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Computational Anatomy

Design Mathematical Methods and Algorithms to Model and Analyze the Anatomy
o Statistics of organ shapes across species, populations, diseases...

o Model organ development across time (heart-beat, growth, ageing, ages...)

o To understand and to model the substrate of life
o Classify structural deviations (taxonomy), Relate anatomy and function

o To detect, understand and correct dysfunctions
o From generic (atlas-based) to patients-specific models

o Very active topic in medical image analysis
e UCLA summer school 04 & 08, MFCAO06, 08 & 11 workshops
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Statistical analysis, modeling and applications

Integrative models

for biology and
medical sciences

Statistical
analysis

Knowledge
inference

Generative
models
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Methods of computational anatomy
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Structural variability of the cortex

o Hierarchy of anatomical features (structural models)
o Group-wise correspondences in the population

o Model observations and its structural variability
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Statistical Analysis of Geometric Features

Geometric features belong to manifolds
o Curves, tracts

o Surfaces i
o Tensors, covariance matrices — vwes Eaﬁ»r
o Transformations / deformations e
’ 'l\_,_:l'- o
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Algorithms for statistics on geometric manifolds
o Definition of mean / covariance / PCA / distributions of geometric features?
o Mathematical structure = algorithmic bases
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Goals and methods of Computational anatomy

Statistical computing on manifolds

o The mathematical framework
o Simple statistics on Riemannian manifolds
o Extension to manifold-values images

Statistics on shapes through deformations

Conclusion and challenges
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The geometric framework: Riemannian Manifolds

Riemannian metric :
o Dot product on tangent space
o Speed, length of a curve

o Distance and geodesics
o Closed form for simple metrics/manifolds
o Optimization for more complex

Exponential map (Normal coord. syst.) :

o Geodesic shooting: Exp,(v) = y(x’v)(l)
o Log: find vector to shoot right

Basic tools: Unfolding (Log,), folding (Exp,) \ \

o Vector -> Bipoint (no more equivalent class)

Operator Euclidean space | Riemannian manifold
Subtraction Xy =y —X X_);: Log, (V)
Addition Yy =X+ Xy y = Exp, (xy)
Distance dist(x,y) = Hy - XH dist(x, y) = x?
Gradient descent X, =% —&VC(X) X, = EXP, (=éVC(x))
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Statistical tools: Moments

Definition: Frechet / Karcher mean minimize the variance
E[x]:argmin(E[dist(y,x)z]) = E%&Jz jﬁ.px(z).dM(z):O [P(C)=0]
yeM M

Existence and uniqueness : Karcher and Kendall

Algorithm: Gauss-Newton Geodesic marching

X, =expy (V) with v= E{YXJ: %Zly_x;

[Fletcher: Median / Arnaudon: stochastic algortithm]

Covariance (PCA) [higher moments]

S = EKYT()(%E) J: 5y (Xxi )(Yxi )

[Oller & Corcuera 95, Battacharya & Patrangenaru 02, Pennec 96, NSIP’99, JMIV06]
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Distributions for parametric tests

Generalization of the Gaussian density:
o Stochastic heat kernel p(x,y,t) [complex time dependency]
o Wrapped Gaussian [Infinite series difficult to compute]
o Maximal entropy knowing the mean and the covariance

N FzZ(_l)—;RiC+O(c7)+g(0'/r)
N(y) = k'EXp((XX) 'F'(XX)/ 2) k =(27) "2 det(Z) 2.1+ 0(c* )+ £(c /7))

Mahalanobis D2 distance / test: ,uf (y) = xy Z( 1) Xy
o Any distribution: E[,uf(x)]:
o Gaussian: i (x) o y2+0(c®) +e(o /1)

[ Pennec, RR-5093 1999, NSIP’99 JMIVO06]
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Statistical Analysis of the Scoliotic Spine
[ J. Boisvert et al. ISBI'06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Database

o 307 Scoliotic patients from the Montreal’s
Sainte-Justine Hospital.

o 3D Geometry from multi-planar X-rays
Mean
o Main translation variability is axial (growth?)

o Main rot. var. around anterior-posterior axis

X. Pennec - Fields - MITACS, June 22 2011 10



Statistical Analysis of the Scoliotic Spine

[ J. Boisvert et al. ISBI'06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009

