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@ Diffusion imaging and HARDI

@ Sparse approximation with spherical ridgelets

© HARDI reconstruction as a compressed sensing problem
@ Composite compressed sensing: spatial regularization

© Directional diffusion structure and its graph representation
@ Dimensionality reduction through isometric embedding

@ Application to first episode (FE) schizophrenia

@ Conclusions
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Diffusion MRI

The average diffusion propagator p(r) quantifies the probability of
a spin to relocate to position r + dr at experimental time 7.

p(r):/ s(q) e 2m(adq, reR3 qeR3
RS

where
@ s(q) is a normalized diffusion signal

@ ¢ is the wavevector
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Diffusion MRI

The average diffusion propagator p(r) quantifies the probability of
a spin to relocate to position r + dr at experimental time 7.

p(r):/ s(q) e 2m(adq, reR3 qeR3
RS

where
@ s(q) is a normalized diffusion signal

@ ¢ is the wavevector

In High Angular Resolution Diffusion Imaging, the estimation of
p(r) is superseded by estimating its radial projection known as an
orientation distribution function (ODF):

Q(u) = /00 p(au)a?da, ueS?
0

In this case, s(q) can be restricted to a spherical shell.
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HARDI vs. DTI

Diffusion tensor imaging (DTI) is a well-established tool of diag-
nostic dMRI.
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HARDI vs. DTI

Diffusion tensor imaging (DTI) is a well-established tool of diag-
nostic dMRI.

DTI

@ Unimodal Gaussian diffusion
model is assumed.

@ Typical number of diffusion -
encoding gradients is about
20 - 30.

@ Scan duration is about 5 -
10 mins.

© Incapable of discriminating
multimodal diffusion flows
within a voxel.
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HARDI vs. DTI

Diffusion tensor imaging (DTI) is a well-established tool of diag-

nostic dMRI.
DTI HARDI

@ Unimodal Gaussian diffusion © No assumptions on the
model is assumed. diffusion model are made.

@ Typical number of diffusion - @ Typical number of diffusion -
encoding gradients is about encoding gradients is about
20 - 30. 80 - 100.

@ Scan duration is about 5 - © Scan duration is about 20 -
10 mins. 30 mins.

© Incapable of discriminating Q@ Can be used to delineate
multimodal diffusion flows multimodal diffusion flows
within a voxel. within a voxel.
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HARDI vs. DTI: Fibre tractography

DTI
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HARDI vs. DTI: Fibre tractography

From: J. Malcolm, O. Michailovich, S. Bouix, C.-F. Westin, A. Tannenbaum, M. Shenton and Y. Rathi, “A filtered

approach to neural tractography using the Watson directional function,” Medical Image Analysis, 14(1), 2009.
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(xﬁ syo !ZO)

(%X0,¥0)

Thus, with r = (x,y,z) € Q c R3, HARDI measurements can be
modelled as s(u,r) : S? x Q — R,
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(xﬁ syo !ZD)

(%X0,¥0)

Thus, with r = (x,y,z) € Q c R3, HARDI measurements can be
modelled as s(u,r) : S? x Q — R,

Fundamental practical limitation

The practical value of HARDI is greatly impaired by the problem of
prohibitively long acquisition times.
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Research questions

The main questions to be addressed are:

Oleg Michailovich: olegm@uwaterloo.ca Fast and accurate HARDI & neurological diagnosis



Research questions

The main questions to be addressed are:

@ Are there tools of mathematical imaging which could be used
to speed up HARDI acquisition so as to make its requirements
comparable to those of DTI?
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Research questions

The main questions to be addressed are:
@ Are there tools of mathematical imaging which could be used
to speed up HARDI acquisition so as to make its requirements
comparable to those of DTI?

