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Thanks to Adrian for inviting me to participate in
this very interesting meeting!
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(0) Physicists describe a physical system in the language of
PDEs. They write down the “general solution,” make
unsubstantiated assertions about the properties of all
solutions, declare the subject closed and move on to
something entirely different.

Charles I
Epst (with

(1) If the equation describes something interesting, or if
mathematicians have developed techniques to study it, they
will prove existence, uniqueness, and regularity results for
the equation, or some vastly simplified “model equation.”
Usually this takes about 50 years. The techniques used are
frequently quite abstract, but at the very least
non-constructive.

The Mathematicians declare the problem finished.
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The Life History of a PDE, II

(@)

3)
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If solving the equation may have some practical applications,
some effort is made to find constructive (at least in principle)
methods to find solutions.

If money is involved, these “in principle methods” are turned
into actual computer programs, which might produce
something resembling solutions to the original equations.

If real money is involved, the engineers solve the problem
using the FEM.

Today I want to speak about some level (2) and preliminary
level (3) work we’ve recently done with regard to solving the
Time Harmonic Maxwell Equations (THME).
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Much of what we discuss today has to do with how the
representation of solutions to Maxwell’s equations impacts

Charles 1 numerical algorithms. To motivate this discussion we first

SSNS  Cconsider the simpler case of Helmholtz’ equation in an exterior
domain Q C R? :

Khresentations Au+ku=0inQ, with u [o=f. (1)

of Solutions
The “outgoing” fundamental solution for this equation is:

okl

2

where Imk > 0.
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Maxwell’s

Equations single and double layer potentials, for x ¢ b2 :
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swnz/&wwwwmm,
bQ

Representations

of Solutions DW(.X) - / 8l/ygk(x7 y)W(y)dA(y), (3)
bQ2

are outgoing solutions to Helmholtz’ equation so long as x € bQ2°.

To impose a boundary condition we need to examine what
happens to these functions as x — b{Q2. The function Sw(x) is
continuous across b2, whereas Dw(x) has a jump.
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DEw(x) = jilw(x) + / n(x, y)w(y)dA(y). (%)

2
b2

Representations
of Solutions

Here + indicates that the limit is taken from the unbounded
component of b$2, and — from the bounded component. The
kernels gx(x, ), ni(x,y) define pseudodifferential operators of
order —1 on b2, which are compact operators on either Sobolev
or Holder spaces.
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To solve the Dirichlet problem stated above, with these
representations, we would need to solve either

f(x) or
f(x).

The first equation is extremely unstable numerically as S is
compact. The second equation is Fredholm of second kind, and is
solvable, in principle for all k£ not in a discrete subset £ C R. A
number k € E if and only if k” is an eigenvalue of the interior
Neumann problem. These are called interior, or spurious
resonances, as they result from the choice of representation and
have nothing to do with the exterior problem per se.

Charles I

‘] [yi‘ k\.\‘l\h Sw(x)

D w(x)
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The double layer potential provides a good representation for
small enough frequencies, but becomes unstable for larger

Charles I . . . . . . .

Epstein (with frequencies. To avoid this, in practice, one uses a combination:

Dtw +inSw =, (6)
Representations

ol St for an appropriately chosen constant 7). This representation
reduces the solution of the Dirichlet problem to solving a
Fredholm equation of second kind, with no interior resonances,
and good behavior as k — 0, i.e. no low-frequency breakdown.
We are looking for a representation of solutions to Maxwell’s
equations with all these desirable properties.



Time Harmonic Equations
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the numerical . . .
f harmonic dependence in time:

Charles I E(x’ t) = E(x)e—iw N(x, l‘) _ H(x)e_iwt; 7
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i In this case Maxwell’s equations take the form of a first order
‘ elliptic system:

VXE=ikH V- -E=0
Mﬂxw:e]l"s (THME)
Equations v X H — —lkE V . H — O

If € is the electrical permittivity, and p the magnetic permeability
of space, the the wave number, k> = pew?. For the purposes of
this talk we assume that o, the conductivity, is zero, though we
can also handle the dielectric problem. We denote this equation by
THME[K].
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We consider these equations in the complement, 2 of a region D.
et We assume that bD = bSQ.

