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Computational Anatomy

Design Mathematical Methods and Algorithms to Model and Analyze the Anatomyg g y y
 Statistics of organ shapes across species, populations, diseases… 

 Model organ development across time (heart-beat, growth, ageing, ages…)

 To understand and to model the substrate of life
 Classify structural deviations (taxonomy), Relate anatomy and function

To detect understand and correct dysfunctions To detect, understand and correct dysfunctions
 From generic (atlas-based) to patients-specific models

 Very active topic in medical image analysis

X. Pennec - Fields - MITACS, June 22 2011 2

 Very active topic in medical image analysis 
 UCLA summer school 04 & 08, MFCA06, 08 & 11 workshops



Statistical analysis, modeling and applicationsy , g pp
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Methods of computational anatomy

Structural variability of the cortexy

Hi h f t i l f t ( t t l d l ) Hierarchy of anatomical features (structural models) 
 Group-wise correspondences in the population 

 Model observations and its structural variability Model observations and its structural variability 
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Statistical Analysis of Geometric Features

Geometric features belong to manifolds
 Curves, tracts Curves, tracts
 Surfaces
 Tensors, covariance matrices
 Transformations / deformations Transformations / deformations

Algorithms for statistics on geometric manifolds
 Definition of mean / covariance / PCA / distributions of geometric features?
 Mathematical structure = algorithmic bases
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RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds
 The mathematical framework

 Simple statistics on Riemannian manifolds
 Extension to manifold-values images

Statistics on shapes through deformations

Conclusion and challenges
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The geometric framework: Riemannian Manifolds
Riemannian metric :

 Dot product on tangent space 
 Speed, length of a curvep , g
 Distance and geodesics

 Closed form for simple metrics/manifolds
 Optimization for more complex 

Exponential map (Normal coord. syst.) :
 Geodesic shooting: Expx(v) = (x,v)(1)

Log: find vector to shoot right Log: find vector to shoot right 

Basic tools: Unfolding (Logx), folding (Expx)
 Vector -> Bipoint (no more equivalent class)

Operator Euclidean space Riemannian manifold

Subtraction )(yLogxy xxyxy 

p ( q )

Addition
Distance

)(ygy x

xyxy 
xyyx ),(dist

x
xyyx ),(dist

)(xyExpy x
xyxy
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Gradient descent )( ttt xCxx   ))(( txt xCExpx
t

 



Statistical tools: Moments

Definition: Frechet / Karcher mean minimize the variance
        0)(0)()(xxE)dist(Eargmin 2   CPzdzp MxxxxΕ

Existence and uniqueness : Karcher and Kendall

        0)(  0)().(.xxE         ),dist(E argmin  


CPzdzpy
y MM

MxxxxxΕ

Algorithm: Gauss-Newton Geodesic marching

  1

[Fletcher: Median / Arnaudon: stochastic algortithm]

   i i
1

x1 yxyE    with  )(expx nt vv
t

x

Covariance (PCA) [higher moments]( ) [ g ]

      
in

TT

ii
1 xx.xxx.xE  xxxx
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[Oller & Corcuera 95, Battacharya & Patrangenaru 02, Pennec 96, NSIP’99, JMIV06]



Distributions for parametric tests

Generalization of the Gaussian density:
 Stochastic heat kernel p(x y t) [complex time dependency] Stochastic heat kernel p(x,y,t) [complex time dependency] 
 Wrapped Gaussian [Infinite series difficult to compute]
 Maximal entropy knowing the mean and the covariance

    




 2/x..xexp.)(

T
xΓxkyN       k n /)d ( 32/12/

   rO /  Ric3
1)1(   ΣΓ

M h l bi D2 di t / t t

    





/..e p.)( kyN       rOk n /1.)det(.2 32/12/    Σ

)( )1(2 
t

Mahalanobis D2 distance / test:

 Any distribution:

yx..yx)y( )1(2  xxx

  n)(E 2 xx

 Gaussian:  rOn /)()( 322  xx
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[ Pennec, RR-5093 1999, NSIP’99 JMIV06]



Statistical Analysis of the Scoliotic Spine
[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]( )

DatabaseDatabase
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
 3D Geometry from multi-planar X-rays 3D Geometry from multi planar X rays

Mean
 Main translation variability is axial (growth?)

