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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

Computational anatomy1 focuses on the precise study of the
biological variability of brain anatomy.

D’Arcy Thompson laid out the vision of this discipline in his treatise
“On Growth and Form” 2. In 1917 he wrote

“In a very large part of morphology, our essential task lies in the

comparison of related forms rather than in the precise definition of each;

and the deformation of a complicated figure may be a phenomenon easy of

comprehension, though the figure itself may be left unanalyzed and

undefined.”

D’Arcy Thompson introduced the Method of Coordinates to
accomplish the process of comparison.

1Computational anatomy: An Emerging Discipline by U. Grenander, M. I.
Miller, Quart. Appl. Math., 56(4) 617-694 (1998)

2On Growth and Form, by D’Arcy Wentworth Thompson, Univeristy Press,
1917, 793 pages
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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

The Method of Coordinates reveals the phenomenon of correlation in
regards to form within the family (e.g., primates).

Example: Evolution of the human skull shape3

Figure: Human Skull Skull of chimpanzee Skull of baboon

3
On Growth and Form, by D’Arcy Wentworth Thompson, Univeristy Press, 1917, 793 pages
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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

Thompson’s vision has been cast into a precise mathematical form by
Ulf Grenander and Michael Miller.

The anatomical configuration is a collection of 0,1,2,3-dimensional
submanifolds with variabilities accommodated via random
transformations (a probabilistically deformable template4).

Figure: Gyri and sulci in a brain slice image, Sulcal landmarks and lines
Triangulated graph of a brain surface

4General Pattern Theory: A Mathematical Study of Regular Structures
by Ulf Grenander, Oxford University Press Inc., New York, NY, 1993
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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

Comparison of brain structures within a given anatomical population
is achieved by means of diffeomorphic transformations (1-1 and onto,
differentiable with differentiable inverse).

Importance of diffeomorphisms:

Connected sets remain connected

Submanifolds such as surfaces are mapped as surfaces

The global relationships between structures are preserved

The geometric features of individual anatomies (Gaussian
curvature, Riemannian length, surface area) are maintained.
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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

Illustration of a large deformation diffeomorphic map.

Figure: The monkey cortex cryosection, Itemp, and the second monkey
slice, I. ~u(x, t) is a time-dependent map Itemp(x− ~u(x, t)) → I(x).
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Mathematical foundations of computational anatomy

Mathematical foundations of computational anatomy

Diffeomorphic flows for large deformations are

generated by continuum mechanics equations of motion

~v =
d~u

dt
=
∂~u

∂t
+

d∑
i=1

vi
∂~u

∂xi

constrained to the set of transformations consistent with the
material properties of brain anatomy under study (elastic,
visco-elastic, etc.)

~̂v(x, T ) = arg min~v E(~v(x, T ), ~u(x, T )) (1)

= arg min~v {E1(~v(x, T )) + E2(~u(x, T ))}, (2)

more detail

E1(~v(x, T )) =
∫

[0,T ]

∫
Ω
‖L(~v(x, t))‖2dxdt, L is a differential

operator from continuum mechanics,

E2(~v(x, T )) = 1
2σ2

∫
[0,T ]

∫
Ω
|Itemp(x− ~u(x, t))− I(x)|2dxdt is the

observation energy needed to register template and study images.
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Mathematical foundations of computational anatomy

Bayesian view of transformations

In Bayesian view, there exists a prior probability density on
a set of transformations p(~u).

It is defined to give large probability to viscous fluid (elastic,
visco-elastic) transformations.

Its exact form does not have to be specified.

The solution ~u(x, t), t ∈ [0, T ] maximizes the posterior
distribution p(~u|I) written in Gibbs form

p(~u|I) ∝ p(I|~u) · p(~u) (3)

p(I|~u) · p(~u) = e−E(~v,~u) = e−(E1(~v)+E2(~u)). (4)

E is the Gibbs potential, the sum of the prior energy E1(~v) and
the Gaussian log-likelihood E2(~u).

next slide previous slide
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Growth models in computational anatomy

Growth models in computational anatomy

The equations of motion from mechanics have been used for
computation of growth-induced shape changes seen in medical
images.