Epstein (with For simplicity we assume that D is a perfect conductor, though

other, more physically realistic situations can be considered as

well.

For many choices of boundary condition, this problem has a

N unique solution, provided we impose the outgoing radiation

AT condition:

z}chE—ikE:0<‘xl‘>, (8)

along with the assumption that Imk > 0.
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For example:

el We could specify the “tangential” components of E : that is
TE |70, where

Tw=—nXxXnxw.

Maxwell’s We could specify the “tangential” components of H.

Equations

We could specify relations between E [7,q and H [75q -

We could specify jumps in the tangential and normal components
and obtain a solution in all of R? \ 5. (the dielectric problem).
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From the pure math perspective (level (1)) quite a lot is known
N about BVPs for Maxwell’s equation, in exterior domains.
Charles ] For example: If Imk > 0, then there is a unique outgoing solution
RN to (THME[K]) with specified tangential components of E on bS).

We would like a representation for solutions to the THME[K] so
that the numerical method (level (2)!), for solving, e.g. the prefect
conductor problem, has the following three properties:

Maxwell’s

Equations We are reduced to solving Fredholm equations of second
kind on the boundary of €.

These equations have no interior resonances.

Neither these equations nor the representation suffer from
low frequency breakdown.
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Masosells found a representation that does not suffer from low
frequency breakdown. This motivated a lot of our work.
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E =V xV x (x¢) +iwuV x (x¢),
H =V xV X (x¢) — iweV x (x¢p) (9)

N m Here ¥ and ¢ are outgoing, scalar solutions to the Helmholtz

Equations equation Au + k*u = 0.

m They can be determined from n - E and n - H, but not by
equations of second kind.

m The success of this method is pure luck! It relies on the

diagonalization of the boundary equations, and makes
extensive usage of properties of spherical harmonics.
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The starting point for most numerical methods that use Fredholm
integral equations is a uniqueness theorem. This is the marvelous
feature of this type of representation; as in finite dimensions:

some help from
Michael
O’Neil)

Existence = Uniqueness (10)

Uniqueness
Theorems
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Chures L. Let (E, H) be an outgoing solution to (THME[k]) in Q with
AN  Imk > 0. [f cither TE = 0, or TH = 0, then (E,H) = (0,0) in
Michael
O’Neil) Q

As we will see, for our representation it is more natural to look at
the normal components

Uniqueness n-E er andn - H rbﬂv (11)

Theorems

together. While this does not correspond to a physical boundary
value problem, it is what is used in the Debye-Mie formula.
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SR [s there a parametrization for the space of outgoing solution to the
O'Neil) THME[K] that behaves nicely as k — 07

First observe that the usual choice, the physical current on the

boundary, cannot work.

If k = 0, then any tangential current j defined on b2 defines a
unique solution of the outgoing THME[Kk].

Uniqueness
Theorems

When k = 0, the current must satisty the equation: Vj,q -j = 0.
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Charles The same is true of the tangential components of E and H, which
RosEn s must also satisfy a PDE on b2 when k = 0 :

some help from

Michael Vian X E = Vyon x H= 0.

O’Neil)

Boundary currents are vector fields. We can describe them in
terms of the Hodge decomposition:

J=Vd+nxViyox +jy, (12)

Uniqueness
Theorems

where jy; is harmonic: Vqjy = Vpan X jy = 0.

If k # 0, then all components of this representation are arbitrary,
while at k = 0 we must have ¢ = 0.
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This shows that neither the current, nor the tangential components
of the field can provide a parametrization for the space solutions
to THME[K] that behaves nicely as k — O.

Michael

O’Neil)

Is there something else that behaves better?

Uniqueness
Theorems
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Charles T that the normal components of E and H determine an

pstein (with . B
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some help fron
Michael
O’Neil)

Theorem (Physics “Theorem’)

Let (E, H) be an outgoing solution to (THME[k]) with Tmk > 0.
Ifn -E and n - H are both zero then (E,H) = (0,0) in Q.

