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Semantics of Higher-Order Probabilistic Languages

�, � ::= 

∣ � → � functions
∣ V� probability
∣ . . . distributions

M,N,P ::= x�
∣ �x� ⋅M
∣ MN
∣ . . .
∣ ⋇ fair coin
∣ valM
∣ let x = M in N sequence

Open Problem:
Does there exist a Cartesian closed category (=interpret � → � )
of continuous domains,
closed under the probabilistic powerdomain (=interpret V� )?

We still do not know, but present an interesting alternative.
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Continuous Valuations

Classical view [JonesPlotkin89]: interpret V� as space of
continuous valuations (=measures on a topology).

Definition (Continuous Valuation)
A function � : Opens(X )→ [0,1] with:

�(∅) = 0 (strictness)
U ⊆ V ⇒ �(U) ≤ �(V )

�(U ∪ V ) + �(U ∩ V ) = �(U) + �(V )

�(
∪↑

i∈I
Ui) = sup↑i∈I �(Ui)

We shall also require �(X ) = 1 (probability).
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Dirac Valuations

A Prominent Example.
For any x ∈ X , the Dirac valuation �x is defined as

�x (U) =

{
1 if x ∈ U
0 otherwise

Simple valuations are finite linear combinations of Dirac
valuations

n∑
i=1

ai�xi

with a1, . . . ,an ≥ 0,
∑n

i=1 ai = 1.
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Examples

{0,1}≤!:
the Cantor tree.

00 111001

0

�

1

111000 001 010 011 101100 110

Basic open sets: ↑ x for finite
sequence x

Any biased coin (p,q) with
p + q = 1 induces a continuous
valuation �(x) = pa(1− p)b

where a is the number of 0’s in
x , while b is the number of 1’s
If p = q = 1/2 the induced
valuation is the uniform
valuation Λ (on the top elts)
The support supp �, is the
complement of the largest U
such that �(U) = 0
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Evaluating
1
4�00 + 1

6�0 + 1
3�01 + 1

4�11
on ↑0

3
4

Basic open sets: ↑ x for finite
sequence x

Any biased coin (p,q) with
p + q = 1 induces a continuous
valuation �(x) = pa(1− p)b

where a is the number of 0’s in
x , while b is the number of 1’s
If p = q = 1/2 the induced
valuation is the uniform
valuation Λ (on the top elts)
The support supp �, is the
complement of the largest U
such that �(U) = 0
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E.g., p = 0.2, q = 0.8.

0.2

Basic open sets: ↑ x for finite
sequence x
Any biased coin (p,q) with
p + q = 1 induces a continuous
valuation �(x) = pa(1− p)b

where a is the number of 0’s in
x , while b is the number of 1’s

If p = q = 1/2 the induced
valuation is the uniform
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The support supp �, is the
complement of the largest U
such that �(U) = 0
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Basic open sets: ↑ x for finite
sequence x
Any biased coin (p,q) with
p + q = 1 induces a continuous
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{0,1}≤!:
the Cantor tree.

00 111001

0

�

1

111000 001 010 011 101100 110

1
8

Basic open sets: ↑ x for finite
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Examples

{0,1}≤!:
the Cantor tree.

The support of Λ is

00 111001

0

�

1

111000 001 010 011 101100 110

the whole Cantor tree

Basic open sets: ↑ x for finite
sequence x
Any biased coin (p,q) with
p + q = 1 induces a continuous
valuation �(x) = pa(1− p)b

where a is the number of 0’s in
x , while b is the number of 1’s
If p = q = 1/2 the induced
valuation is the uniform
valuation Λ (on the top elts)
The support supp �, is the
complement of the largest U
such that �(U) = 0
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The support of
1
4�00 + 1

6�0 + 1
3�01 + 1

4�11

Basic open sets: ↑ x for finite
sequence x
Any biased coin (p,q) with
p + q = 1 induces a continuous
valuation �(x) = pa(1− p)b

where a is the number of 0’s in
x , while b is the number of 1’s
If p = q = 1/2 the induced
valuation is the uniform
valuation Λ (on the top elts)
The support supp �, is the
complement of the largest U
such that �(U) = 0
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The Troublesome Probabilistic Powerdomain

The functor V preserves the category of continuous domains.

The category of continuous domains is not Cartesian closed.

No Cartesian closed subcategory of continuous domains is
known to be preserved by V.

No known (interesting) denotational semantics of probabilistic
higher order languages.
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Random Variables

Random variable=
measure on a space Ω + a measurable map f : Ω→ X :

induces a measure on X (the image measure)
Ω is the sample space
X is the space of observations or outcomes
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Continuous Random Variables

A continuous random variable is a continuous valuation � on
some space Ω, together with a continuous function
f : supp � → X .

We will fix Ω to be the Cantor tree.

Ω
f

X

00 111001
1
4

0

�
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1
4

111
1
3

1
6

000 001 010 011 101100 110

( 1
4 )

( 7
12 )

( 1
6 )

Goubault-Larrecq, Varacca The Powerdomain of Continuous Random Variables



Continuous Random Variables Semantics Valuations Random Variables CCC Theories

The Ordering on CRVs

If F = supp �, let pF (w) be largest prefix of w in F (projection).