PCA of the Covariance: « Mode 1: King's class | or Ill « Mode 3: King’s class IV + V

4 first variation modes « Mode 2: King's class I, II, Ill * Mode 4: King's class V (+11)
have clinical meaning
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o The mathematical framework
o Simple statistics on Riemannian manifolds
o Extension to manifold-values images

Statistics on shapes through deformations

Conclusion and challenges
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Diffusion Tensor Imaging

Covariance of the Brownian motion of water
-> Architecture of axonal fibers

Very noisy data

o Tensor image processing

e RoObust estimation o

o Filtering, regularization
o Interpolation / extrapolation

o Information extraction (fibers)

Symmetric positive definite matrices

o Convex operations are stable
e Mean, interpolation
o More complex operations are not

o PDEs, gradient descent... Diffusion Tensor Filed
(slice of a 3D volume)

Intrinsic computing on Manifold-valued images?

——
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Riemannian Frameworks on tensors

Affine-invariant Metric (homogeneous manifold — Hadamard space)
o Dot product <V |W>Z = <AVAT | AWAT>A2AT — <Z_l/2\/2_1/2 |Z_l/2\NZ_1/2>

Id

o Geodesics EXDZ (Z_‘I;) _ g2 exp(z—llzlﬁ}lz—UZ)Zl/Z

o Distance dist(z, ¥)’ =(Z¥| %) =[logE w5 )
by

2
Lo

[ Pennec, Fillard, Ayache, IJCV 66(1), 2006, Lenglet JMIV’'06, etc]

Log-Euclidean similarity invariant metric (vector space)

o Transport Euclidean structure through matrix exponential
o Dot product (v [W)_=(d, log(Z)|d,, log(Z)),,
o Geodesics  Exp, (Z¥) = exp(log(Z) +d; 10g(Z))

o Distance dist(z,,Z, ¥ =[log(Z,)-log(Z, )|

[ Arsigny, Pennec, Fillard, Ayache, SIAM’'06, MRM’06 ]
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Intrinsic Riemannian Image Processing

Intrinsic formulations with weighted means

o Interpolation L
« Linear between 2 elements: interpolation geodesic X(t) =exp, (tx,x,)

Euclidean interpolation (coefficients) Interpolation along the Affine-
invariant geodesic:

X. Pennec - Fields - MITACS, June 2228¢1h o Fillard, Ayache, 1IJCV 66(1), 2006] 15



Intrinsic Riemannian Image Processing

Intrinsic formulations with weighted means

o Interpolation L
« Linear between 2 elements: interpolation geodesic X(t) =exp, (tx,x,)
e Bi- or tri-linear in images: weighted means

Euclidean Affine invariant

X. Pennec - Fields - MITACS, June 2228¢1h o Fillard, Ayache, 1IJCV 66(1), 2006] 16



Intrinsic Riemannian Image Processing

Regularization / anisotropic filtering

o Harmonic: Laplace Beltrami Reg(X) = j Hvz(x)u;x)dx

o Anisotropic
o Perona-Malik 90 / Gerig 92 AZ0) =Y wllo, 200, ) A,2()
 Robust functions Reg(2) = [ @([VE(; , ki

o Trivial intrinsic numerical schemes thanks the exponential maps!

Original Euclidean Riemannian
[ Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, MRM’06 ]
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A Statistical Atlas of the Cardiac Fiber Structure
[ J.M. Peyrat, et al., MICCAI'06, TMI 26(11), 2007]

Database :
_ *Average cardiac structure
o 7 canine hearts from JHU
o Anatomical MRI and DTI Variability of fibers, sheets
Method

o Normalization based on aMRIs

o Log-Euclidean statistics of Tensors:
analysis more powerful than dyadic

Norm
covariance

Eigenvalues
covariance
(1st’ 2nd’ 3rd)

Eigenvectors
orientation
covariance
(around 1st,
2nd, 3rd)

Freely available at http://www-sop.inria.fr/asclepios/data/heart
[ |

X. Pennec - Fields - MITACS, June 22 2011 18



Diffusion model of the human heart

10 human ex vivo hearts (CREATIS-LRMN, Lyon, France)
o Classified as healthy (controlling weight, septal
thickness, pathology examination)
o Acquired on 1.5T MR Avento Siemens
e bipolar echo planar imaging, 4 repetitions, 12 gradients
o Volume size: 128x128x52, 2 mm resolution