@ To what extent the resulting approximation errors can affect
the accuracy of subsequent diagnostic inference?
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Multifiber mixture model

At each r € Q, the HARDI signal can be modelled as
v si(u,r)
s(u,r) = Za;(r) exp {—b(u" D;(r)u)}
i=1
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Multifiber mixture model

At each r € Q, the HARDI signal can be modelled as
v si(u,r)
r) = Za;(r) exp {—b(u" D;(r)u)}
i=1

Si(u) HARDI signal S(u)

Sa(u)
W/ ( > W\/
Ss(u)
FRT

<\,

Diffusion
directions

A
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Multifiber mixture model

At each r € Q, the HARDI signal can be modelled as
si(u,r)

r) = Za;(r) exp {—b(u" D;(r)u)}

Si(u) HARDI signal S(u)

Sa(u) &'
W/ ( > W\/
Ss(u)
FRT

<\,

Diffusion
directions

A

Observation
The energy of s;(u) is supported alongside the great circles of S?. J
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Spherical ridgelets

Central requirement

The Ly-energy of HARDI signals can be efficiently “encoded” in
terms of representation atoms, whose IL>-energy is concentrated
alongside the great circles of S?.
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Spherical ridgelets

Central requirement
The Ly-energy of HARDI signals can be efficiently “encoded” in
terms of representation atoms, whose LLp-energy is concentrated

alongside the great circles of S?.

Fast and accurate HARDI & neurological diagnosis

PLANAR RIDGELETS

\

SPHERICAL RIDGELETS
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Spherical ridgelets: construction

Let k(x) = exp{—px (x+1)} be a Gaussian function, which we use
to define:

Kj(x) = K(279x) = exp {—p% (% + 1)} , jeN

Oleg Michailovich: olegm@uwaterloo.ca Fast and accurate HARDI & neurological diagnosis



Spherical ridgelets: construction

Let k(x) = exp{—px (x+1)} be a Gaussian function, which we use
to define:

Kj(x) = K(279x) = exp {—p% (% + 1)} , jeN

The Gauss-Weierstrass scaling function x;  : S? — R at resolution
j € N and orientation v € S? is defined as:

~2n+1
Xjv(u) = Z . Kj(n) Pa(u-v), YueS?
n=0

where P, is the Legendre polynomial of order n.
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Spherical ridgelets: construction

Let k(x) = exp{—px (x+1)} be a Gaussian function, which we use
to define:

Kj(x) = K(279x) = exp {—p% (% + 1)} , jeN

The Gauss-Weierstrass scaling function x;  : S? — R at resolution
j € N and orientation v € S? is defined as:

~2n+1
Xjv(u) = Z . Kj(n) Pa(u-v), YueS?
n=0

where P, is the Legendre polynomial of order n.

Finally, the spherical ridgelets 1); , are obtained from x;, according
to:

1
Yjv = ER {Xj+iv = Xjin}

where R denotes the Funk-Radon transform.
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Spherical ridgelets: construction (cont.)

Theorem
The semi-discrete set of spherical ridgelets {{jy};c 52 s a frame
for the subspace S € 1L.?(S?) of symmetric spherical functions.

Oleg Michailovich: olegm@uwaterloo.ca Fast and accurate HARDI & neurological diagnosis



Spherical ridgelets: construction (cont.)

Theorem

The semi-discrete set of spherical ridgelets {{jy};c 52 s a frame
for the subspace S € 1L.?(S?) of symmetric spherical functions.

In practical computations, given a set of K diffusion-encoding ori-
entations {uk},’le, the ridgelet frame is discretized to result in:

s(r) =WVce(r) +e(r), VreQ,
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Spherical ridgelets: construction (cont.)

Theorem
The semi-discrete set of spherical ridgelets {{jy};c 52 s a frame
for the subspace S € 1L.?(S?) of symmetric spherical functions.

In practical computations, given a set of K diffusion-encoding ori-
entations {uk},’le, the ridgelet frame is discretized to result in:

s(r) =WVce(r) +e(r), VreQ,

where

S(r) = [S(Ul, l’), S(Uz, I’), cey 5(uK7 r)]T
V is the ridgelet (dictionary) matrix

c(r) is the vector of ridgelet representation coefficients

e(r) is a noise term
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Reconstruction of HARDI signals

Bad news
@ Noise contamination is typically severe.
@ # ridgelets > K
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Reconstruction of HARDI signals

Bad news
@ Noise contamination is typically severe.
@ # ridgelets > K

Good news
@ The spherical ridgelets have a low coherence w.r.t. the Dirac
sampling functions (u ~ 0.56).

@ Spherical ridgelets provide sparse representation of HARDI
signals (only 6 = 8 ridgelets are needed on average).
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Reconstruction of HARDI signals

Bad news
@ Noise contamination is typically severe.
@ # ridgelets > K

Good news
@ The spherical ridgelets have a low coherence w.r.t. the Dirac
sampling functions (u ~ 0.56).