Dhiquctcss m If b is simply connected, then this follows from a simple
integrations by parts argument and Stokes theorem.

m In the non-simply connected case it is false!



What happens in the Non-Simply Connected Case
VXE=ikH V xH=—ikE

New
approaches to
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Charles normal components, then these are vector fields on »€2 that

Epstein (with

sl o satisfy Vyonr X v = 0. A solution of THME[k] with

O'Neil) vanishing normal components vanishes precisely when the
integral

W(a, ) = Re /n - (a x B)dA (13)

Uniqueness Q
Theorems

is zero. The total radiated energy is a constant multiple of
this integral.
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If the total genus of the boundary of b£2 is p, then using the
classical uniqueness theorem and our integral representation we
can prove:

Theorem (Correct theorem)

For each k, with Imk > 0, there is a 2p-dimensional space of
outgoing solutions to the k-harmonic Maxwell equations in S with
i vanishing normal components on bSQ.



Some history
VXE=ikH V xH=—ikE

New
?lﬂ):mhe'bc; After we proved this, we learned that the existence of these
solutions was proved in the 1980s by Rainer Kress, but seems to
have been forgotten. Recently it was hinted at by difficulties with
the numerical solution of the THME[K] in the complement of a

solid torus.

We call the solutions with vanishing normal components
k-Neumann fields. When k = 0, these solutions are the classical
“Neumann Fields,” which are Hodge representatives of

HR (9, 09).

Uniqueness
Theorems

If b2 has genus p, then there are 2p additional parameters that
need to be specified, beyond the normal data to define a solution.
A lot of the difficulty in avoiding low frequency breakdown in this
case is connected to how this additional data is specified.
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Equations While the normal components of the field do not arise together in
Charles a physical BVP, this theorem suggests that we look for a

BN  rcpresentation in terms of data that is related to the normal

Michael

O'Neil) components (n - E,n - H) by Fredholm equations of second kind.
When 512 is not simply connected, some additional constraints,
related to the topology are also needed.

The indifference of this data to the frequency gives reasons to
Uniqueness hope that such data will lead to numerical methods that do not

suffer from low frequency breakdown. If we’re lucky these
equations will not have interior resonances.
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Charles I

When solving Maxwell’s equations numerically, especially in an
exterior domain, it is useful to represent the solution in terms of
layer potentials, which are integrals over bS2. All these
representations start with

k1|

8VY) = —7>
0= %

Integral
Representations

which is the outgoing fundamental solution for the Helmholtz
equation. Using g insures that the solutions satisfy the radiation
condition “at infinity.”



Representation formula
VXE=ikH V xH=—ikE

&

New
approaches to
the numerical

solution of A standard representation is based on using a vector and a scalar

Equations potentlal'
Charles 1 E=ikA—-V¢,H=V xA.

Epstein (with

some help from

Where:

Michael

O’Neil)

o=y [ ex =)V anit)ast) s

Integral Q)

Representations

There are a variety of representations of this general type.
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[IH This representation suffers from low frequency breakdown as w
Epst AU tends to zero, there are O(w)-, O(1)-, and O(w™")-terms.

If we try to specify the tangential component of H we get an
integral equation of the form

nxH= <; - K(k))j MFIE.

Here j is the physical current, and K (k) is a compact operator.

Integral
Representations
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If we try to specify the tangential component of E we get an
Charles | equation of the form

Epstein (with

some help from

i n x E = T(k)j EFIE.

Here T(k) is an elliptic operator of order 1.

Both the MFIE and EFIE have spurious resonances, which can be
avoided by considering a linear combination of these conditions,
n x H + inn x E, known as the CFIE. It is hypersingular, and has

Integral

s low frequency breakdown.



