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What we need

We saw that we needed fixed-point theory at all types.

We therefore need to define models of data types that support
this.

We also need functions between data types to be data types.

Since we are looking at properties of all data types together we
need to look at the category of data types.
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Categories Uber Alles

Definition
A category C consists of two collections: C0 objects and C1

morphisms.
There are functions dom, cod : C1 −→ C0 and a partial function ◦ : C1 × C1

−→ C1 called composition.
The function g ◦ f is defined if and only if cod(f ) = dom(g) and when it
is defined dom(g ◦ f ) = dom(f ), cod(g ◦ f ) = cod(g).
For every X ∈ C0 there is a unique morphism idX which is an identity for
composition.
Composition is associative.

X
f //

g◦f

AAY
g // Z
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Some categorical concepts

The collection of objects can be a set: small category.

The collection of morphisms between two objects can be a set:
locally small category. We write Hom(A,B) or C(A,B): homset.

A functor F relates two categories: it maps objects to objects and
morphisms to morphisms and it preserves identities and
composition.

X
f //

g◦f

AAY
g // Z

�� F +3 F(X)
F(f ) //

F(g◦f )=F(g)◦F(f )

::
F(Y)

F(g) // F(Z)
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Products

Z

f

��

g

��

〈f ,g〉
��

X × Y
π1

||xx
xx

xx
xx

x
π2

""FF
FF

FF
FF

F

X Y

A category may or may not have products.
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Exponentials

X × YX ev // Y

X × Z
f

;;xxxxxxxxx
〈idx, f̂ 〉

OO

This makes the concept of homset (or function space) internal; i.e.
there are objects that behave like the homsets.
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Terminal Objects

Definition
An object in a category is terminal if there is a unique morphism to it
from every object.

Definition
An object in a category is initial if there is a unique morphism from it to
every object.
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Cartesian closed categories

A CCC has finite products,

a terminal object

and exponentials.

We want our domains to form a CCC.
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Basic properties of domains

Domains should capture the idea of partial information.

This is expressed qualitatively through a domain.

A domain should be a poset with a least element.

A directed set X ⊆ D satisfies: ∀x, y ∈ X∃z∈ X with x, y ≤ z. It
represents a consistent collection of data. Every directed set
should have a least upper bound (sup,

∨

).

Such posets are called dcpos for directed-complete posets.

Henceforth, all domains will be dcpos; more conditions later.

Functions between domains should be monotone.

Functions between domains should preserve sups of directed
sets: continuity.

Panangaden (McGill University) Tutorial on Semantics Part II LICS Toronto June 2011 10 / 43



Approximation

We want some concept of “piece of information”.

We say that b is an essential approximation of y if whenever there
is a directed set X with y ≤

∨

X then for some x ∈ X we have
b ≤ x; we write b ≪ y.

Any limiting process that passes y must pass b at some finite
stage.

Example: consider the domain consisting of subsets of the
integers. Then an essential approximation of the set of positive
even numbers is {2, 6, 8} but the set of positive powers of two is
an approximation but not an essential approximation.

We will write ↓↓(x) for the set of essential approximations to x.
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Bases for domains

We would like to have a collection of “tractable” elements that
allow one to represent everything in the domain.

A basis B for a domain D is a (countable) family of elements such
that for every d ∈ D the set of elemnts Bd = B∩ ↓↓(d) is directed
and

∨

Bd = d.

A domain with a (countable) basis is said to be (ω-)continuous.

We say that e is finite (compact) if e≪ e.

Sometimes we do not have enough finite elements but we can
often find enough essential approximations.

Example: [0, 1] with the usual order has only one finite element but
the rational form a nice countable basis.
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Examples of continuous domains

The set of all subsets of positive integers, ordered by inclusion.
Take the finite subsets as the basis. These are actually finite
elements; which partly explains the terminology.

The set of all partial functions from a countable set to itself
ordered by inclusion of graphs.

The set of all subprobability distributions on a finite set, ordered
pointwise.

A countable basis is given by all the distributions that assign
rational weights to each point.

Continuous domains arise whenever one is dealing with real
numbers: probabilistic systems, real-time systems, computing with
real numbers.
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Algebraic domains

One wants to relate the denotational semantics with the
operational semantics; one needs to work with “syntactically
representable elements” as a way of forging this connection.

It usually happens that this connection is mediated by finite
elements.