Definition (≦)
(�, f ) ≦ (� ′, f ′) iff:
“increase supp, preserve probabilities” � is img of � ′ by psupp �

“increase values” f ∘ psupp � ≤ f ′

Ω
f

X

00 111001
1
4

0

�

1

1
4

111
1
3

1
6

000 001 010 011 101100 110
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The Ordering on CRVs
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f ′
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The Ordering on CRVs

If F = supp �, let pF (w) be largest prefix of w in F (projection).

Definition (≦)
(�, f ) ≦ (� ′, f ′) iff:
“increase supp, preserve probabilities” � is img of � ′ by psupp �

“increase values” f ∘ psupp � ≤ f ′

Ω X
f
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000 001 010 011 101100 110

(Probabilities fixed forever)
Deadlock states
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Thin Random Variables

A continuous valuation that does not deadlock is called thin, as
all the information can be gathered on the maximal elements of
the support (a “thin” set).

Thin Not Thin

00 11100100 111001
1
4

0

�
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1
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1
6

000 001 010 011 101100 110

Deadlock
states

Note: the uniform valuation Λ is thin.
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Thin Random Variables

Definition (Thin CRV (�, f ))
� is a thin continuous valuation on Ω

f is a continuous map from Max supp � to X
. . . so f is defined only on the non-deadlock elements of supp �.

Ω
f

X

00 111001
1
4

0

�

1

5
12

111
1
3

000 001 010 011 101100 110

Note to the purist: if X is a bc-domain (needed later anyway), f
extends canonically to supp �. So thin CRVs are CRVs in this sense.
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The Monad of Thin CRVs

Theorem
Thin CRVs form a monad.

Proof: Arise as a free dcpo-algebra for some equational theory (see
later.)

This says things such as (A; B); C = A; (B; C), and other
expected equations.
Not the case for (non-thin) CRVs.
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The Monad of Thin CRVs

Explicitly,
�R(X ) is space of thin CRVs over X ;
unit �X : X → �R(X ) maps x to

Ω
f

X

00 111001

0

�

1

111000 001 010 011 101100 110

1

x

“Flip no coin, return x right away”
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The Monad of Thin CRVs

Extension h† : �R(X )→ �R(Y ) of h : X → �R(Y ):

Y

Ω X
Ω Y

Ω

Ω Y

“concatenate
sequences of
coin flips” x1

x2

2
3

x1 x2

1
3

1
3

h† : 5
36

1
9

1
12 1

3

(sequential composition)

Then:

E.g., take

1
2

h

1
2

1
4

1
3

5
12
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The Category of Bc-Domains

Definition
A dcpo D is a bc-domain iff

it is continuous (there is a notion of approximation)
it is bounded-complete (any finite set of elements that has
an upper bound has a least one)

The bc-domains are exactly the densely injective T0
spaces [Scott, Escardó], a fact we require in the paper.
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The Cartesian Closed Category of Bc-Domains

Theorem (Jung)

The category of bc-domains and continuous functions is
Cartesian closed.
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Thin CRVs and Bc-Domains

Theorem
Thin CRVs over a bc-domain D form a bc-domain �R(D).

Proof (sketch.)

Thin CRVs arise as retract from semi-thin CRVs (i.e., (�, f )
where � thin, but f defined on whole of supp �), construction
through dense injectivity

Retracts of bc-domains are bc-domains, so prove semi-thin
CRVs form a bc-domain:

Approximation on semi-thin CRVs (�, f ) <⊲ (�′, f ′) iff � has finite
support, (�, f ) ≦ (�′, f ′) and f (w)≪ f ′(w) for every w

Least upper bound of (�, f ) and (�′, f ′) if they have an upper
bound (�′′, f ′′) at all: project (�′′, f ′′) onto supp � ∪ supp �′.

We can use thin CRVs for semantics!
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Uniform CRVs

Definition (Uniform CRVs)
(�, f ) uniform iff thin + � = psupp �(Λ) (proj. of uniform valuation).

“Flip all bits with probability 1
2 , independently”

Theorem
Uniform CRVs also form a monad.

Theorem
Uniform CRVs over a bc-domain D form a bc-domain �R(D).

Proof: Sups of uniform CRVs taken in �R(D) are uniform.

We can use uniform CRVs for semantics!
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Equational Theories

Sorry, I don’t think we’ll have time for a complete tour.