Potentials
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Our approach starts with a different representation of E and H in
Maxwell’s . .
Equations terms of a 2 scalar functions ¢, and W, and two vector potentials
Charles A, and T, setting:

E=(kA—-V¢—-VxT) H=(ikT —VV+V xA). (15
All the potentials satisfy the Helmholtz equation:
AB+KB=0. (16)

For (E, H) to solve the (THME[K]) we need to require:

Integral
Representations

V-A=—ikp V-T=—ikV. (17)
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i - / g(x, )i(y) - dxdS(y)
bQ

7= [ ewyym() - dxdsi) s)
b2

¢ = / g(x,y)r(y)dS(y)

Q2

Integral

Represenmtinns w - / g(x7 y)q(y)dS(y) (19)
Q2

Here j and m are tangential vector fields and r, g are scalar
functions on bS2.
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To get a solution to the THME[k] we need to require

1 —1

—Vpan Xj=r —Vpon xm = qdA. (20)
Charles | ik ik
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There are, apparently too many unknowns. For the perfect
conductor we let: m = n X j and then these equations have a
unique solution, provided 5{2 is simply connected. In the
non-simply connected case one needs to add a harmonic vector
field, jy, to a particular solution jp.

};‘eg““‘ i The harmonic vector fields, j;, are the solutions to the system of
epresen ations .
equations

We denote this vector space by H'(bQ).
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Epstein (with

some el from of bS2. These relations allow us to use the scalar functions r and ¢,
ol along with j, (in the non-simply connected case) as the basic
unknowns. We call (r, ¢,j), with r and ¢ of mean zero on every

component of b,

Debye Source Data.

Integral
Representations
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Charn Dy, = —ik(Vpar +n x Viaq). (22)

Epstein (w

We can reduce this to solving the scalar Laplace equation, setting
Jr = —ik(VbQRor +n X VbQRoq). (23)

Ry is the partial inverse of Aq o. The solution j is orthogonal to
the harmonic vector fields H!(bQ2), so the general solution is

Integral

Representations J = JR +JH

The operator taking (7, g) to j, has order —1.
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If we represent solutions to the THME[k] in Q in terms of
integrals over b2, then letting the point of evaluation tend to b2
gives integral equations that the boundary data must satisfy.

Charles I
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BRSNS For example a harmonic function represented as a double layer
Michael

O'Neil) potential
) = [ )00 3)dA0), 24)
»Q
this limit would be:

u(y) = sw(y) F / KO )w()dA). 25)

2
bQ

Boundary
Equations

Here k(y', y) is a kernel defining an operator of order —1.
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Taking limits in our representation formula we easily obtain that
the normal components satisfy a Fredholm equation of second
Charien) kind on 512 :

Epstein (with

some help from

Michael i n-E
O’Neil) p—

xﬁllfgi n-H

% - K] 0 r

+
0 T+ ki) \q
iknx -G _KO j(}", q’jH) (26)
Ko ikn.-G) \m(r,q,jy))"

This exactly what we were hoping for.

Boundary

Fauations We denote the rows of this matrix by N (k), N (k).



The Normal Components, Continued
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The system of equations is analytic in k; recall thatm = n X j, and
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Charls L. Dpoij = —ik(Vpar +n x Vpaq). (27)

Hence

<<i§d —OKl(k) . +0K1(k)> +1”q(k)) i _ (g > _

(28)
Here K (k), K (k) are analytic families of operators of order —1.
This equation is solvable in the complement of a discrete set £,
Boundary which is disjoint from C when b£2 is simply connected.

Equations



The Tangential Components
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Charles I llm n X E —
Epstein (with x%bQi n x H .

some help fron
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Michael
O’ Ne

Boundary

Equations i i
o but these are not of second kind in r and g.

0 ikM, —M,
—nxMy —nxMy —iknx M,

S~ -

We let T (k), 75 (k) denote the rows of the tangential equation.
Each row is a system of two equations for two unknown functions,

(2
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The fields defined by the integral representation satisfy the THME
in the complement of 52 and have a jump across the boundary:

Charles I
Epstein (with
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i n-Eyl (r nxEy] (mxm
b= () Bl =) e

Using these jump relations and a simple integration by parts
arguments we can show that each row of the tangential operator,
T, (k), 74 (k) has a trivial nullspace, when Im k > 0.