Bayesian interpretation of transformations provides a strong
mathematical basis for image and landmark matching algorithms.

The goal of these algorithms is to infer growth deformation fields
determined by changes in pixel values.
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Growth models in computational anatomy

Growth models in computational anatomy

Figure: The growth model in computational anatomy as Bayesian paradigm
separating source from noisy observations.
(Images reproduced from Deformable templates using large deformation kinematics by R. D. Rabbitt, G. E.
Christensen and M. I. Miller, IEEE Transactions on Image Processing, 5(10) 1433-1447 (1996) )
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Growth models in computational anatomy

Growth models in computational anatomy

Computational anatomy equations for growth generate very
realistic structures.
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Growth models in computational anatomy

Growth models in computational anatomy

Computational anatomy equations for growth generate very
realistic structures.

However, they do not reflect the underlying biology of shape
change.
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A link between anatomical models and the GRID model

A link between anatomical models and the GRID model

From a biological perspective, it is not material constants that
regulate growth, it is the genetic control system.
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From a biological perspective, it is not material constants that
regulate growth, it is the genetic control system.

According to the book “Endless forms most beautiful” by S. B.
Carroll, during growth a multicellular structure undergoes shape
changes under the patterned control of a multitude of genes.

The genetic program of development unfolds in the form of
spatial-temporal distribution of densities of gene products.

(a) (b)

Figure: (a) Overlapping of the Vestigial and Apterous expression patterns, (b) Dynamics of
the Wingless expression pattern during larval growth [≈48h, ≈120h after egg laying].
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Figure: (a) Overlapping of the Vestigial and Apterous expression patterns, (b) Dynamics of
the Wingless expression pattern during larval growth [≈48h, ≈120h after egg laying].

At this level of small populations of cells a certain deformation is
assigned.



The Modelling of Biological Growth: a Pattern Theoretic Approach 15/ 47

A link between anatomical models and the GRID model

A link between anatomical models and the GRID model

The GRID model is the first of its kind, genetically-based
mathematical model for a biological growth.
We are led to the dynamical model of growth as a sequence of
genetically controlled transformations.

Figure: Schematic illustration of the GRID model.

We are looking for

a smaller, more structured space Φ of diffeomorphisms
appropriate to modeling biological deformations,
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A link between anatomical models and the GRID model

The GRID model is the first of its kind, genetically-based
mathematical model for a biological growth.
We are led to the dynamical model of growth as a sequence of
genetically controlled transformations.

Figure: Schematic illustration of the GRID model.

We are looking for

a smaller, more structured space Φ of diffeomorphisms
appropriate to modeling biological deformations,

unknown structures hidden deeper in given observations of
growth.
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GRID view of growth on a fine time scale

GRID view of growth on a fine time scale

The growth pattern is a cumulative growth deformation composed of
elementary deformations φ(ξseed,ti)

X(ξ, tn) = φ(ξseedσn ,tn) ◦ φ(ξseedσn−1
,tn−1) ◦ . . . ◦ φ(ξseedσ1

,t1)X(ξ, t0).
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GRID view of growth on a fine time scale

GRID view of growth on a fine time scale

Construction of the φ-map:

Place a seed on a Darcyan grid according to a Poisson process.
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GRID view of growth on a fine time scale

GRID view of growth on a fine time scale

Construction of the φ-map:

Place a seed on a Darcyan grid according to a Poisson process.

Deform the neighborhood around the seed

φ(x(ξ, t)) = x(ξ, t) + k(τ)R(x(ξ, t)− x(ξseed, t)),where

R(·) = (x(ξ, t)− x(ξseed, t)) exp
(
−‖x(ξ,t)−x(ξseed,t)‖2

s2

)
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GRID view of growth on a fine time scale

Isotropic deformation patterns

φ(x(ξ, t)) = x(ξ, t) + k(τ)R(x(ξ, t)− x(ξseed, t)).