Main rot var around anterior posterior axis
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 Main rot. var. around anterior-posterior axis 



Statistical Analysis of the Scoliotic Spine
[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]( )

AMDO’06 best paper award, Best French-Quebec joint PhD 2009

• Mode 1: King’s class I or III
Mode 2: King’s class I II III

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes
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• Mode 2: King’s class I, II, III • Mode 4: King s class V (+II)4 first variation modes 
have clinical meaning



RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds
 The mathematical framework

 Simple statistics on Riemannian manifolds
 Extension to manifold-values images

Statistics on shapes through deformations

Conclusion and challenges
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Diffusion Tensor Imaging
Covariance of the Brownian motion of water 

-> Architecture of axonal fibers

V i d tVery noisy data
 Tensor image processing

Robust estimation Robust estimation
 Filtering, regularization 
 Interpolation / extrapolation

 Information extraction (fibers)

Symmetric positive definite matricesy p
 Convex operations are stable 

 mean, interpolation
M l i More complex operations are not
 PDEs, gradient descent… Diffusion Tensor Filed

(slice of a 3D volume)

I t i i ti M if ld l d i ?

13

Intrinsic computing on Manifold-valued images?
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Riemannian Frameworks on tensors

Affine-invariant Metric (homogeneous manifold – Hadamard space)
 Dot product 

IdAA

TT WVAWAAVAWV T

2/12/12/12/1 ||| 


p

 Geodesics

 Distance

2/12/12/12/1 )..exp()(  
Exp

22/12/12 )log(|)(dist  

IdAA T |||


 Distance

[ Pennec, Fillard, Ayache, IJCV 66(1), 2006, Lenglet JMIV’06, etc]

2
)..log(|),(dist

L


Log-Euclidean similarity invariant metric (vector space)

 Transport Euclidean structure through matrix exponential 

 Dot product
IdWVWV )log(|)log(| 



 Geodesics

 Distance       2
21

2
21 loglog,dist 

))log()exp(log()( 
Exp
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[ Arsigny, Pennec, Fillard, Ayache, SIAM’06, MRM’06 ]
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Intrinsic Riemannian Image Processing
Intrinsic formulations with weighted means

 Interpolation
Li b t 2 l t i t l ti d i )xx(exp)(x tt 

 Linear between 2 elements: interpolation geodesic )xx(exp)(x 21x1
tt 

Euclidean interpolation (coefficients) Interpolation along the Affine-Euclidean interpolation (coefficients) Interpolation along the Affine
invariant geodesic:
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Intrinsic Riemannian Image Processing
Intrinsic formulations with weighted means

 Interpolation
Li b t 2 l t i t l ti d i )xx(exp)(x tt 

 Linear between 2 elements: interpolation geodesic
 Bi- or tri-linear in images: weighted means

)xx(exp)(x 21x1
tt 

Affi i i t

16[ Pennec, Fillard, Ayache, IJCV 66(1), 2006]

Euclidean Affine invariant
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Intrinsic Riemannian Image Processing
Regularization / anisotropic filtering

 Harmonic: Laplace Beltrami   
 dxx

x

2

)(
)()(Reg

 Anisotropic 
 Perona-Malik 90 / Gerig 92
 Robust functions

  
u uxuw xxwx )(  )()(

)(

  
 dxx

x

2

)(
)()(Reg

 Robust functions
 Trivial intrinsic numerical schemes thanks the exponential maps!

  x)(

Original Euclidean Riemannian
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[ Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, MRM’06 ]
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A Statistical Atlas of the Cardiac Fiber Structure