Boundary
Equations
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e If (E+,H) = (0,0), then the jump conditions for such potentials
I “M”;”m lmply that

some help from

Michael TE_|,p=j TH_ [,p=}]J. (IntRes)

O’Neil)

These boundary conditions define a non-self adjoint boundary
value problem for the Maxwell equations in D.

This is why the spurious resonances are not forced to lie on the
real axis. That they actually occur on the lower half plane seems
like good luck

Boundary
Equations
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The Tangential Operator Has a Trivial Nullspace, II
VXE=ikH V xH=—ikE

Integration by parts and using 7E_ =j = TH _ gives:

- ikb[(j,j)dA = kz/(E,E)dV— /(v x E_,V x E_)dV.

D D
€2y
Using the quadratic formula we see that
—ia + /4bc — a?
i F o

where a, b, ¢ are all positive. This shows that Imk < 0.
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If bS) is as above, then the boundary value problem

Charles L V XE =ikH, V x H = —ikE, (33)

Epstein (with

Michael

O'Neil) satisfying
TE_ [pp=j=TH- lip . (34)

has no solutions if Imw > 0.

Using this result we show, in the simply connected case, that using
our parameters (r, ¢) one can find a unique outgoing solution to
the (THME[Kk]) with arbitrarily specified normal components by
Boundary solving Fredholm equations of second kind.

Equations
We still need to find a system of second kind equations for solving
the THME[Kk] for the perfect conductor.



Scattering Off of a Perfect Conductor
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f specified incoming part, and an oiutgoing solution:
s (E®,H) = (E,H) — (E™, H™).
[“M n (with
some help from

Michael

o The incoming wave is data, which we take to be a solution of
THME[K] in D¢. The outgoing solution (E, H) is called the
scattered field.

Physical considerations show that the tangential components of
the sum must vanish on b<2 :

nx (E—E") =0.

Boundary

Equations Hence we need to solve a BVP for the THME[k] with specified
tangential components. We do this somewhat indirectly.



Specifying the Tangential Components
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of To solve the THME[K] with specified tangential components we
Hquations use a system of equations built out of the row of the tangential
Charles | equations for E and the row of the normal equations for H.

Epstein (with

BN The operator is defined by

r r
9F(k) | ¢ —(GOWQ T (k )> q |- (35)
.H .H

E
Ni (k)

Here G is the Newtonian potential (for k = 0) restricted to the
boundary of Q. It is a pseudodifferential operator of order —1.
The operator QT (k) is a system of Fredholm equations of second

Boundary

[Ea—— kind. It is invertible for k in the complement of a discrete set F .



. The Simply Connected Case

b VXxE=ikH V xH= —ikE

approsches o In the simply connected case, F; is disjoint from the closed upper

the numerical r 1

' numeric half plane, and j is absent.

Maxwell’s

Equations Theoren]
BRI [ D) is simply connected, then the integral equation

ot (k) (;) = (’;) (ModSys)

provides a unique solution to the problem of scattering from a
perfect conductor, for any k in the closed upper half plane. Here,

f=Go(Via-EM™),  iwph=n-VoE™ = iwun - H", (36)

Boundary

Douadery where E}" is the tangential component of an incoming electric
quations

field, and n - H™ |1pq, the normal component of the incoming
magnetic field.
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e When the boundary of Q is not simply connected, then our scalar
N potentials do not include the k-Neumann fields. We need to
Gl replace the current j, with jp + j, where j is an (unknown)
SN  harmonic vector field. To determine this additional data we

augment our equations with 2p additional equations.

To describe these equations we need to say a word about the
topology of a surface ' C R3. The 1-dimensional homology splits
into two subspaces

H\(T') = H((D) Ir +H1(Q) Ir, (37)

Boundary where [ = DU Q. We let {Ay,..., Ay} span H(Q) [r, and
Equations {317 . 7l;p} Span Hl (D) rr .
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Equations The B-cycles are homologically trivial in 2, thus there are
Charles | surfaces S; C €2, such that bS; = B;. These surfaces are generators

Epstein (with

SN of the relative homology group H> (€2, b2).

