# A Survey of Compressed Sensing and Applications to Medical Imaging

Justin Romberg

Georgia Tech, School of ECE

Fields-MITACS Conference on Mathematics of Medical Imaging
June 21, 2011
Toronto, Ontario

#### A simple underdetermined inverse problem

Observe a subset  $\Omega$  of the 2D discrete Fourier plane



phantom (hidden)



white star = sample locations

 $N:=512^2=262,144$  pixel image observations on 22 radial lines, 10,486 samples,  $\approx 4\%$  coverage

#### Minimum energy reconstruction

Reconstruct  $g^*$  with

$$\hat{g}^*(\omega_1, \omega_2) = \begin{cases} \hat{f}(\omega_1, \omega_2) & (\omega_1, \omega_2) \in \Omega \\ 0 & (\omega_1, \omega_2) \notin \Omega \end{cases}$$

Set unknown Fourier coeffs to zero, and inverse transform



original



Fourier samples



#### Total-variation reconstruction

#### Find an image that

- Fourier domain: matches observations
- Spatial domain: has a minimal amount of oscillation

Reconstruct  $q^*$  by solving:

$$\min_{g} \sum_{i,j} |(\nabla g)_{i,j}| \quad \text{s.t.} \quad \hat{g}(\omega_1,\omega_2) = \hat{f}(\omega_1,\omega_2), \quad (\omega_1,\omega_2) \in \Omega$$



original



Fourier samples



 $q^* = \text{original}$ perfect reconstruction

#### Sampling a superposition of sinusoids

We take  ${\cal M}$  samples of a superposition of  ${\cal S}$  sinusoids:



Measure M samples (red circles = samples)



S nonzero components

#### Sampling a superposition of sinusoids

#### Reconstruct by solving

$$\min_{r} \|\hat{x}\|_{\ell_1} \quad \text{subject to} \quad x(t_m) = x_0(t_m), \quad m = 1, \dots, M$$





perfect recovery from 30 samples

#### Numerical recovery curves

- Resolutions N=256,512,1024 (black, blue, red)
- ullet Signal composed of S randomly selected sinusoids
- ullet Sample at M randomly selected locations



 $\bullet$  In practice, perfect recovery occurs when  $M\approx 2S$  for  $N\approx 1000$ 

#### A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

- Unknown  $\hat{x}_0$  is supported on set of size S
- ullet Select M sample locations  $\{t_m\}$  "at random" with

$$M \ge \operatorname{Const} \cdot S \log N$$

- ullet Take time-domain samples (measurements)  $y_m = x_0(t_m)$
- Solve

$$\min_{x} \|\hat{x}\|_{\ell_1}$$
 subject to  $x(t_m) = y_m, m = 1, \dots, M$ 

- ullet Solution is *exactly* f with extremely high probability
- In total-variation/phantom example, S=number of jumps

# Graphical intuition for $\ell_1$

$$\min_{x} ||x||_2$$
 s.t.  $\Phi x = y$ 

$$\min_x \|x\|_1$$
 s.t.  $\Phi x = y$ 





#### Acquisition as linear algebra



- Small number of samples = underdetermined system
   Impossible to solve in general
- If x is *sparse* and  $\Phi$  is *diverse*, then these systems can be "inverted"

# Sparsity/Compressibility

 $N \\ {
m pixels}$ 





 $S \ll N$  large wavelet coefficients

N wideband signal samples





 $S \ll N$  large Gabor coefficients

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$||Ax||_2^2 \approx ||x||_2^2$$
 for all  $x \in \mathbb{R}^N$ 

i.e. A preserves *lengths* 

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$||A(x_1-x_2)||_2^2 \approx ||x_1-x_2||_2^2$$
 for all  $x_1, x_2 \in \mathbb{R}^N$ 

i.e. A preserves distances

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$(1 - \delta) \le \sigma_{\min}^2(A) \le \sigma_{\max}^2(A) \le (1 + \delta)$$

i.e. A has clustered singular values

• Suppose we have an  $M \times N$  observation matrix A with  $M \geq N$  (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover  $x_0$ , use the *pseudo-inverse* 

solve 
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an approximate isometry...