@ Spherical ridgelets provide sparse representation of HARDI
signals (only 6 = 8 ridgelets are needed on average).

Therefore, one can try to recover ¢(r) through:
min (1)
st ||[We(r) —s(r)|l2 < e
Ve(r) =0

which needs to be solved at each r € Q independently.
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Composite compressed sensing

General idea

Combine the sparse constraints in the diffusion domain (u) with a
smoothness constraint in the spatial domain (r).
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Composite compressed sensing

General idea

Combine the sparse constraints in the diffusion domain (u) with a
smoothness constraint in the spatial domain (r).

To this end, we define:
5= [s(r1),s(r2),...,s(rza)]”

¢ = [c(r1), c(ra), ..., c(rua)l”

v 0 0
A= 0o v 0
0 0 v
and 1
A2l v =) IDW{ A2} v
k=0

where Dy {5}[n] = 5[Kn + k] is a subsampling operator.
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Composite compressed sensing (cont.)

The spatially constrained CS problem can be now defined as

min {12 + 42| 7v |
st. A2 =35, <e
Ac =0

Oleg Michailovich: olegm@uwaterloo.ca Fast and accurate HARDI & neurological diagnosis



Composite compressed sensing (cont.)

The spatially constrained CS problem can be now defined as

min {12 + 42| 7v |
st. A2 =35, <e
Ac =0

or, equivalently, in the Lagrangian form as

N T _ _ C
min { >4 = 313 + A2l + ullAZ] v + ic (A) }.
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Composite compressed sensing (cont.)

The spatially constrained CS problem can be now defined as

min {12 + 42| 7v |
st. A2 =35, <e
Ac =0

or, equivalently, in the Lagrangian form as

N T _ _ C
min { >4 = 313 + A2l + ullAZ] v + ic (A) }.

Alternatively, one can solve

) 1. _ _ _ P
min {EHU — 3|34 \IE])1 + pllT) v + Ic(u)}

e,

st. Ac=1u
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Solution by means of ADMM

The above problem can be solved iteratively as
(l._lt+17 E.t+1) —
. 1 — -2 Alle - l _—./4_— t)2
argmin { 517 — 313 + A€l + g 77y + 213 — Ac - p'3

pttl = pt (AE.H-I _ Dt+1)
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Solution by means of ADMM

The above problem can be solved iteratively as
(l._lt+17 Et+1) —
. 1___2 Alle - l—_A—_t2
argmin { 517 — 313 + A€l + g 77y + 213 — Ac - p'3
pttl = pt (.AEH'I _ Ur+1)
Finally, splitting the variables results in
—t+1 B e -
Step 1: ¢! = argmin E||Ac—d II5 + €]l
c

_ N _
Step 2: 074 — argmin { 5 - 34413 + gl }

Step 3: pt+1 — pt + (Aat+1 o Dt+1)
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Numerical aspects

@ Step 1 is separable in the diffusion variable, and hence it can
be executed in a “voxel-by-voxel” manner (using, e.g., FISTA)
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Numerical aspects

@ Step 1 is separable in the diffusion variable, and hence it can
be executed in a “voxel-by-voxel” manner (using, e.g., FISTA)

@ Step 2 is separable in the spatial variable, and hence it can be
executed in a “slice-by-slice” manner (using, e.g., Chambolle's
algorithm).
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Numerical aspects

@ Step 1 is separable in the diffusion variable, and hence it can
be executed in a “voxel-by-voxel” manner (using, e.g., FISTA)

@ Step 2 is separable in the spatial variable, and hence it can be
executed in a “slice-by-slice” manner (using, e.g., Chambolle's
algorithm).

@ The overall computational load scales proportionally with the
number of processing cores.
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O. Michailovich, Y. Rathi and S. Dolui, “Spatially regularized compressed sensing for high angular resolution diffusion

imaging,” |IEEE Transactions on Medical Imaging, 30(5), 2011.
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ODF revised

e Given a recovered signal s(u,r), its corresponding ODF Q(u,r)
can be computed as (Aganj et al, 2010):

Qur) = o+

im T g R AVEin(=Ins(u.)}

where V% stands for the Laplace-Beltrami operator.
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ODF revised

e Given a recovered signal s(u,r), its corresponding ODF Q(u,r)
can be computed as (Aganj et al, 2010):

Q(u,r) = 1 ! R{Vf,ln(— In s(u,r))}

A + 1672
where V% stands for the Laplace-Beltrami operator.