Michael

B—cycle

A A
O’Neil) A—cycle generator of H , (Q,bQ)

Boundary
Equations




%§  Auxiliary conditions when p # 0, I

New
approaches to
the num ical

Equ ations

Charles I

R, The additional conditions are

in l l
/E-ds:/E s, k/ k/ -ds.  (38)

Aj Aj

We need to divide by k in the second set, because these integrals
tend to zero as k — 0.

Boundary
Equations



Integrating by parts in the second set of equations and using the
fact that V x E = ikH, and V x E™ = ikH™, in D¢, we see that

1;3’1::;\[";1‘1]’: the second set of equations can be replaced with
Charles I H
i /HWM:/ﬁmwM. (39)
S; S;

/ﬁmya:q (40)

for numerical purposes we also can use the hybrid form:

Boundary 1 1
Equations 7]{ /(E(k) i E(O)) . ds = /Hll'l . ndA, (41)
1
5

Sj



The General Case
VXxE=ikH YV xH = —ikE

New
approaches to
the numerical

Theorem
Maxwell’s

Equations If bSY is a smooth surface in R3, then the integral equations

Charles I

Epstein 1\\‘i1h r f
QT (k)| ¢ | = (h) (ModSys)
L
augmented by
/E ds—/Em-ds, /H-ndA—/Hln ndA., (42)
Aj j S; S;

Boundary
Equations

has a unique solution for any k in the closed upper half plane.
Here, f = Go(Vypq.EM), and ivph = n - VpoE» = iwun - H™.



A New Representation

VXxE=ikH YV xH = —ikE

New
approaches to

Maxwell’s

Equations has some +s and —s:

Charles I
Epstein (with

some help from I
Michael

O’Neil)

m It does not suffer from low
frequency breakdown.

m For Imk > 0, The integral

m They have no “spurious
resonances.”

Boundary
Equations

Our new representation, essentially, in terms of two scalar
potential functions defined on Q2 and a harmonic vector field. Tt

equations, are of second kind.

m It requires the ability to solve
the scalar Laplace equation
on b : Apqu =1f.

m If the boundary is not simply
connected, it requires
determining the harmonic
vector fields, but something
of this sort would be needed
for any method....




Numerical Experiments on surfaces of revolution
(slides by Michael O’Neil)

New
approaches to
the numerical

solution of
Maxwell’s
Equations

e The following slides describe numerical experiments, which are a

Epstein (with

BNENS  proof of concept that our representations translate to numerical
o algorithms, with the expected properties. We first describe our

method to solve the perfect conductor problem, with D a solid

torus of revolution. We then describe how this approach is

adapted to solve the dielectric problem.

These slides, and much of the computational work itself, are
Michael O’Neil’s work.

Numerical
Experiments



Axisymmetric representation

A genus 1 surface of revolution [ is specified as

AI\/IaX\\"ell"s- X(S, 0) == p(s) COS 0
Equations .
tl\lm,\ J’(S,G) :P(S) sin 0
fror z(s,0) = z(s)
where s € [0, L] is counterclockwise arc length along a smooth
generating curve <y in the p-z plane

Local orthonormal coordinate system is

#(5,0) = o/ (5)P(6) + < ()2
T(0) = T(0)
Experiments n(s,0) =7/ (s)p(

Numerical



An axisymmetric integral equation

New . . . . .
approaches to A scalar integral equation with axisymmetric kernel

the numerical
solution of

Maxwell’s

o (5, 00) + / k(51 5y, 0 — 0,)0 sy, 0, )day = F(sx, 65)
Charles I r

Epstein (with

Bl can be separated into a series of uncoupled equations

Un(sx) + 2WA kn(sxa Sy)an(sy)p(sy)dsy :fn(sx)

where
9) — Zan(s)einﬁ S 9) an m@

(6:—0y
k(sy, sy, Oy Zk Sy, Sy)e e )

