A Survey of Compressed Sensing and Applications to
Medical Imaging

Justin Romberg

Georgia Tech, School of ECE

Fields-MITACS Conference on Mathematics of Medical Imaging
June 21, 2011
Toronto, Ontario

43



A simple underdetermined inverse problem

Observe a subset €) of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10,486 samples, ~ 4% coverage
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Minimum energy reconstruction

Reconstruct g* with

fwi,w2) (w1, ws) € Q

g*(Ml,WQ) = {0 (w1’w2) ¢ 0

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g



Total-variation reconstruction

Find an image that

@ Fourier domain: matches observations

@ Spatial domain: has a minimal amount of oscillation
Reconstruct ¢g* by solving:

miny"|(Vg)s,
0,

st g(wi,ws) = f(wl,wg), (wi,ws) € Q

original Fourier samples g* = original

perfect reconstruction
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Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain z(t)

Frequency domain Zo(w)

Measure M samples
(red circles = samples)

LT
' V

S nonzero components
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Sampling a superposition of sinusoids
Reconstruct by solving

min ||Z]|¢, subject to x(ty) =xo(tm), m=1,...,M
x

ALy

original Zg, S =15 perfect recovery from 30 samples

6/43



Numerical recovery curves

@ Resolutions N = 256,512,1024 (black, blue, red)
@ Signal composed of S randomly selected sinusoids
@ Sample at M randomly selected locations
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@ In practice, perfect recovery occurs when M ~ 25 for N =~ 1000
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A nonlinear sampling theorem

Exact Recovery Theorem (Candes, R, Tao, 2004):
@ Unknown Zg is supported on set of size S

@ Select M sample locations {t,,} “at random” with

M > Const - Slog N

Take time-domain samples (measurements) vy, = zo(t,)

Solve

min ||Z||,, subjectto z(tm) =Ym, m=1,..., M
x

@ Solution is exactly f with extremely high probability

@ In total-variation/phantom example, S=number of jumps



Graphical intuition for /;

min, ||z|ls st. Pr =y  min, ||z|; st. Pr =y
RN ) RN

A ’
m:

{x/: y=d2'} {2': y= Pz}



Acquisition as linear algebra

# samples _ P resolution/
M bandwidth
xr
\_Y_’ L v J N
data acquisition
system
!
unknown
signal/image

@ Small number of samples = underdetermined system
Impossible to solve in general

o If x is sparse and @ is diverse, then these systems can be “inverted
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Sparsity /Compressibility

S< N
large
wavelet
coefficients

S<N
large
Gabor
coefficients

frequency

e
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Azg + noise
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Azg + noise
@ Standard way to recover xq, use the pseudo-inverse

solve min|jy — Az|3 < &= (ATA)tATy
X
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Azg + noise
@ Standard way to recover xq, use the pseudo-inverse
solve lein ly — Az||3 < &= (ATA)"1ATy
@ Q: When is this recovery stable? That is, when is

|12 = 0|13 ~ [Inoisel|3 ?
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve lein ly — Az||3 < &= (ATA)1ATy
@ Q: When is this recovery stable? That is, when is

12 = woll3 ~ [[noisel|3 ?

@ A: When the matrix A is an approximate isometry...
|Az||3 ~ ||z||3 for all z € RY

i.e. A preserves lengths
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve lein ly — Az||3 < &= (ATA)1ATy
@ Q: When is this recovery stable? That is, when is

12 = woll3 ~ [[noisel|3 ?

@ A: When the matrix A is an approximate isometry...
||A(:L’1 — :I)z)”% ~ ||.Z‘1 — IEQH% for all x1,T2 € RN

i.e. A preserves distances

16
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve lein ly — Az||3 < &= (ATA)1ATy
@ Q: When is this recovery stable? That is, when is

12 = woll3 ~ [[noisel|3 ?

@ A: When the matrix A is an approximate isometry...

(1-0) <o2in(A) < 02 (A) < (140)

min max

i.e. A has clustered singular values
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Az + noise
@ Standard way to recover x, use the pseudo-inverse
solve H%Ein ly — Az||3 < &= (ATA)"1aTy
@ Q: When is this recovery stable? That is, when is
1& — 2o|3 ~ |noise||3 7
@ A: When the matrix A is an approximate isometry...
L=l < Azl3 < (1+8)]«l3

forsome 0 < d <1
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When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = Pxg + noise
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When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = Pz + noise

@ We can recover xg when @ is a keeps sparse signals separated
(L =d)z1 =223 < [[@(z1 —22)[3 < (1+0)||z1 — 223

for all S-sparse x1,x2
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When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = Pxg + noise

@ We can recover xy when ® is a restricted isometry (RIP)

(1=0)|z]|3 < ||®z]|3 < (1+0)|z||3 for all 25-sparse =
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When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = ®x( + noise
@ We can recover zp when ® is a restricted isometry (RIP)
(1—0)|z]|3 < ||®z]|3 < (1+8)|z||3 for all 25-sparse =
@ To recover xp, we solve
min ||z|o subjectto Pz xy
€T
|z|lo = number of nonzero terms in x

@ This program is intractable



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = Pz + noise

e We can recover zp when ® is a restricted isometry (RIP)
(1=0)|z]|3 < ||®z]|3 < (1+0)|z||3 for all 25-sparse =
@ A relaxed (convex) program

min ||z||; subjectto Pr~y
€T

[l = 225, ]

@ This program is very tractable (linear program)
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Sparse recovery algorithms

Given g, look for a sparse signal which is consistent.