$$(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2$$

for some  $0 < \delta < 1$ 

• Now we have an underdetermined  $M \times N$  system  $\Phi$  (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• Now we have an underdetermined  $M \times N$  system  $\Phi$  (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover  $x_0$  when  $\Phi$  is a keeps sparse signals separated

$$(1-\delta)\|x_1-x_2\|_2^2 \le \|\Phi(x_1-x_2)\|_2^2 \le (1+\delta)\|x_1-x_2\|_2^2$$

for all S-sparse  $x_1, x_2$ 

• Now we have an underdetermined  $M \times N$  system  $\Phi$  (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover  $x_0$  when  $\Phi$  is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \ \leq \ \|\Phi x\|_2^2 \ \leq \ (1+\delta)\|x\|_2^2 \quad \mbox{for all } 2S\mbox{-sparse } x$$

• Now we have an underdetermined  $M \times N$  system  $\Phi$  (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover  $x_0$  when  $\Phi$  is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all  $2S$ -sparse  $x$ 

• To recover  $x_0$ , we solve

$$\min_{x} \|x\|_{0} \quad \text{subject to} \quad \Phi x \approx y$$

 $||x||_0 = \text{number of nonzero terms in } x$ 

• This program is intractable

 $\bullet$  Now we have an underdetermined  $M\times N$  system  $\Phi$  (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover  $x_0$  when  $\Phi$  is a restricted isometry (RIP)

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all  $2S$ -sparse  $x$ 

A relaxed (convex) program

$$\min_{x} \|x\|_1 \quad \text{subject to} \quad \Phi x \approx y$$

$$||x||_1 = \sum_k |x_k|$$

• This program is very tractable (linear program)

#### Sparse recovery algorithms

- Given y, look for a sparse signal which is consistent.
- One method:  $\ell_1$  minimization (or *Basis Pursuit*)

$$\min_{x} \|\Psi^{T} x\|_{1} \quad \text{s.t.} \quad \Phi x = y$$

 $\Psi = \text{sparsifying transform}, \ \Phi = \text{measurement system}$ 

- $\bullet$  2S-RIP for  $\Phi\Psi \ \Rightarrow \ \text{perfect recovery of }S\text{-sparse signals}$
- Convex (linear) program, can relax for robustness to noise...

#### Stable recovery

- Despite its nonlinearity, sparse recovery is stable in the presence of
  - modeling mismatch (approximate sparsity), and
  - measurement error
- If we observe  $y = \Phi x_0 + e$ , with  $||e||_2 \le \epsilon$ , the solution  $\hat{x}$  to

$$\min_{\boldsymbol{x}} \| \boldsymbol{\Psi}^T \boldsymbol{x} \|_1 \quad \text{s.t.} \quad \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \|_2 \leq \epsilon$$

will satisfy

$$\|\hat{x} - x_0\|_2 \le \operatorname{Const} \cdot \left(\epsilon + \frac{\|x_0 - x_{0,S}\|_1}{\sqrt{S}}\right)$$

#### where

- $x_{0,S} = S$ -term approximation of  $x_0$
- S is the largest value for which  $\Phi\Psi$  satisfies the RIP
- Similar guarantees exist for other recovery algorithms
  - greedy (Needell and Tropp '08)
  - ▶ iterative thresholding (Blumensath and Davies '08)

#### What types of matrices are restricted isometries?

#### Three examples:

- Random matrices (iid entries)
- Random subsampling
- Random convolution

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated

# Random matrices (iid entries)



- Random matrices are provably efficient
- ullet We can recover S-sparse x from

$$M \gtrsim S \cdot \log(N/S)$$

measurements

#### Rice single pixel camera



(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk '08)

#### Random matrices

Example:  $\Phi$  consists of *random rows* from an *orthobasis* U



Can recover S-sparse x from

$$M \gtrsim \mu^2 S \cdot \log^4 N$$

measurements, where

$$\mu \ = \ \sqrt{N} \max_{i,j} |(U^T \Psi)_{ij}|$$

is the coherence

#### Examples of incoherence

• Signal is sparse in time domain, sampled in Fourier domain





S nonzero components

measure m samples

• Signal is sparse in wavelet domain, measured with noiselets

(Coifman et al '01)

example noiselet



wavelet domain



noiselet domain



#### Accelerated MRI



(Lustig et al. '08)

#### Random convolution

 Many active imaging systems measure a pulse convolved with a reflectivity profile (Green's function)