Numerical
Experiments



%§  Axisymmetric representation

New
approaches to
the r ical

Analogously, start by representing r and ¢ as

)= re  aw) =3 auls)e™

n
Charles I

Epstein (with

Next, construct j and m according to

J=ik(VrAF'r —n x VrAF'q) + oy, + cajy,
m=nxj

This means that j and m are of the form

J = nlrn an) €™ + cujiy, + crjip,

n

ind
m= Zmn(r,,,qn) "’ + aympy, + compy,

Numerical
Experiments n




Axisymmetric representation

e Decompose the data E™, H'™ as

approaches to

i\/121X\\*ell"s Eln = E E;lnelne HlIl - E H;lnelne
Equations
n n
Charles I
BRSNS Then solve a series of uncoupled equations on «y
Michael
O’Neil)

Sn,OVF -T (lkSn,k]n - vSn,krn -V X Sn,kmn) = _Sn,Ovr : E:1n

0 .
ikn - Spmy, — —Spkqn +n -V X S, umy, =n - H)

on
/En-ds:—/Ei,“-ds
Ai Ai

1

En - En‘k:() .
Numerical / _— ds — H;ln . da
B; ik

Experiments




s  Low-frequency behavior

New
approaches to
the numerical

solution of For small k, the discretized operator in matrix form for mode

Maxwell’s

Equations n — 0 ScaleS as

Charles I

Epstein (with
e I+K| ok |o(1) r ~S00Vr - TEY
O’Neil)
oK) | -1+K o) g~ —n-HY
O(k) o(1) a — [LEq - ds
o) oy ) 5 N LEas

where KC is an O(1) compact operator. Some additional effort is required
to make sure the solutions have mean zero.

Numerical
Experiments



Numerical examples

How do we test this code?

| e—

Generate outgoing solution due to r'*,¢"" on inner toroid
Grab E™', H"*"' on the surface of " and use as data
Solve integral equation for r, g

Compare E, H to known E™', H"**' on the outer toroid

Numerical
Experiments



Numerical examples

New . . .
approaches fo The relative accuracies for the first few modes as a function of k

the numerical

solution of are
Maxwell’s
Equations 1 00
o Bon=0
Charles I
Epstein (with —H, n=0
some help from Sow B, n=1
Michael -~
O’ Neil) = H, n=1
= 10-5 E, n=2 ]
3 ———H, n=2
o
© E, n=3
i P
o H, n=3
>
=
<
©
~
15|
10 L L L
_ 10 - 5
107 10” 10°° 10

Numerical
Experiments

Frequency k



solution of
Maxwell’s
Equations

Charles I
Epstein (with

some help from
Mich:

O’Neil)

Example: The dielectric problem

Numerical
Experiments



The dielectric problem

The dielectric problem describes scattering in regions with
different permittivities and permeabilities

\Y% XEj:iuijj VxH; = —iijEj
V-Ej=0 V-H; =0

Wavenumber in region j is k; = | /€jijw.

Numerical
Experiments



w%  Generalized Debye for the dielectric

&

New
approaches to
the numerical

solution of The generalized Debye representation for the dielectric problem

Maxwell’s

Equations

Charles I Ej: \/,lTj(iijj*ngj*V ><Qj)
Epstein (with

some hlp fon H; = \/&(ikiQ; — V1) + V x A;)

Michael
O’Neil)

Vector and scalar potentials

0 = Syrj Y = Skqj

m Exterior E|, H| are generated fromj,, my, ri, and g

m [nterior Ey, Hy are generated from j,, my, ry, and qo

Numerical
Experiments



w%  Generalized Debye for the dielectric

&

New . oy .
approaches (o On genus p surface, the dielectric boundary conditions we impose

are

Charles I S()Vr . [TEmt] =0 SOVF . [TH””] =0
Epstein (with

some help from [n . 6Etot] =0 [n X MHzot] -0

Michael
O’Neil)
/ [Ezot .ds] =0 / [Htot . ds] -0
Ai Al'
/ [Ezot . ds] =0 / [Htot . ds] -0
B; B;

fori=1,...,p, and where

[E] = E; — Eo + E}' — Eyf
[EE] =qkE| —eEy+ ElEiln — eoEgl

Numerical
Experiments



w%  Generalized Debye for the dielectric

K 2

New
approaches to

rp— The same continuity conditions are satisfied as for the PEC
solution of
Maxwell’s . . .
Equations VI— Jj = lkjrj vr . m] = lk]q]
Charles I
Epstein (with .
BRSNS cxcept now j and m are constructed as
Michael
O’Neil)