Database
 7 canine hearts from JHU

•Average cardiac structure

[ J.M. Peyrat, et al., MICCAI’06, TMI 26(11), 2007]

 7 canine hearts from JHU
 Anatomical MRI and DTI

Method
 Normalization based on aMRIs

•Variability of fibers, sheets

 Normalization based on aMRIs
 Log-Euclidean statistics of Tensors:

analysis more powerful  than dyadic

Norm 
covariance

Eigenvalues 
covariance 
(1st, 2nd, 3rd)

EigenvectorsEigenvectors 
orientation 
covariance 
(around 1st, 
2nd, 3rd)

Freely available at http://www-sop.inria.fr/asclepios/data/heart

18X. Pennec - Fields - MITACS, June 22 2011



Diffusion model of the human heart
10 human ex vivo hearts (CREATIS-LRMN, Lyon, France)

 Classified as healthy (controlling weight, septal
thickness, pathology examination)

 Acquired on 1.5T MR Avento Siemens
 bipolar echo planar imaging, 4 repetitions, 12 gradients

 Volume size: 128×128×52, 2 mm resolution

Fiber tractography in the left ventricle

[ H. Lombaert Statistical Analysis of the 
C f

Helix angle highly correlated to 
the transmural distance

X. Pennec - Fields - MITACS, June 22 2011 19

Human Cardiac Fiber Architecture from DT-
MRI, ISMRM 2011, FIMH 2011]



RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds

Statistics on shapes through deformationsStatistics on shapes through deformations
 Growth model of the right ventricle surface
 Statistics on image-based deformations Statistics on image based deformations
 Modeling longitudinal evolution in AD

C l i d h llConclusion and challenges
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Repaired Tetralogy of Fallot
• Severe Congenital Heart Disease
• Occurs 1 of 2500 (Hoffman, JACC 02)
• Surgical repair in infancy
• After repair: chronic pulmonary valve 

regurgitations and extremely dilated 
right ventricle (RV).

Incoming

Pulmonary Valve
Towards
the lungs

Incoming
blood

Right Ventricle

Tricuspid Valve

Best time for valve replacement:
understand / quantify the remodeling

htt // i i f / l i / j t /H lth Child/Sh A l i /i d h
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http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php



Repaired Tetralogy of Fallot
Remodeling of the right ventricle of the heart in tetralogy of Fallot

Mean shape Mean shape
 Shape variability

 Correlation with clinical variablesCo e a o c ca a ab es

 Predicting remodeling effect

Shape of RV in 18 patients

X. Pennec - Fields - MITACS, June 22 2011 22

Shape of RV in 18 patients



Shapes: forms & deformations

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Deterministic template (atlas) = anatomical invariants
 Random deformations = geometrical variability
 Observations = “random” deformations of an unknow template 

23X. Pennec - Fields - MITACS, June 22 2011



Riemannian metrics on diffeomorphisms
Space of deformations

 Curves in transformation spaces: (x,t)
T t t ti i d t fi ld

txd ),()( 
 Tangent vector = time varying speed vector field 

Right invariant metric 
dt

xvt
),()( 



vv 1
 Eulerian scheme 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms

[Miller, Trouve, Younes, Dupuis 1998 – 2009]

Idttt vv
t
 




[Miller, Trouve, Younes, Dupuis 1998 2009]

Geodesics determined by optimization of a time-varying vector field
Di t

1
22  Distance

 Geodesics characterized by initial momentum

).(minarg),(
0

2
10

2 dtvd
tt

tv 




 Point supported objects (Currents, e.g. curves, surface): finite 
dimensional parameterization with Dirac currents

Images: more difficult implementation [Beg IJCV 2005 Niethammer 09]

[ Glaunes PhD’06 ]
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 Images: more difficult implementation [Beg IJCV 2005, Niethammer 09]



Currents for lines and surfaces
Generalization of distributions (e.g. Dirac) to vectors

 [Vaillant and Glaunes IPMI’05; Glaunes PhD’06]
Distrib tions are kno n thro gh their action on smooth test f nctions Distributions are known through their action on smooth test functions