If k(τ) = const then the local deformation is isotropic.

The isotropic GRID transformation of a disk of radius s centered at
the seed deforms it into a bigger or smaller disk.
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GRID view of growth on a fine time scale

Isotropic deformation patterns

Figure: Isotropic locally expansive growth with active gene sets
⋃4
i=1∆Ξi.

Click on an image to play a movie.
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GRID view of growth on a fine time scale

Anisotropic deformation patterns

φ(x(ξ, t)) = x(ξ, t) + k(τ)R(x(ξ, t)− x(ξseed, t)).

If k(τ) is angle-dependent, then the deformation φξseed,t is anisotropic
with one or more preferred directions of growth or decay.

Figure: Angular deformation function k(cos(τ)) and the corresponding
deformation type “unipolar source forward ”.
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GRID view of growth on a fine time scale

Anisotropic deformation patterns

We specify gene activity region and build a growth pattern out of
several elementary “uni-source-forward” maps.

Figure: Gene activity region, unipolar source growth pattern and evolution
of the Jacobian of the transformation with respect to the initially polar grid.

Click on an image to play a movie.
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GRID view of growth on a fine time scale

Anisotropic deformation patterns

Similarly, we build a growth pattern out of several elementary
“uni-sink-forward” maps.

Figure: Gene activity regions, unipolar sink growth pattern and evolution of
the Jacobian of the transformation with respect to the initially polar grid.

Click on an image to play a movie.
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GRID view of growth on a fine time scale

Anisotropic deformation paterns

Figure: Two consecutive phases of chick wing development, “arm” and
“forearm” with preferential directions of growth τ = π/2 and τ = π/4
correspondingly.

Click on an image to play a movie.
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GRID view of growth on a fine time scale

Stochastic version of the isotropic GRID model

Imagine a growing organism as an evolution of a discrete particle
configuration in absolute space-time driven by the inhomogeneous
Poisson point process of seed activations.
Such a growth pattern {x(ξ, t), t > t0, ξ ∈ Ξ} is a Poisson-driven
Markov process described by the stochastic differential equation

dx =

∫
ξtj∈Ξ

yξtj (x)µ(dξ, dt) subject to x(ξ, t0) = x0(ξ).

Figure: Spatial-temporal Poisson point process, ξ, spatial coordinate, t,
time coordinate.
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GRID view of growth on a fine time scale

Stochastic version of the isotropic GRID model

Experimental study of the Poisson-driven Markov process suggests
the diffusive nature of interior seed paths.

Figure: 30 realizations of 1D long-time Poisson-driven process.
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GRID view of growth on a fine time scale

Stochastic version of the isotropic GRID model

We approximate the jump process by the diffusion process.
Namely, we derive the Fokker-Planck equation (FPE) describing the
probability density of the 1D diffusive stochastic flow

∂f(x, t)

∂t
= − ∂

∂x
(f(x, t) · a(x)) +

1

2

∂2

∂x2
(f(x, t) · b(x))

with initial conditions f(x, t0) = σ(x− ξ0).
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= − ∂
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(f(x, t) · a(x)) +

1

2

∂2

∂x2
(f(x, t) · b(x))

with initial conditions f(x, t0) = σ(x− ξ0).
FPE coefficients a(x) and b(x) reveal the space-dependent average ve-
locity and the diffusion rate of the stochastic flow.
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Stochastic version of the isotropic GRID model

We approximate the jump process by the diffusion process.
Namely, we derive the Fokker-Planck equation (FPE) describing the
probability density of the 1D diffusive stochastic flow

∂f(x, t)

∂t
= − ∂

∂x
(f(x, t) · a(x)) +

1

2

∂2

∂x2
(f(x, t) · b(x))

with initial conditions f(x, t0) = σ(x− ξ0).
FPE time-dependent solutions reveal bimodal distribution of a random
seed trajectory in space-time.

Evolution of the probability
density f(x, t)
of seed trajectories in
time-space.

