random matrices (iid entries)

Random subsampling

Random convolution

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated
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Random matrices (iid entries)

Φ

!"#$%&&
"'()'*%*+,&

S

-!*.'(&
%*+-/%,&

±1

0"'()-%,,%.&
(%!,1-%(%*+,2&

M

N+'+!3&-%,'31#'*45!*.6/.+7&8&

Random matrices are provably efficient

We can recover S-sparse x from

M & S · log(N/S)

measurements
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Rice single pixel cameraRice Single-Pixel CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)

28 / 43



Random matrices

Example: Φ consists of random rows from an orthobasis U

Can recover S-sparse x from

M & µ2 S · log4N

measurements, where

µ =
√
N max

i,j
|(UTΨ)ij |

is the coherence
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Examples of incoherence

Signal is sparse in time domain, sampled in Fourier domain

time domain x(t) freq domain x̂(ω)

S nonzero components measure m samples

Signal is sparse in wavelet domain, measured with noiselets
(Coifman et al ’01)

example noiselet wavelet domain noiselet domain
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Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)
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Random convolution

Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green’s function)

pulse 

(known)  
rcvr  

txmt  

profile 

(unknown)  

return 

(sample this)  

Applications include:
I radar imaging
I sonar imaging
I seismic exploration
I channel estimation for communications
I super-resolved imaging

Using a random pulse = compressive sampling
(Tropp et al. ’06, R ’08, Herman et al. ’08, Haupt et al. ’09, Rauhut ’09)
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Random convolution for CS, theory

Signal model: sparsity in any orthobasis Ψ

Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at m random locations Ω

Φ = RΩF∗ΣF , Σ = diag({σω})

The RIP holds for (R ’08)

M & S log5N

Note that this result is universal

Both the random sampling and the flat Fourier transform are needed
for universality
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Randomizing the phase

local in time local in freq not local in M

sample here
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Dynamic Sparse Recovery
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Streaming sparse recovery

Solving an optimization program like

min
x

τ‖x‖`1 +
1

2
‖Φx− y‖22

can be costly

We want to update the solution when the underlying signal changes
slightly
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Time-varying sparse signals

Initial measurements. Observe

y0 = Φx0 + e0

Initial reconstruction. Solve

min
x

τ‖x‖`1 +
1

2
‖Φx− y0‖22

A new set of measurements arrives:

y1 = Φx1 + e1

Reconstruct again using `1-min:

min
x

τ‖x‖`1 +
1

2
‖Φx− y1‖22

We can gradually move from the first solution to the second solution
using homotopy

min τ‖x‖`1 + (1− ε)1

2
‖Φx− y0‖22 + ε

1

2
‖Φx− y1‖22

Take ε from 0→ 1
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Update direction

min τ‖x‖`1 +
1− ε

2
‖Φx− yold‖22 +

ε

2
‖Φx− ynew‖22

Path from old solution to new solution is piecewise linear

Optimality conditions for fixed ε:

ΦT
Γ (Φx− (1− ε)yold − εynew) = −τ signxΓ

‖ΦT
Γc(Φx− (1− ε)yold − εynew)‖∞ < τ

Γ = active support

Update direction:

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ
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Experiments !"#$%&'!"#$%&'
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Average number of applications of Φ or ΦT :
DynamicX 26.2, GPSR-BB: 92.24, FPC AS: 90.9
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Reconstructing time-varying images

We want to acquire a “data cube” X0 (a time series of 2D images)

!"#$

The structure across time is different than that across space...
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Motion-compensated reconstruction

Regularize in space using sparsity, regularize in time using a motion
model, Xk+1 ≈Mk(Xk)

min
X

∑
k

(
‖ΦkXk − Yk‖2F + τ Sparsity(Xk) + η‖MkXk −Xk+1‖22

)
Given the image sequence {Xk}, we can use standard techniques
from video coding (block matching, local phase etc.) to estimate the
motion operators Mk

Strategy:
I Reconstruct a “smoothed” version of {Xk}
I Estimate the motion from this smoothed version
I Reconstruct a more accurate version using motion compensation
I Repeat (if desired) ...
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Single frame of reconstruction

original

reconstruct

error

no motion high-freq penalty motion comp. 42 / 43



Questions?

jrom@ece.gatech.edu
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