e In practice, r belongs to a discrete set €2:

Q= {r,-:(x;,y,-,z,-) €R3 | iGI}.
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ODF revised

e Given a recovered signal s(u,r), its corresponding ODF Q(u,r)
can be computed as (Aganj et al, 2010):

Qur) = o+

im T g R AVEin(=Ins(u.)}

where V% stands for the Laplace-Beltrami operator.

e In practice, r belongs to a discrete set €2:

Q= {r,-:(x;,y,-,z,-) €R3 | iGI}.

e Denoting Q(u,r;) = Q;(u), we refer to the pair
Dq = ({ri}iez, {Qi(u)}iez)

as a directional diffusion structure (DDS).

Oleg Michailovich: olegm@uwaterloo.ca Fast and accurate HARDI & neurological diagnosis



Graph representation of DDS

e Formally, the DDS Dg is a subset of the probability manifold
R3 x P, where P is a set of probability densities on S?.
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Graph representation of DDS

e Formally, the DDS Dg is a subset of the probability manifold
R3 x P, where P is a set of probability densities on S?.

e D is a high-dimensional space, and it is therefore imperative
to find a lower dimensional representation of Dq in a linear metric
space.
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Graph representation of DDS

e Formally, the DDS Dg is a subset of the probability manifold
R3 x P, where P is a set of probability densities on S?.

e D is a high-dimensional space, and it is therefore imperative
to find a lower dimensional representation of Dq in a linear metric
space.

e Such a representation should:
© Preserve the directivity information contained in Dq

@ Be invariant under Euclidean transformations
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Graph representation of DDS

e Formally, the DDS Dg is a subset of the probability manifold
R3 x P, where P is a set of probability densities on S?.

e D is a high-dimensional space, and it is therefore imperative
to find a lower dimensional representation of Dq in a linear metric
space.

e Such a representation should:
© Preserve the directivity information contained in Dq

@ Be invariant under Euclidean transformations

e To this end, we first transform Dgq into a discrete metrizable ma-
nifold.
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Graph representation of DDS (cont.)

e Dg can be associated with an undirected weighted graph G, =
= (V, E), with no self-loops and no multiple edges.
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Graph representation of DDS (cont.)

e Dg can be associated with an undirected weighted graph G, =
= (V, E), with no self-loops and no multiple edges.

e Each vertex v; € V of G, is related to r; € Q, while the connec-
tivity on G,, is defined by means of its weights:

do(Qi, @), if [[ri—rjlo=A4A
wij =4 V2do(Qi, Q), if [Iri—rjll2=+v2A
+00, otherwise

where A is a spatial resolution parameter.
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Graph representation of DDS (cont.)

e Dg can be associated with an undirected weighted graph G, =
= (V, E), with no self-loops and no multiple edges.

e Each vertex v; € V of G, is related to r; € Q, while the connec-
tivity on G,, is defined by means of its weights:

do(Qi, @), if [[ri—rjlo=A4A
wij =4 V2do(Qi, Q), if [Iri—rjll2=+v2A
+00, otherwise

where A is a spatial resolution parameter.

e Since physiologically significant regions within the brain are to-
pologically connected, G, can be endowed with a metric:

dg,(u,v) =inf {/(u,v)},

where /(u, v) = >")_, wk—1. is the length of a path connecting v and
V.
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Graph representation of DDS (cont.)

e To finalize the definition of G, as a metric space, the distance
do(Qi, Qj) is defined to be the Jensen-Shannon divergence (aka
information radius):

dy(Qi, Q) =
_ |1 (u niZQ;(u) u
- [2 e D A
2Q( ) 1/2
5 [ o Y e @)
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Graph representation of DDS (cont.)

e To finalize the definition of G, as a metric space, the distance
do(Qi, Qj) is defined to be the Jensen-Shannon divergence (aka
information radius):

dy(Qi, Q) =
_ |1 (u niZQ;(u) u
- [2 e D A
2Q( ) 1/2
5 [ o Y e @)

e Note that the Jensen-Shannon divergence defines a metric on the
space of spherical probability densities P.
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Isometric embedding via MDS

e Given a DDS Dqg, and its associated graph representation G, one
can use dg,, to compute the (geodesic) distances between every pair
of vertices in G,.
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Isometric embedding via MDS

e Given a DDS Dqg, and its associated graph representation G, one
can use dg,, to compute the (geodesic) distances between every pair
of vertices in G,.