The FPE can be generalized to a two-dimensional compact space Ω(t) ∈
R2.
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GRID view of growth on a fine time scale

Stochastic version of the isotropic GRID model

Future applications of the 2D Fokker-Planck equation include
computation of macroscopic properties of the stochastic flow.

Evolution of the mean seed trajectories in time.

d

dt
〈x(t)〉 = 〈a(x(t))〉 .

Evolution of the variance of seed trajectories in time.

d

dt
〈〈x(t)〉〉 = 〈b(x, t)〉+ 2 〈[x(t)− 〈x(t)〉]a(x(t))〉

Maintaining the condition of independency of seed trajectories we can
claim that these equations are meaningful macroscopic equations of
growth on a fine time scale.
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GRID equation of growth on a coarse time scale (macroscopic growth law)

GRID equation of growth on a coarse time scale

Motivation: A multitude of elementary biological events (cell
divisions/deaths, enlargements and movements) results in visible
shape and interior changes of a growing organism seen in images.

⇓
It seems natural to represent an underlying biological transformation
by a diffeomorphic flow that evolves in time as a collective effect of a
large number of cell decisions.

Figure: Macroscopic growth with space-dependent Poisson intensity.
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GRID equation of growth on a coarse time scale (macroscopic growth law)

GRID equation of growth on a coarse time scale

The GRID equation of growth on a coarse time scale5 is a continuum
mechanics equation of motion with the velocity resulting from an
infinite number of seed activations.

∂x(ξ, t)

∂t
=

∫
ξseed∈Ξ

∆xξseed(ξ, t)λ(x(ξseed, t))dξseed,

where ∆xξseed(ξ, t) is an elementary deformation field due to a single
seed placement at x(ξseed)
λ(x(ξseed, t)) is the Poisson intensity of seed placements.

5
N. Portman, E.R. Vrscay, Existence and Uniqueness of Solutions to the GRID Macroscopic Growth

Equation, Appl.Math. Comput. (2011), doi:10.1016/j.amc201.03.021, in press
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GRID equation of growth on a coarse time scale

The GRID equation of growth on a coarse time scale5 is a continuum
mechanics equation of motion with the velocity resulting from an
infinite number of seed activations.

∂x(ξ, t)

∂t
=

∫
ξseed∈Ξ

∆xξseed(ξ, t)λ(x(ξseed, t))dξseed,

Growth is approximated by a diffeomorphic flow x(ξ, t) that depends
on

the Poisson intensity of seed placements λ(x(ξseed, t))

and the relative rate of expansion/contraction k(x(ξ, t)) (the
source).

We use the GRID macroscopic growth equation for image inference of
the source of the diffeomorphic flow.

5
N. Portman, E.R. Vrscay, Existence and Uniqueness of Solutions to the GRID Macroscopic Growth

Equation, Appl.Math. Comput. (2011), doi:10.1016/j.amc201.03.021, in press



The Modelling of Biological Growth: a Pattern Theoretic Approach 30/ 47

Image inference of growth properties of the Drosophila wing disc

Larval development of the Drosophila wing disc

Biological facts that have been taken into the 2D GRID model of the
wing disc growth:

1. The observed dynamics of Wingless gene expression is tightly
linked to the biological process of cell divisions.
2. Cells divide randomly and uniformly throughout the wing disc at
larval stage of development.
3. Cell number doubles on average every 9 hours during the second
and early third instar.
4. Most cell movements are due to passive displacements (newborn
cells pushing extant ones).
5. The disc epithelium is one cell thick.
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Image inference of growth properties of the Drosophila wing disc

Estimation of the intensity of cell decisions

Figure: Inference of the GRID magnitude parameter from sensor data.
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Image inference of growth properties of the Drosophila wing disc

Estimation of the intensity of cell decisions

The growth magnitude a(ξseed, t) = k(x(ξseed, t))λ(x(ξseed, t)) is the
unknown source of a biological deformation.

Assumption.