Fiber tractography in the left ventricle

Helix angle highly correlated to
the transmural distance
[ H. Lombaert Statistical Analysis of the
Human Cardiac Fiber Architecture from DT-

MRI, ISMRM 2011, FIMH 2011]
19
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Statistics on shapes through deformations
o Growth model of the right ventricle surface

o Statistics on image-based deformations
o Modeling longitudinal evolution in AD

Conclusion and challenges
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Repaired Tetralogy of Fallot

e Severe Congenital Heart Disease

e Occurs 1 of 2500 (Hoffman, JACC 02)

* Surgical repair in infancy

» After repair: chronic pulmonary valve
regurgitations and extremely dilated
right ventricle (RV).

Towards
the lungs

Pulmonary Valve

Incoming

blood

Tricuspid Valve

Right Ventricle

Best time for valve replacement:
understand / quantify the remodeling

http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php

X. Pennec - Fields - MITACS, June 22 2011 21



Repaired Tetralogy of Fallot

Remodeling of the right ventricle of the heart in tetralogy of Fallot

o Mean shape
o Shape variability

o Correlation with clinical variables
o Predicting remodeling effect

Shape of RV in 18 patients

X. Pennec - Fields - MITACS, June 22 2011 22



Shapes: forms & deformations

Skulls of a human, a chimpanzee and a baboon
and transfortmations between them

Scarus sp. Pomacanthus,

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
o Deterministic template (atlas) = anatomical invariants
o Random deformations = geometrical variability
o Observations = “random” deformations of an unknow template

X. Pennec - Fields - MITACS, June 22 2011 23



Riemannian metrics on diffeomorphisms

Space of deformations
o Curves in transformation spaces: ¢(x,t)
o Tangent vector = time varying speed vector field V,(X) =

dg(x,t)
dt

Right invariant metric .
o Eulerian scheme i = |Veod ‘,d

o Sobolev Norm H, or H,, (RKHS) in LDDMM -> diffeomorphisms
[Miller, Trouve, Younes, Dupuis 1998 — 2009]

v

Geodesics determined by optimization of a time-varying vector field
o Distance d?(4,,4,) = arg min(ijJ}Z dt)
o9 t

o Geodesics characterized by initial momentum
o Point supported objects (Currents, e.g. curves, surface): finite
dimensional parameterization with Dirac currents [ Glaunes PhD’06 ]

o Images: more difficult implementation [Beg IJCV 2005, Niethammer 09]
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Currents for lines and surfaces

Generalization of distributions (e.g. Dirac) to vectors
o [Vaillant and Glaunes IPMI'05; Glaunes PhD’06]
o Distributions are known through their action on smooth test functions

o Currents integrate smooth vector fields (e.g. W=K®L, with K=G_.Id):
they measure the flux along lines or through surface

o Closed form distance for RKHS M

(L L)y = 20 K6 =X )t

I,
(+) No point correspéndences needed
(+) No conditions on the sampling required
(-) “soft” distance: curvature not accounted for f S { w nx ) do(x ( )
(-) Arbitrary choice of the kernel (shape & size)

Algorithms on currents

o Statistical analysis (mean, PCA) [Durrleman et al, Media 13(5) 2009]

o Fast and stable computations thanks to controlled approximations
(matching pursuit) [Durrleman, MICCAIOS : Young investigator award]

X. Pennec - Fields - MITACS, June 22 2011 25



Atlas and Deformations Joint Estimation

Estimate mean and modes of the end-diastolic RV shape

Atlas
¢
<4 /¢5_’
Patient 1 _
Patient 5
¢,
¢2 ¢3
| PO ] v"
Vi WM Patient 4
Patient 3
Patient 2
[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) ]
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Atlas and Deformations Joint Estimation

Method: PLS (better than PCA + CCA) to

o Find modes that are significantly correlated to clinical variables
(body surface area, tricuspid and pulmonary valve regurgitations).

o Create a generative model by regressing shape vs BSA

Average RV anatomy : . : :
of 18 ToF patients 10 DéforauzrscighfidesttyAii efotpddiodB $hergy

[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) ]
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Statistical Remodeling of RV in Tetralogy of Fallot
[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) |

Age: 10 BSA: 0.90m2 Age: 10 BSA: 0.90m2
Predicted remodeling effect ... has aclinical interpretation
Valve Pulmonary RV Septum RV free-
Volume : :
: annuli stenosis pressure pushed wall
increases \
deform reduces decreases inwards outwards
[ B
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Statistics on which deformations feature?