A continuous domain in which all the basis elements are finite (not
finite in number!) is called an algebraic domain.

For the traditional semantic applications algebraic domains are
very important. For more recent applications to real-time, hybrid
and probabilistic systems continuous domains are necessary.

Whence comes this name “algebraic”?

The collection of finitely generated subgroups in the lattice of
subgroups of a given group forms an algebraic dcpo. Many
examples in algebra come from finitely generated meaning “finite”.
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Function spaces

What are general functions spaces?

If D and E are dcpos then we define [D −→ E] to be the poset of
continuous functions from D to E with the following order

f ≤ g iff ∀d ∈ D, f (d) ≤E g(d).

It is not hard to show that [D −→ E] is itself a dcpo.

We can define D × E as {(x, y)|x ∈ D, y ∈ E} with the order
(x, y) ≤ (x′, y′) iff x ≤D x′ and y ≤E y′.

If we define Dcpo to be the category with dcpos as objects and
continuous functions as morphisms we get a cartesian closed
category.
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Algebraic functions spaces

If we adopt ω-algebraicity as a basic requirement for our domains
we need to ensure that the function spaces are also ω-algebraic.

However, we cannot take domains to be arbitrary ω-algebraic
dcpos.

There are three famous examples due to Gordon Plotkin of
ω-algebraic dcpos D with [D −→ D] not ω-algebraic.
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Plotkin’s first example

. . . • • • • • . . .

a
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This is not too bad, it is algebraic but not ω-algebraic.
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Plotkin’s second example
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Plotkin’s third example

...
...