e These distances can be arranged into an N x N matrix
6 ={dij = dg,(vi,v;)}

with N = #Q.
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Isometric embedding via MDS

e Given a DDS Dqg, and its associated graph representation G, one
can use dg,, to compute the (geodesic) distances between every pair
of vertices in G,.

e These distances can be arranged into an N x N matrix
6 ={dij = dg,(vi,v;)}
with N = #Q.

e A lower dimensional representation of Dq can be found by means
of multidimensional scaling (MDS) which finds a configuration of N
points Xy = {tx}_, in, e.g., R? that minimizes the stress

EXn) = Y (It — | = 61,)°

i<j
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Isometric embedding via MDS

e Given a DDS Dqg, and its associated graph representation G, one
can use dg,, to compute the (geodesic) distances between every pair
of vertices in G,.

e These distances can be arranged into an N x N matrix
6 ={dij = dg,(vi,v;)}
with N = #Q.

e A lower dimensional representation of Dq can be found by means
of multidimensional scaling (MDS) which finds a configuration of N
points Xy = {tx}_, in, e.g., R? that minimizes the stress

EXn) = Y (It — | = 61,)°

i<j

e In this work, we use d = 3.
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Euclidean invariant biomarkers

e The low-dimensional representation Xy of a DDS can be cha-
racterized by its moments

€p.ar = Z P(t)7(t})

k:

=

with p+q+r < P and the first-order moments £p.0.1, £0,1,0 and £1,1,0
set to zero.
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Euclidean invariant biomarkers

e The low-dimensional representation Xy of a DDS can be cha-
racterized by its moments

€p.ar = Z P(t)7(t})

k:

=

with p+q+r < P and the first-order moments £p.0.1, £0,1,0 and £1,1,0
set to zero.

e Given two DDSs D}z and D%Z and their corresponding moments

{‘fll,_’w} and {féq’r}, the distance between these structures can be
defined to be:

d (DQ7 D2 Z ’gp q,r Eg,q,r‘2

pt+q+r<P
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Euclidean invariant biomarkers

e The low-dimensional representation Xy of a DDS can be cha-
racterized by its moments

€p.ar = Z P(t)7(t})

k:

=

with p+q+r < P and the first-order moments £p.0.1, £0,1,0 and £1,1,0
set to zero.

e Given two DDSs D}z and D%Z and their corresponding moments

{5},_’%,} and {féq’r}, the distance between these structures can be
defined to be:

d (DQ7 D2 Z ’gp q,r Eg,q,r‘2

pt+q+r<P

e In this work, P is set to be equal to 3, which results in a total of
16 moments of the 2nd and 3rd orders.
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Diagnosis of FES

@ The subject pool consisted of 20 FE patients (16 males, 4
females, average age: 21.21 + 4.56 years) and 20 normal
controls (15 males, 5 females, average age: 22.47 + 3.48
years) with the p-value for age being 0.34.
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Diagnosis of FES

@ The subject pool consisted of 20 FE patients (16 males, 4
females, average age: 21.21 + 4.56 years) and 20 normal
controls (15 males, 5 females, average age: 22.47 + 3.48
years) with the p-value for age being 0.34.

© HARDI data was acquired using a 3T MRI scanner with spa-
tial resolution of 1.667 x 1.667 x 1.7 mm3 and a b-value of
900 s/mm?.

© For each subject, expert segmentation was carried out to
identify the brain regions corresponding to the left (€}) and
right (Q%) centrum semiovale (with 1 < i < 20).

@ For each subject in the FE and normal control groups, the
pairwise distances between X,f,,_ and X,\Fz_ were computed and
used as a diagnostic biomarker.
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Diagnosis of FES (cont.)
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Number of diffusion-encoding directions
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Conclusions

@ The sparsifying properties of spherical ridgelets are crucial for
the CS-based reconstruction of HARDI signals.

@ Adding the spatial regularization and positivity constraints can
substantially improve the reconstruction accuracy.

@ HARDI can be performed using as few diffusion gradients as it
is required by a standard DTI (i.e. K =20+ 30).

@ A new method for low-dimensional representation of HARDI
signals based on isometric embedding was formulated.

@ It was demonstrated that the performance of the method re-
mains reliable, when the sampling density is reduced by a fac-
tor of 4 with respect to its conventional value.
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