Space of “initial momentum” [Quantity of motion instead of speed]

[Vaillant et al., Neurolmage, 04, Durrleman et al, MICCAI'07]
Based on right-invariant metrics on diffeos [Trouvé, Younes et al.]
No more finite dimensional parameterization with images
Computationally intensive for images

|
|
|
|
Global statistics on displacement field or B-spline parameters

o [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’05],[P. Fillard, stats on sulcal lines]
o Simple vector statistics, but inconsistency with group properties

Local statistics on local deformation (mechanical properties)
o Gradient of transformation, strain tensor
o Riemannian elasticity [Pennec, MICCAI'05, MFCA’06]
o TBM[N. Lepore & C. Brun, MICCAI'06 & 07, ISBI'0O8, Neuroimage(09]

An alternative: “log-Euclidean” statistics on diffeomorphisms?

o Stationary velocity fields [Arsigny, MICCAI'06]

o [Bossa, MICCAI'07, Vercauteren MICCAI'0O7, MICCAI 08, Ashburner Neurolmage 2007]
o Efficient numerical methods!

X. Pennec - Fields - MITACS, June 22 2011 30



The SVF framework for Diffeomorphisms

Stationary velocity fields [Arsigny et al., MICCAI 06]
o Group exponential (one-parameter subgroups)

Exponential of a smooth vector field is a diffeomorphism
o U IS a smooth stationary velocity field
o Exponential: solution at time 1 of ODE ox(t) / ot = u( x(t) )

—

Stationary velocity field Diffeomorphism

X. Pennec - Fields - MITACS, June 22 2011 31



The SVF framework for Diffeomorphisms

Numerical methods
o Take advantage of algebraic properties of exp and log.

— Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms

o Computing the deformation: Scaling and squaring algorithm
recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

Compatible with group structure
o Inversion: T-1 = exp(-v)
o Composition: BCH formula [Bossa MICCAI 2007]

log( exp(v) o exp(eu) ) =v + €u + [v,eu}/2 + [v,[v,eu])/12 + ...
o Lie bracket [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)
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Symmetric log-demons [Vercauteren MICCAI 08]

Demons framework [Thirion, MRCAS 95, CVPR96, Media98]
o Pragmatic alternated optical flow and Gaussian smoothing

o Rigorously justified by adding correspondences (matches) as an
auxiliary variable [Cachier, CVIU:89(2-3), 2003]

Log-demons with SVFs

Lo 2 1 2
E(v.Ve) = =5 ||[#' = M oexp(ve)| 1, + — [ log(exp(—v) o exp(ve))|z, + R(V)
i —T— A — ' —
Slmllanty Coupling Regularisation
Measures how much the Couples the correspondences Ensures
two images differ with the smooth deformation deformation
o o _ smoothness
o Efficient optimization with BCH formula
o Inverse consistent with symmetric forces
o Open-source ITK implementation [ T Vercauteren, et al.. Symmetric
o Very fast Log-Domain Diffeomorphic

Registration: A Demons-based

X. Pennec - Fields - MITACS, June 22 2011 33



The SVF framework for Diffeomorphisms

Can we justify that? [Pennec & Lorenzi, MFCA11]
o Drop the metric, use connection to define geodesics

o Canonical symmetric Cartan Connection: unique symmetric left AND right
invariant linear connection on a Lie group.