- Applications include:
  - radar imaging
  - sonar imaging
  - seismic exploration
  - channel estimation for communications
  - super-resolved imaging
- Using a *random pulse* = compressive sampling (Tropp et al. '06, R '08, Herman et al. '08, Haupt et al. '09, Rauhut '09)

#### Random convolution for CS, theory

- ullet Signal model: sparsity in any orthobasis  $\Psi$
- Acquisition model: generate a "pulse" whose FFT is a sequence of random phases (unit magnitude), convolve with signal, sample result at m random locations  $\Omega$

$$\Phi = R_{\Omega} \mathcal{F}^* \Sigma \mathcal{F}, \quad \Sigma = \operatorname{diag}(\{\sigma_{\omega}\})$$

• The RIP holds for (R '08)

$$M \gtrsim S \log^5 N$$

Note that this result is universal

 Both the random sampling and the flat Fourier transform are needed for universality

#### Randomizing the phase



# Dynamic Sparse Recovery

#### Streaming sparse recovery

• Solving an optimization program like

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y\|_2^2$$

can be costly

 We want to <u>update</u> the solution when the underlying signal changes slightly

#### Time-varying sparse signals

Initial measurements. Observe

$$y_0 = \Phi x_0 + e_0$$

Initial reconstruction. Solve

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y_0\|_2^2$$

A new set of measurements arrives:

$$y_1 = \Phi x_1 + e_1$$

• Reconstruct again using  $\ell_1$ -min:

$$\min_{x} \ \tau \|x\|_{\ell_1} + \frac{1}{2} \|\Phi x - y_1\|_2^2$$

 We can gradually move from the first solution to the second solution using homotopy

min 
$$\tau \|x\|_{\ell_1} + (1 - \epsilon) \frac{1}{2} \|\Phi x - y_0\|_2^2 + \epsilon \frac{1}{2} \|\Phi x - y_1\|_2^2$$

Take  $\epsilon$  from  $0 \to 1$ 

#### Update direction

min 
$$\tau \|x\|_{\ell_1} + \frac{1-\epsilon}{2} \|\Phi x - y_{\text{old}}\|_2^2 + \frac{\epsilon}{2} \|\Phi x - y_{\text{new}}\|_2^2$$

- Path from old solution to new solution is piecewise linear
- Optimality conditions for fixed  $\epsilon$ :

$$\Phi_{\Gamma}^{T}(\Phi x - (1 - \epsilon)y_{\text{old}} - \epsilon y_{\text{new}}) = -\tau \operatorname{sign} x_{\Gamma}$$
$$\|\Phi_{\Gamma^{c}}^{T}(\Phi x - (1 - \epsilon)y_{\text{old}} - \epsilon y_{\text{new}})\|_{\infty} < \tau$$

 $\Gamma = \mathsf{active} \ \mathsf{support}$ 

• Update direction:

$$\partial x = \begin{cases} -(\Phi_{\Gamma}^T \Phi_{\Gamma})^{-1} (y_{\text{old}} - y_{\text{new}}) & \text{on } \Gamma \\ 0 & \text{off } \Gamma \end{cases}$$

#### **Experiments**



Average number of applications of  $\Phi$  or  $\Phi^T$ : DynamicX 26.2, GPSR-BB: 92.24, FPC\_AS: 90.9

#### Reconstructing time-varying images

We want to acquire a "data cube"  $X_0$  (a time series of 2D images)



The structure across time is different than that across space...

#### Motion-compensated reconstruction

 $\bullet$  Regularize in space using sparsity, regularize in time using a motion model,  $X_{k+1} \approx M_k(X_k)$ 

$$\min_{X} \sum_{k} (\|\Phi_{k} X_{k} - Y_{k}\|_{F}^{2} + \tau \operatorname{Sparsity}(X_{k}) + \eta \|M_{k} X_{k} - X_{k+1}\|_{2}^{2})$$

- Given the image sequence  $\{X_k\}$ , we can use standard techniques from video coding (block matching, local phase etc.) to estimate the motion operators  $M_k$
- Strategy:
  - ▶ Reconstruct a "smoothed" version of  $\{X_k\}$
  - Estimate the motion from this smoothed version
  - ▶ Reconstruct a more accurate version using motion compensation
  - Repeat (if desired) ...

#### Single frame of reconstruction

original

reconstruct

error



no motion

high-freq penalty

motion comp.  $_{42/43}$ 

#### Questions?

jrom@ece.gatech.edu