 Currents integrate smooth vector fields (e.g. W=KL2 with K=G.Id):
they measure the flux along lines or through surface

 Closed form distance for RKHS

  jji
T

iW
txxKtLL

*
').'(.',

 (+) No point correspondences needed
 (+) No conditions on the sampling required
 (-) “soft” distance: curvature not accounted for


ji

jjW
,

( )
 (-) Arbitrary choice of the kernel (shape & size)

Algorithms on currents
St ti ti l l i ( PCA) [D l t l M di 13(5) 2009] Statistical analysis (mean, PCA) [Durrleman et al, Media 13(5) 2009]

 Fast and stable computations thanks to controlled approximations 
(matching pursuit) [Durrleman, MICCAI08 : Young investigator award]
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Atlas and Deformations Joint Estimation

Estimate mean and modes of the end-diastolic RV shape

Atlas

1

Patient 1
Patient 5

5

Patient 5

2
3

4

Patient 3
Patient 2

Patient 4
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[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) ]



Atlas and Deformations Joint Estimation
Method: PLS (better than PCA + CCA) to

 Find modes that are significantly correlated to clinical variables 
(b d f t i id d l l it ti )(body surface area, tricuspid and pulmonary valve regurgitations).

 Create a generative model by regressing shape vs BSA

Average RV anatomyAverage RV anatomy 
of 18 ToF patients 10 Deformation Modes = 90% of spectral energy6 modes significantly correlated to BSA

X. Pennec - Fields - MITACS, June 22 2011 27

[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) ]



Statistical Remodeling of RV in Tetralogy of Fallot
[ Mansi et al, MICCAI 2009, TMI 2011 (to appear) ]

Predicted remodeling effect … has a clinical interpretation

Volume 
increases

Valve 
annuli 
deform

Pulmonary 
stenosis
reduces

RV 
pressure 
decreases

Septum 
pushed 
inwards

RV free‐
wall 

outwards
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RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds

Statistics on shapes through deformationsStatistics on shapes through deformations
 Growth model of the right ventricle surface
 Statistics on image-based deformations Statistics on image based deformations
 Modeling longitudinal evolution in AD

C l i d h llConclusion and challenges
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Statistics on which deformations feature?

Space of “initial momentum” [Quantity of motion instead of speed]
 [Vaillant et al., NeuroImage, 04, Durrleman et al, MICCAI’07]
 Based on right-invariant metrics on diffeos [Trouvé Younes et al ] Based on right-invariant metrics on diffeos [Trouvé, Younes et al.]
 No more finite dimensional parameterization with images 
 Computationally intensive for images

Global statistics on displacement field or B-spline parameters
 [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’05],[P. Fillard, stats on sulcal lines] 
 Simple vector statistics, but inconsistency with group properties

Local statistics on local deformation (mechanical properties)
 Gradient of transformation, strain tensor
 Riemannian elasticity [Pennec, MICCAI’05, MFCA’06] 
 TBM [N. Lepore & C. Brun, MICCAI’06 & 07, ISBI’08, Neuroimage09]

An alternative: “log-Euclidean” statistics on diffeomorphisms?
 Stationary velocity fields [Arsigny, MICCAI’06]
 [Bossa, MICCAI’07, Vercauteren MICCAI’07, MICCAI 08, Ashburner NeuroImage 2007]

X. Pennec - Fields - MITACS, June 22 2011 30

 [Bossa, MICCAI 07, Vercauteren MICCAI 07, MICCAI 08, Ashburner NeuroImage 2007]
 Efficient numerical methods!



The SVF framework for  Diffeomorphisms
Stationary velocity fields [Arsigny et al., MICCAI 06]

 Group exponential (one-parameter subgroups)

Exponential of a smooth vector field is a diffeomorphism
i h i l i fi ld u is a smooth stationary velocity field

 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) )

•expp

Stationary velocity field Diffeomorphism

31

Stationary velocity field Diffeomorphism
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The SVF framework for  Diffeomorphisms

Numerical methods
 Take advantage of algebraic properties of exp and log.

→ Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms
 Computing the deformation: Scaling and squaring algorithm

recursive use of exp(v)=exp(v/2) o exp(v/2)recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

Compatible with group structure
 Inversion: T-1 = exp(-v)

C i i BCH f l [B MICCAI 2007] Composition: BCH formula [Bossa MICCAI 2007]
log( exp(v) ○ exp(εu) ) = v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … 
 Lie bracket [v u](p) = Jac(v)(p) u(p) - Jac(u)(p) v(p)

32

 Lie bracket       [v,u](p)  Jac(v)(p).u(p) Jac(u)(p).v(p)
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Symmetric log-demons [Vercauteren MICCAI 08]

Demons framework [Thirion, MRCAS 95, CVPR96, Media98] 
 Pragmatic alternated optical flow and Gaussian smoothing
 Rigorously justified by adding correspondences (matches) as an 

auxiliary variable [Cachier, CVIU:89(2-3), 2003] 

Log-demons with SVFs

Similarity

Measures how much the 
two images differ

Coupling

Couples the correspondences 
with the smooth deformation

Regularisation

Ensures 
deformation

 Efficient optimization with BCH formula
 Inverse consistent with symmetric forces

two images differ with the smooth deformation deformation 
smoothness

 Inverse consistent with symmetric forces
 Open-source ITK implementation

 Very fast 
 http://hdl handle net/10380/3060

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic
Registration: A Demons-based 

33

 http://hdl.handle.net/10380/3060 
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Approach, MICCAI 2008 ]



The SVF framework for  Diffeomorphisms
Can we justify that?  [Pennec & Lorenzi, MFCA11]

 Drop the metric, use connection to define geodesics
 Canonical symmetric Cartan Connection: unique symmetric left AND right Canonical symmetric Cartan Connection: unique symmetric left AND right 

invariant linear connection on a Lie group.

What we gain  g
 Geodesics are left (and right) translations of one-parameter subgroups
 Invariance by left and right translations + inversion

Effi i (PDE > ODE ) Efficiency (PDEs -> ODEs)

What we loose
 No compatible metric for non compact non abelian groups No compatible metric for non compact non abelian groups
 Geodesic completeness but no Hopf-Rinow theorem 

 There is not always a smooth geodesic joining two points (e.g. SL2, no pb for GLn)

 Infinite dimensions: exponential might not be locally diffeomorphic Infinite dimensions: exponential might not be locally diffeomorphic
 Known examples on Diff(S1) but with

In practice
  k

H k

34

 Reachable diffeos seem to be sufficient to describe anatomical deformations
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RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds

Statistics on shapes through deformationsStatistics on shapes through deformations
 Growth model of the right ventricle surface
 Statistics on image-based deformations Statistics on image based deformations
 Modeling longitudinal evolution in AD

C l i d h llConclusion and challenges
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Longitudinal structural damage in AD

baseline 2 years follow-up

•Ventricle’s expansion•Hippocampal atrophyWidespread cortical thinning

37X. Pennec - Fields - MITACS, June 22 2011



Individual Measure of Temporal Evolution

Geometry changes (Deformation-based morphometry)
M th h i l t d f ti th h i t ti Measure the physical or apparent deformation through registration

Quantification of apparent deformations 

Time i                Time i+1

38X. Pennec - Fields - MITACS, June 22 2011



Modeling longitudinal atrophy in AD from images

 Log-demons: consistent deformation along subject-specific trajectories
 From patient specific evolution to population trendp p p p

Patient A

? ?Template ? ?
Patient B

X. Pennec - Fields - MITACS, June 22 2011 39

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)



Parallel transport of deformations

Encode longitudinal deformation by its initial tangent vector
 Momentum (LDDMM) / SVF( ) / S