What we gain
o Geodesics are left (and right) translations of one-parameter subgroups
o Invariance by left and right translations + inversion
o Efficiency (PDEs -> ODESs)

What we loose

o No r‘nmnaﬂhlp metric for non com pact non abelian n groups

CIRS | INnJE 1 UI.M

o Geodesic completeness but no Hopf-Rinow theorem
e There is not always a smooth geodesic joining two points (e.g. SL,, no pb for GL,)

o Infinite dimensions: exponential might not be locally diffeomorphic
« Known examples on Diff(St) but with H¢H _ ko s

In practice
o Reachable diffeos seem to be sufficient to describe anatomical deformations
| B |
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Longitudinal structural damage in AD

baseline 2 years follow-up

[\Nidespread cortical thinning}
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Individual Measure of Temporal Evolution

Geometry changes (Deformation-based morphometry)
o Measure the physical or apparent deformation through registration

Quantification of apparent deformations
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Modeling longitudinal atrophy in AD from images

o Log-demons: consistent deformation along subject-specific trajectories
o From patient specific evolution to population trend

Templateg

Patient B

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)
| T
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Parallel transport of deformations

Encode longitudinal deformation by its initial tangent vector
o Momentum (LDDMM) / SVF

Parallel transport
o The (small) longitudinal deformation vector
o along the large inter-subject normalization deformation

Existing methods
o Vector reorientation with Jacobian of inter-subject deformation
o Conjugate action on deformations (Rao et al. 2006)
o Resampling of scalar maps (Bossa et al, 2010)
O

LDDMM setting: parallel transport along geodesics via Jacobi fields
[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature

X. Pennec - Fields - MITACS, June 22 2011 40



Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection
V,(X): TM>TM
A numerical scheme for symmetric connections: Schild’s Ladder
o Recover connection using only exp and log
o Build geodesic parallelogrammoid
o Iterate along the curve

[Elhers et al, 1972]
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Efficient Schild’s Ladder with SVFs

To o Exp(IT{u)) T

Exp(IT(u)) =Exp(v/2) o Exp(u) o Exp(—v/2)

Lj -1.1

Exp(u)

Numerical scheme
o Direct computation 1., ,(u) = D (Exp(v)) Exp(_o) ¥ © Bxp(—v)

o Using the BCH:

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion

[Lorenzi et al, in Proc.
of IPMI 2011]
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion

[Lorenzi et al, in Proc.
of IPMI 2011]
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion

[Lorenzi et al, in Proc.
of IPMI 2011]
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion

[Lorenzi et al, in Proc.
of IPMI 2011]
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Study of prodromal Alzheimer’s disease

Different morphological evolution for the AB+ vs AB-?
o 98 healthy subjects, 5 time points (0 to 36 months).
o 41 subjects AB42 positive (“at risk” for Alzheimer’s)

Average SVF
for normal
evolution (AB-)

|Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011|
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Study of prodromal Alzheimer’s disease

Linear regression of the SVF over time: interpolation + prediction

Multivariate group-wise comparison
of the transported SVFs shows
- statistically significant differences
T(t) = Exp(v (1)) *T, (nothing significant on log(det) )

|Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011|
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Statistics on geometrical objects

How to chose or estimate the metric for Riemannian manifolds?
o Invariance principles, learning the metric?
o Anatomical deformation metrics?

Can we generalize the statistical setting to affine connection spaces?
o Bi-invariant mean on Lie groups [Arsigny Preprint + PhD 2006]
o Covariance matrices? ICA instead of PCA?

What about geodesically non complete manifolds?
o E.g. Power metrics for tensors
o Accumulation at boundaries for diffusion?

Numerical issues: from continuous to discrete algorithms

o Discrete atlas might not converge to continuous model [Allassonniere:
Bernouilli 16(3):641-678, 2010].

o Guaranty the quality of approximations?
o Efficient methods?

X. Pennec - Fields - MITACS, June 22 2011 50



Computational anatomy

Mathematics & Computer science
o Anatomy is geometry: population studies imply statistics on manifolds
o Large data sets require efficient algorithms to process them

Applications in medicine

o Morphometry:
o Shape relationship with clinical indices

o Support for the physiology:

o Statistics on geometric physiological parameters

o From group models to subject-specific measures
o Faithful measure at individual level: diagnosis / follow-up
o Model at group level: statistical prediction (extrapolation)
o Personalized model: prediction (prognosis)
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Advertisement

Master of Science in Computational Biology
at Nice-Sophia Antipolis University
o http://www.computationalbiology.eu

Workshop Mathematical Foundations of Computational
Anatomy at MICCAI 2011

o Toronto, September 18 or 22, 2011
o http://www-sop.inria.fr/asclepios/events/MFCA11/
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Thank You!

— 1

Publications: http://www.inria.fr/sophia/asclepios/biblio

Software: http://www.inria.fr/sophia/asclepios/software/MedINRIA.
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