a2

ppppppppppppppp
b2

NNNNNNNNNNNNNNN

a1

oooooooooooooo
b1

OOOOOOOOOOOOOO

⊥

@@@@@@@@

~~~~~~~

These last two are really terrible!
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Scott domains

Definition
A pair of elements x, y in a dcpo are said to be bounded or consistent
if there is some z such that x, y ≤ z.

Definition
A Scott domain is an ω-algebraic dcpo such that every non-empty
finite set of elements has a least upper bound.

They are also called bounded-complete dcpos or
consistently-complete dcpos.
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Function spaces of Scott domains

Easy to see that Plotkin’s examples are all ruled out.

Easy fact: if e1,e2 are compact and e1 ⊔ e2 exists, then it is also
compact; hence, same is true for finite sets of compact elements.

If D and E are Scott domains and the finite elements are denoted
{di} and {ej} respectively, then the following are compact
elements of the function space

di ր ej(x) =

{

ej , if di ≤ x;

⊥ otherwise.

They are called step functions.

Do reasonable sups of these things always exist?
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Sups of step functions

When should d1 ր e1 and d2 ր e2 be consistent?

When d1 and d2 are consistent then e1 and e2 should be
consistent.

In that case e= e1 ⊔ e2 exists,

because of bounded completeness!

Then we can define

(d1 ր e1 ⊔ d2 ր e2)(x) =























e1, if d1 ≤ x but d2 6≤ x;

e2, if d2 ≤ x but d1 6≤ x;

e, if d1 ≤ x and d2 ≤ x;

⊥ otherwise.

Now we can get a basis for the function space by taking sups of all
bounded (consistent) finite collections of step functions.

The category of Scott domains is cartesian closed.
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Is this the best one can do?

Gordon Plotkin defined a larger category – the SFP domains –
which ruled out his three examples and showed that this gives a
CCC of ω-algebraic domains. He needed it for his work on
powerdomains and nondeterministic computation.

Mike Smyth showed that this is the largest CCC of ω-algebraic
domains.

Carl Gunter showed that the Scott domains are the largest
first-order axiomatizable CCC of ω-algebraic domains.

Achim Jung showed that there were exactly 4 maximal CCCs of
algebraic domains.

Why do we need more CCCs if Scott domains are good enough
for PCF?

We need them when we add new features – nondeterminism,
probability – to the language and need to model them.
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Basic domains for PCF

The “flat” domain of naturals: N⊥

0 1 2 3 4 5 . . .

⊥

TTTTTTTTTTTTTTTTTTTTT

NNNNNNNNNNNNNN

????????

�������

pppppppppppppp

The flat domain of booleans:B⊥

ff tt

⊥

????????

��������
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Denotational semantics of PCF I

The ground types

[[Nat]] = N⊥; [[Bool]] = B⊥.

The higher types

[[σ × τ ]] = [[σ]] × [[τ ]]; [[σ −→ τ ]] = [[[σ]] −→ [[τ ]]].

The constants, pairing, projection, plus, equals and conditionals
are interpreted the obvious way.

The λ-calculus part is interpreted in the manner we have already
indicated. We need to show various things are continuous.

It only remains to explain fix.
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Fix

Given D a Scott domain (any dcpo with ⊥ will do);
define fixD : [D −→ D] −→ D by
fixD(f ) =

∨

{⊥, f (bot), . . . , f (n)(⊥), . . .}.
This is itself a continuous function.
The family fixD is the unique family satisfying the following
uniformity condition. If h is strict (h(⊥) = ⊥) and the diagram

D
f //

◦

h
��

D
◦

h
��

E g
// e

commutes, then h(fixD(f )) = fixE(g).

[[fix(M)]] = fix([[M]]).
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Subject reduction and soundness

Theorem

If Γ ⊢ M : τ is a valid typing judgment and M
∗

−−→ N then Γ ⊢ N : τ is a
valid typing judgment.

Theorem

If Γ ⊢ M : τ and M
∗

−−→ N then [[M]] = [[N]].
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Contexts

A context in PCF is essentially a term with a “hole” in it into which
another term of the appropriate type can be plugged in.

For example λx.〈2, x[·]〉. If we put a term of the right type in the
hole, we will get a PCF term.

A semantics is compositional if [[M]] = [[N]] implies that for all
contexts C[·] (of the right type) [[C[M]]] = [[C[N]]].

The denotational semantics of PCF based on domains (the
standard model) is compositional.

If C[·] is such that C[M] is of ground type, we say C is a ground
context.

Panangaden (McGill University) Tutorial on Semantics Part II LICS Toronto June 2011 28 / 43



Observations

We cannot test terms of all types for equality, only ground types.

We can observe a ground term by seeing to what value it reduces.

We write M ⇓ m if the term M : Nat eventually reduces to the
number m.

What can we observe about higher type terms?

We say M,N are observationally equivalent if for all ground
contexts C[·] for M and N, C[M] ⇓ v if and only if C[N] ⇓ v; we write
M ≡obs N.

We write M ⇓ ⊥ to mean ∀v.¬(M ⇓ v).

We would like our denotational semantics to be a good guide to
observational equivalence.
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Adequacy

Definition
We say a semantics is adequate if

[[M]] = [[N]] ⇒ M ≡obs N.

This is equivalent to

Theorem

[[M]] = [[v]] ⇔ M ⇓ v.

Proof sketch
Assume [[M]] = [[N]] and the proposition holds. Let C[·] be a ground
context and v a value such that C[M] ⇓ v. Thus
[[C[M]]] = [[C[v]]] = [[C[N]]], where we have used compositionality. Thus,
C[N] ⇓ v.
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The grand theorem of PCF

Theorem
The denotational semantics of PCF is adequate.
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Reasoning with higher-type languages

How can we reason about higher type languages?

We use both the term structure and the type structure.

Terms of simple structure – like variables – can have arbitrarily
complicated types.

Therefore the induction arguments are not just nicely nested.

Furthermore, we have to deal with substitutions into open terms.

The main technique uses logical relations invented by Tait in 1967
to prove strong normalization of simply-typed λ-calculus.