. , - €0 — .
J1 = iw(y/peVrAr U — \/eo,uo\/;VrAr 1ro) +Ju
m; = iw(y/meVrAr'g — \/Eouo\/fVFAFI‘IO) +my

. [er . /
Jo = *luh my = ﬂUml
€0 Ho

Numerical The operator U/ is called the clutching map.

Experiments

and



w¥  The clutching map

K 2

New
approaches to
the r ical

The clutching map, I/, relates interior the j, m to the exterior j, m.
It has the following properties:

Charles I
Epstein (with

m If v is a harmonic vector field, then Uv is also a harmonic
vector field

mIfw-j, =0, thenliw =n xw

The simplest choice for {w would be n x w - but mild
low-frequency breakdown still occurs...

To fix: Set Y = T on the harmonic vector field subspace.

Numerical
Experiments



w§  The dielectric problem

New
approa ithe\ to

Theorem

With proper choice of the clutching map U, the following integral
equation system provides a unique solution to the dielectric
problem for any set of k;’s with non-negative imaginary parts

SoVr - [TE”] =0 SoVr - [TH"] =0
[n-eE”]=0 [n- pH) =0

/ (£ - ds] = 0 / [H - ds] = 0

/ [ . ds] = 0 / (H - ds] =

Numerical
Experiments



Numerical examples

How do we test the dielectric code? Same idea...

>

Generate Maxwell fields due to r*,¢'**" on outer toroid
Generate Maxwell fields due to 7§ ,¢5*" on inner toroid
Grab ET*', HY", EY*', H;* on I and use as data

Solve integral equation for ry, g, 19, qo

Compare E;, H; to known E§*', Hi* on the outer toroid

Numerical

-, @ Compare Ey, Hy to known E*', H* on the outer toroid



Numerical examples

New
approaches (o The relative accuracy as a function of w for scattering from
ne numerical
solution of

Errorin Eand H

Maxwell’s
S X o
Equations 10 T T T T ; T
Interior E
Interior H
Exterior E
Exterior H
107 | gl
w107
e
w
o
2
K
©
o

6 7 8 9 10

0 1 2 3 4

5
Frequency

Material parameters were held constant at g = 0.90, po = 1.10, ¢, = 1.30, and

Numerical

Experiments H1 = 0.83.



New
approaches to
the numerical

solution of
Maxwell’s
Equations

Charles I
Epstein (with
some |

Numerical
Experiments

Numerical examples

Condition number

1e+10

1e+08

1e+06

10000

100

Specify the clutching map on the harmonic vector fields to be

ujHi =n XjHi

Condition number vs. frequency

1e-16

1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1
Omega



Numerical examples

New Specify the clutching map on the harmonic vector fields to be

approaches to

the numerical
solution of ’ — : in X .
Maxwell’s UJHI cos tJH, + S tn JHI'
Equations

Charles I Condition number vs. clutching map
1arles

Epstein (with . . v T T T Omega='1
some | o! Omega = 1015 ==s
1e+10 o
1e+08 £
I}
5
2 1e+06 L
c
8
T
2
o
© 10000 !
$
9
100 e
Numerical 1 A . & A . " "
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Experiments



%§  Thanks!

New
approaches to
the numerical

solution of
Maxwell’s
Equations

Charles I
Epstein (with

some help from
Michael

O’Neil)

Thanks very much for your attention!

Thanks to the NSF and AFOSR for their financial
support.

Numerical
Experiments
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