Parallel transport 
 The (small) longitudinal deformation vector The (small) longitudinal deformation vector
 along the large inter-subject normalization deformation

E i ti th dExisting methods
 Vector reorientation with Jacobian of inter-subject deformation
 Conjugate action on deformations (Rao et al. 2006) Conjugate action on deformations (Rao et al. 2006)
 Resampling of scalar maps (Bossa et al, 2010)
 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature 
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Parallel transport along arbitrary curves
Infinitesimal parallel transport = connection

’XTMTM

A numerical scheme for symmetric connections: Schild’s Ladder
 Recover connection using only exp and log

B ild d i ll l id Build geodesic parallelogrammoid
 Iterate along the curve 

PN P’NA)

P1
P’1A’

 

N N )

P2






C

P0
P’0

A


P0
P’0

A
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[Elhers et al, 1972]



Efficient Schild’s Ladder with SVFs

Numerical scheme
 Direct computation:

 Using the BCH:g

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
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[Lorenzi, Ayache, Pennec: Schild s Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion 

[Lorenzi et al, in Proc.
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[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrohpy (FdR corrected)

[Lorenzi et al, in Proc.

Contraction Expansion 
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[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion 

[Lorenzi et al, in Proc.
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[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrohpy (FdR corrected)

Contraction Expansion 

[Lorenzi et al, in Proc.
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[Lorenzi et al, in Proc. 
of IPMI 2011]



Study of prodromal Alzheimer’s disease 
Different morphological evolution for the A+ vs A ?Different morphological evolution for the A+ vs A-? 

 98 healthy subjects, 5 time points (0 to 36 months).
 41  subjects A42 positive (“at risk” for Alzheimer’s)j  p ( )

Average SVFAverage SVF
for normal
evolution (A-)
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[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + predictionLinear regression of the SVF over time: interpolation + prediction

M lti i t i i

0*))(~()( TtvExptT 

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )
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[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



RoadmapRoadmap

Goals and methods of Computational anatomy

Statistical computing on manifolds

Statistics on shapes through deformations

Conclusion and challenges
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Statistics on geometrical objects
How to chose or estimate the metric for Riemannian manifolds? 

 Invariance principles, learning the metric?
A t i l d f ti t i ? Anatomical deformation metrics?

Can we generalize the statistical setting to affine connection spaces?
 Bi-invariant mean on Lie groups [Arsigny Preprint + PhD 2006]
 Covariance matrices? ICA instead of PCA?

What about geodesically non complete manifolds?
 E.g. Power metrics for tensors

Accumulation at boundaries for diffusion? Accumulation at boundaries for diffusion?

Numerical issues: from continuous to discrete algorithms
 Discrete atlas might not converge to continuous model [Allassonniere: 

Bernouilli 16(3):641-678, 2010]. 
 Guaranty the quality of approximations?

X. Pennec - Fields - MITACS, June 22 2011 50

 Efficient methods?



Computational anatomy
Mathematics & Computer science

 Anatomy is geometry: population studies imply statistics on manifolds
 Large data sets require efficient algorithms to process them

Applications in medicineApplications in medicine
 Morphometry:

Shape relationship with clinical indices Shape relationship with clinical indices

 Support for the physiology:
 Statistics on geometric physiological parameters Statistics on geometric physiological parameters

 From group models to subject-specific measures
 Faithful measure at individual level: diagnosis / follow-up g / p
 Model at group level: statistical prediction (extrapolation)
 Personalized model: prediction (prognosis)
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Advertisement 
Master of Science in Computational Biology 
at Nice-Sophia Antipolis University

 http://www.computationalbiology.eu

Workshop Mathematical Foundations of Computational 
Anatomy at MICCAI 2011
 Toronto, September 18 or 22, 2011

 http://www-sop.inria.fr/asclepios/events/MFCA11/
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Thank You!

Publications: http://www.inria.fr/sophia/asclepios/bibliop p p

Software: http://www.inria.fr/sophia/asclepios/software/MedINRIA.
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