We will illustrate logical relations with the proof of adequacy.

For simplicity, I will forget about products.
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The computability predicate

If M : Nat is closed it is said to be computable if [[M]] = [[v]] implies
M ⇓ v.

If M : τ −→ τ ′ is closed it is computable if, for every closed
computable term N : τ , MN : τ ′ is computable.

If M has free variables {x1, . . . , xk} then it is computable if for every
substitution M[N1/x1, . . . ,Nk/xk] of closed computable terms for
the free variables we get a computable term.

We call such a substitution computable.

We write σ for a substitution and σ[M] for the term resulting from
the substitution.



The Proof I

We claim every PCF term is computable. Induction on structure of
terms and types.

M = x : τ ; a computable substitution will certainly produce a
computable term.

Cases where M is a conditional or plusare easy structural
induction cases.
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The Proof II

M = λx.Q : τ1 −→ τ2. Let σ be a computable substitution and let ~T
be a sequence of closed computable terms such that σ[M]~T is of
ground type and that [[σ[M]~T]] = [[v]].

σ[M]~T = σ[λx.Q]T1T2 . . .Tk = (λx.σ[Q])T1T2 . . . Tk

= (σ[Q][T1/x1])T2 . . . Tk.

Now the term (σ[Q][T1/x1]) = Q[T1/x1,S1/y1,S2/y2, . . .] is just
another substitution instance of Q by a computable substitution σ′.
Hence, by the induction hypothesis it is computable.

Thus [[σ[M]]]~T = [[σ′[Q]T2 . . .Tk]] = [[v]] implies that σ′[Q]T2 . . .Tk ⇓ v.

Hence σ[M]~T ⇓ v.

One can prove the application case with similar arguments.
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The Proof III: Fix sketched

Here we need another theorem: approximation.

Imagine the recursion unwound to some depth and then wherever
fix occurs we replace it with ⊥.

The collection of partial unwindings are the syntactic
approximants.

We can show that the denotational semantics of the syntactic
approximants give a directed set with least upper bound the
meaning of the original term.

We can show that if any of the approximants applied to closed
computable terms converges to v then so does the original term.

We prove by induction on the depth of the unwinding that the
unwindings are computable.

Putting all this together we can complete the argument.
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A perfect match?

We would like our denotational semantics to be a perfect match
with observational equivalence.

[[M]] = [[N]] ⇔ M ≡obs N.

Unfortunately, it is not!

Consider the function “parallel or” with the following table

por ⊥ tt ff

⊥ ⊥ tt ⊥

tt tt tt tt
ff ⊥ tt ff

This function cannot be defined in PCF; proved by Plotkin in 1977.

This function is “listening in parallel” to two inputs and will use
whichever one converges first.

However, the operational semantics of PCF is sequential.
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The problem with parallel or
f(tt)(⊥)

ppp
p III

I

f(⊥)(tt)

ppp
NNN

NN
⊥

f(ff)(ff)

uuu NNN
NN

⊥

⊥ tt

Call this term T.

f(tt)(⊥)

ppp
p III

I

f(⊥)(tt)

ppp
NNN

NN
⊥

f(ff)(ff)

uuu
NNN

NN
⊥

⊥ ff

Call this term F.

Consider the terms (λf .T)por = tt and (λf .F)por = ff. So it is definitely
the case that [[T]] 6= [[F]]. However, no PCF definable term will ever see
the difference.
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What can be done about this?

Add parallel or to the language or some other parallel construct.

Various extended languages were shown to have fully abstract
domain models.

Key step in proving full abstraction: all the finite elements are
definable.

Construct a fully abstract model from the syntax: Milner 1977.

All fully abstract models are isomprphic, so the question is one of
presenting a fully abstract model in an insightful way. The domain
model gives insight into the nature of computation that is not just
mimicking the operational semantics.

Try to characterize sequential computation mathematically.
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Stable domain theory: Berry

Berry introduced a new restriction and a new order on functions –
the stable order – and introduced stronger finiteness conditions.

In Scott domains a finite (i.e. compact) element can be above
infinitely many elements! This does not happen in stable domain
theory.

PCF can be given an adequate semantics with stable domains.

Parallel or does not appear in stable domains.

Unfortunately, other more complicated examples can be given –
discovered by Berry himself – that show that full abstraction fails.
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Need a more intensional view

Berry and Curien started the study of sequential algorithms on
concrete data structures.

Girard invented linear logic in the mid 1980s and this made a huge
impact on the semantics community by making resource
sensitivity an integral part of logic and proof theory.

Abramsky and Jagadeesan developed full completeness results
for linear logic based on dialogue games.

Abramsky, Jagadeesan and Malacaria and simultaneously and
independently Hyland and Ong and also independently Nickau
developed fully abstract games models for PCF.

O’Hearn and Riecke gave domain theoretic fully abstract models
but they were also based on intensional ideas.
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Loader’s result

Ralph Loader showed that observational equivalence of even
finitary PCF is undecidable.

This means that no fully abstract model can be effectively
presented.
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The Game Universe

The basic idea is to model data types as dialogue games and
programs as strategies: there is no notion of winning or losing.

Remarkably different programming paradigms appear as different
restrictions on allowed strategies.

Two important restrictions needed for modelling PCF are called
innocence and bracketing. Loosening these restrictions yields fully
abstract models of extensions of PCF!

PCF+ control PCF+ control + state

PCF PCF+ state

Gi G

Gib Gb
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