The absolute value of the local rate of expansion/contraction
k(x(ξseed, t)) is constant. It varies in sign throughout the cellular
field.

Let k(x(ξseed, t)) be ±1 and let λ absorb this constant for
simplicity.

The Poisson intensity of events in the Darcyan space is
|λ(ξseed, t)|.

We would like to infer λ-field directly from image data.
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Image inference of growth properties of the Drosophila wing disc

Estimation of the intensity of cell decisions

Using Bayes theorem we find a maximum a posteriori (MAP)
estimate of λ(ξ, T )

arg minλ∈RN×[0,T ]Epost(λ(ξ, T )) = arg minλ∈RN×[0,T ]

[Elikelihood(λ(ξ, T )) + Eprior(|λ(ξ, T )|) + Φ(λ(ξ, T ))]

Elikelihood(·) relates observed pixel values with the growth parameter
λ(ξ, T ),
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Estimation of the intensity of cell decisions

Using Bayes theorem we find a maximum a posteriori (MAP)
estimate of λ(ξ, T )

arg minλ∈RN×[0,T ]Epost(λ(ξ, T )) = arg minλ∈RN×[0,T ]

[Elikelihood(λ(ξ, T )) + Eprior(|λ(ξ, T )|) + Φ(λ(ξ, T ))]

Eprior(·) measures cell activities as represented by the Poisson intensity
|λ(ξ, T )|,
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Image inference of growth properties of the Drosophila wing disc

Estimation of the intensity of cell decisions

Using Bayes theorem we find a maximum a posteriori (MAP)
estimate of λ(ξ, T )

arg minλ∈RN×[0,T ]Epost(λ(ξ, T )) = arg minλ∈RN×[0,T ]

[Elikelihood(λ(ξ, T )) + Eprior(|λ(ξ, T )|) + Φ(λ(ξ, T ))]

Φ(·) increases smoothness of λ(ξ, T ) in the organism’s domain.

Φ(λ) =‖ ∇λ ‖22=

∫
ξ∈Ξ

|∇λ(ξ, T )|2dξ.
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Image inference of growth properties of the Drosophila wing disc

Estimation of the intensity of cell decisions

Using Bayes theorem we find a maximum a posteriori (MAP)
estimate of λ(ξ, T )

arg minλ∈RN×[0,T ]Epost(λ(ξ, T )) = arg minλ∈RN×[0,T ]

[Elikelihood(λ(ξ, T )) + Eprior(|λ(ξ, T )|) + Φ(λ(ξ, T ))]

subject to the discretized macroscopic growth equation

x(ξ, T )− x(ξ, 0) =

T∑
t=1

∑
ξseed∈Ξ

(x(ξ, t)− x(ξseed, t))e
−‖(x(ξ,t)−x(ξseed,t))‖

2

s(x(ξseed,t))
2 ·

1

J(x(ξseed, (t− 1)))
λ(ξseed, t)

with the initial conditions λ(ξ) = 1
N (N is the total number of Darcyan

seeds). This is the optimal control problem formulation.
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Image inference of growth properties of the Drosophila wing disc

Prior models of the intensity field

Figure: Left: no prior model,
middle: Gaussian prior Eprior(λ(ξ, t)) = 1

2σ2
λ
·
∑
ξ∈Ξ

(
λ(ξ, t)− 1

N

)2
,

right: Poisson prior Eprior(λ(ξ, t)) = −
∑N

[i=1] ln |λ(ξi, t)|+
∑N

[i=1] |λ(ξi, t)|
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Image inference of growth properties of the Drosophila wing disc

Inferred growth patterns of the Drosophila wing disc6.

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

Figure: Estimated λ(ξ) (top panel), deformed Darcyan grid of the wing disc generated by x(ξ, t)
(middle panel) and magnitude of the displacements (bottom panel) for image pairs (I1, I2) (a-c),
(I2, I3) (d-f), (I3, I4) (h-j), (I4, I5) (k-m), (I5, I6) (n-p).