One method: ¢; minimization (or Basis Pursuit)
min [|[UTz); st dr=y
xr

W = sparsifying transform, ® = measurement system

2S5-RIP for ¥ = perfect recovery of S-sparse signals

Convex (linear) program, can relax for robustness to noise...

24 /43



Stable recovery

@ Despite its nonlinearity, sparse recovery is stable in the presence of
» modeling mismatch (approximate sparsity), and
> measurement error

o If we observe y = &z + e, with |le||2 < ¢, the solution Z to
min |87z); st |ly— Pzf2 <e
xr

will satisfy

|z — x0l]2 < Const - (e +

lzo — 960,5H1>
NG

where
> 9,5 = S-term approximation of xg
» S is the largest value for which &V satisfies the RIP
@ Similar guarantees exist for other recovery algorithms
> greedy (Needell and Tropp '08)
> iterative thresholding (Blumensath and Davies '08)
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What types of matrices are restricted isometries?

Three examples:
e Random matrices (iid entries)
@ Random subsampling

@ Random convolution

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated
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Random matrices (iid entries)

Y d
“compressed —
measurements” n 1
| |

random 1
entries

active
components

NN EEEEEC AR

total resolution/bandwidth = N

@ Random matrices are provably efficient
@ We can recover S-sparse x from
M =z S-log(N/S)

measurements



Rice single pixel camera

single photon
detector

image
reconstruction
or
processing
random <<(
pattern on _ o =t -
DMD array DSP

Rcvr

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk '08)
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Random matrices

Example: ® consists of random rows from an orthobasis U
y P T
Can recover S-sparse x from
M > p?S-log*N
measurements, where

po= VNmax |(UTD),;]
2y

is the coherence
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Examples of incoherence

@ Signal is sparse in time domain, sampled in Fourier domain

time domain () freq domain Z(w)

L M

Illa

S nonzero components measure m samples

@ Signal is sparse in wavelet domain, measured with noiselets

example noiselet

(Coifman et al '01)
wavelet domain noiselet domain
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Accelerated MRI

SPIR-iT

(Lustig et al. '08)




Random convolution

o Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green's function)

|
— !!‘t%M\WM.WI — — —
pulse profile return revr
txmt (known) (unknown) (sample this)

@ Applications include:

radar imaging

sonar imaging

seismic exploration

channel estimation for communications
super-resolved imaging

vV vy VY VvYYy

e Using a random pulse = compressive sampling

(Tropp et al. '06, R '08, Herman et al. '08, Haupt et al. '09, Rauhut '09)
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Random convolution for CS, theory

@ Signal model: sparsity in any orthobasis W

@ Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at m random locations €2

& = RoF*YF, ¥ =diag({o,})

@ The RIP holds for (R '08)
M > Slog® N

Note that this result is universal

@ Both the random sampling and the flat Fourier transform are needed
for universality
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Randomizing the phase

local in time local in freq not local in M

=~

sample here
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Dynamic Sparse Recovery
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Streaming sparse recovery

@ Solving an optimization program like
. 1 2
min 7|zl + S|Pz -yl
T 2
can be costly

o We want to update the solution when the underlying signal changes
slightly
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Time-varying sparse signals
@ Initial measurements. Observe
yo = Pxo + €
@ Initial reconstruction. Solve
. 1 9
min 7z + 5 [|Pz — Yol
z 2
@ A new set of measurements arrives:
y1 = Pr1 + e
@ Reconstruct again using ¢1-min:
. 1 9
min 7l|z{le, + 5P -yl

@ We can gradually move from the first solution to the second solution
using homotopy

. 1 1
min 7z, + (1 - 5182 = yoll3 + €5 |12 — 1 3

Take e from 0 — 1
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Update direction

. 1—e€ €
min T”fol + TH(I)x - yOIdH% + §||<I>$ - yneWH%

@ Path from old solution to new solution is piecewise linear
@ Optimality conditions for fixed e:
@%(@m - (1 - 6)yold - Eynew) = —Tsignar
H(I)EC(‘IXU — (1 = €)Yold — €Ynew)lloo < T

I' = active support

o Update direction:

oxr = _((plj:q)f‘)_l(yold - ynew) on T
0 off T
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Experiments

Wavelet coefficients (zoom in) Slices of the image

0.9
0.8
0.7
0.6
0.5
0.4

0.3

Average number of applications of ® or ®”":
DynamicX 26.2, GPSR-BB: 92.24, FPC_AS: 90.9
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Reconstructing time-varying images

We want to acquire a “data cube” X (a time series of 2D images)

The structure across time is different than that across space...
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Motion-compensated reconstruction

@ Regularize in space using sparsity, regularize in time using a motion
model, Xj1 ~ My(Xy)

min > (I19x Xk — Yil[3 + 7 Sparsity(Xy) + 0| MpXg — Xp413)
k

o Given the image sequence { X}, we can use standard techniques
from video coding (block matching, local phase etc.) to estimate the
motion operators M,

o Strategy:

» Reconstruct a “smoothed” version of {X}}

» Estimate the motion from this smoothed version

» Reconstruct a more accurate version using motion compensation
> Repeat (if desired) ...
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Single frame of reconstruction

original

reconstruct

no motion high-freq penalty motion comp. ,



Questions?

jrom@ece.gatech.edu
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