6Portman N., Grenander U., Vrscay E., GRID Macroscopic Growth Law and
its Application to Image Inference, Quarterly of Applied Mathematics, Vol.
LXIX(2), 227–260 (2011)
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Image inference of growth properties of the Drosophila wing disc

Hidden growth patterns of the Drosophila wing disc

Figure: The diffeomorphic flow x(ξ, t) of the Darcyan grid of the wing disc
and the corresponding evolution of the pixel intensities I1(x(ξ, t)).

Click on an image to play a movie.
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Summary, concluding remarks and future perspectives

Summary

1 A pattern theoretic GRID model paves its way to the universal
formal language of biological growth.

2 The growth of biological shape is a digital stochastic process on
the fine time scale and an analog deterministic process on the
coarse time scale.

3 A systematic GRID-based approach for image analysis of growth
has been developed into an algorithmic tool that automatically
estimates growth characteristics of an organism directly from
image data.

4 A biologically meaningful cost function in the form of the
posterior probability is the most exciting result of this research.

It measures not only the mismatch in images of initial and grown
organisms but also cell activities driving observed shape changes.
It allows maximum a posteriori estimation of the intensity of
elementary biological events underlying observed dynamics of
levels of gene expression.

The diffeomorphic flow corresponding to the optimal value of the
λ-field does not fully register source and target images.
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Summary, concluding remarks and future perspectives

Concluding remarks

This research has contributed to the development of

a genetically-based model of a biological growth in quantitative
biology,

new computational methods in grid generation,

optimization methods in image analysis,

a new application of image analysis to the field of confocal
microscopy.
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Future perspectives

The study of a link between gene expression patterns and generation
of shape in a developing mouse brain.

Figure: Brain atlas of a postnatal (day 7) mouse brain saggital slice with
the gene expression data (gene atlas) attached onto it.
Cells expressing genes in anatomical subregions of the brain are stained in
dark, [www. geneatlas. org ].
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Current work

Current work

(a)

(e)

(i)
00-02 mon.

(b)

(f)

(j)
02-05 mon.

(c)

(g)

(k)
05-08 mon.

(d)

(h)

(l)
08-11 mon.

Figure: Axonal myelination during infant brain development affecting MRI
signal. (a)-(d) T1-, (e)-(h) T2- and (i-l) proton density-weighted templates
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Current work

Question: Which anatomical imaging modality should we
rely on for the longitudinal study of early brain
development?

Most longitudinal studies have been limited to T1-weighted
images only.

As a result, the automated image segmentation and cortical
surface extraction procedures are hard to implement due to poor
and highly variable grey/white matter contrast.

It is reasonable to combine information from all three MR
anatomical images in the form of fused images with enhanced
detail.

This way uniqueness and fidelity of deformation fields induced by
developmental process to all three types of MRI data can be
established.
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Current work

Figure: Fused template (44-60 mon.) obtained from T1-, T2- and PD-weighted templates 7 8 using
wavelet-based approach.

7
Alan C. Evans and Brain Development Cooperative Group,The NIH MRI study of normal brain

development , NeuroImage 30 (2006), 184-202.
8
V. Fonov, Ilana R. Leppert, B. Pike, D. L. Collins and the Brain Development cooperative

Group,MRI models of normal pediatric brain development from birth to 4.5 years: Part 1: Anatomical Templates to
be submitted to NeuroImage.

7
Alan C. Evans and Brain Development Cooperative Group,The NIH MRI study of normal brain

development , NeuroImage 30 (2006), 184-202.
8
V. Fonov, Ilana R. Leppert, B. Pike, D. L. Collins and the Brain Development cooperative

Group,MRI models of normal pediatric brain development from birth to 4.5 years: Part 1: Anatomical Templates to
be submitted to NeuroImage.
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Current work

(a)

(e)

(b)

] (f)

(c)

(g)

(d)

(h)

Figure: (a)-(d) T1-weighted atlas of normal early brain development and
(e)-(h) its fused version.
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Current work

Current work

Adding a fused image to the existing three anatomical imaging
modalities improves image segmentation.
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