In short:
Nice characterizations through equational theories
We exhibit relationship with DV’s indexed valuations
Nice interplay with angelic non-determinism (distributive
law)
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Valuations

Equational Theory for V
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
4 x = x ⊕p x

with x ⊕p y continuous in x , y , p ∈ [0,1]
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Layered Hoare Indexed Valuations

Equational Theory for I V [This paper, variant]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
4 x ≤ x ⊕p x (Hoare indexed)

with x ⊕p y continuous in x , y , p ∈ [0,1] (layered)
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Thin Random Variables

Equational Theory for �R [This paper]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
x ⊕1 y independent of y , x ⊕0 y independent of x

4 x ≤ x ⊕p x

with x ⊕p y continuous in x , y , p ∈ [0,1]
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Uniform Random Variables

Equational Theory for �R [This paper]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
x ⊕1 y independent of y , x ⊕0 y independent of x

4 x ≤ x ⊕p x

with x ⊕p y continuous in x , y , p ∈ [0,1] and p ∈ {0, 1
2 ,1}
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1 Continuous Random Variables
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2 Semantics
A Probabilistic Higher Order Language
Semi-Decidability of Testing
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How Good are CRVs at Giving Semantics?

We claim that:

Theorem (somewhat imprecise for now)
Thin CRVs, uniform CRVs are as good as valuations in giving
semantics of higher-order programming languages.

Intuition: no primitive in the language has explicit access to
the random bits.
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A Higher-Order Probabilistic Language


 ::= Bool ∣ Nat ∣ . . . base types
�, � ::= 


∣ � × � pairs
∣ � → � functions
∣ V� probability distributions
∣ . . .

M,N,P ::= x� all sorts
∣ �x� ⋅M of constructs
∣ MN from the
∣ if M then N else P PCF language,
∣ Y �M or extensions
∣ . . .
∣ ⋇ fair coin
∣ valM monadic return
∣ let x = M in N sequential composition
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The Valuation Semantics

J_K1 is the standard valuation-based semantics

Definition (J_K1)

JV�K1 = V(J�K1)

J⋇K1 = 1
2�1 + 1

2�0 fair coin
JvalMK1 = �JMK1

Jlet x = M in NK = U 7→
∫

x JNK1 (x)(U)d JMK1
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The Random Variable Semantics

J_K2 is the uniform CRV-based semantics

Definition (J_K2)

JV�K2 = �R(J�K2)

J⋇K2 = 00 111001

�
1

000 001010011 101100 110

0

111

Ω B⊥ = JBoolK2

1
2

1 0
1
2 ⊥ fair coin

JvalMK2 = �(JMK2)
Jlet x = M in NK2 = (x 7→ JNK2 (x))†(JMK2)

Note: The val and let cases are as in every monad.

J�K2 (not J�K1) is a bc-domain for every � .
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CRVs are as Good as Valuations

Theorem (Random Variables are as Good as Valuations)
Let M be any closed term of ground type 
. Then

JMK1 = JMK2

Proof: Define a logical relation (R� )� type, where R� ⊆ J�K1 × J�K2:

� RV� (�, f ) iff
∫

x h1(x)d� =
∫

w h2(f (w))d� whenever h1 R̂� h2

h1 R̂� h2 iff h1(x1) = h2(x2) whenever x1 R� x2

“� is obs. indistinguishable from image measure � ∘ f−1 of (�, f )”

Prove the Basic Lemma: JMK1 R� JMK2 for all M : � .
At ground types, R
 is equality: conclude.

Goubault-Larrecq, Varacca The Powerdomain of Continuous Random Variables



Continuous Random Variables Semantics Language Semi-Decidability of Testing

Outline

1 Continuous Random Variables
The Classical Probabilistic Powerdomain
The Definition of Continuous Random Variables
In the CCC of BC-Domains
Equational Theories

2 Semantics
A Probabilistic Higher Order Language
Semi-Decidability of Testing
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Probabilistic Testing

Definition (Testing Equivalence)
M,N : V Bool are probabilistically equivalent iff
Prob[M ⇓ 1] = Prob[N ⇓ 1]

Escardó [2009] also defines may-testing, must-testing
equivalence (replace Prob by ∃, ∀) — I’ll skip this, see
paper.
Formally requires operational semantics

⋇ ⇓ 1 ⋇ ⇓ 0
M ⇓ V

valM ⇓ valV
M ⇓ valV N[x := V ] ⇓ V ′

let x = M in N ⇓ V ′

Prob defined by “⋇ ⇓ 1 or ⋇ ⇓ 0 with prob. 1
2 ”
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Decidability?

Escardó’s goal [2009] is to show that probabilistic testing is
semi-decidable.

Theorem
Probabilistic testing is undecidable.

Proof: by reduction from PFA reachability
([Paz71,CondonLipton89,BlondelCanterini03], see nice proof of
undecidability by [GimbertOualhadj, ICALP’09]).
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Going Denotational

Definition (Testing Equivalence)
M,N : V Bool are probabilistically equivalent iff∫

1d JMK1 =
∫

1d JNK1.

This is equivalent to previous definition by computational
adequacy.
Escardó describes all this elegantly by adding a testing
operator

∫
(integration) into the language.
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Escardó’s MMP

Let MMP [Escardó09] be PCF+the V monad(+others)+testing
operators.


 ::= Bool ∣ Nat ∣ I ∣ . . . base types (JIK = [0,1]�)

M,N,P ::= x�
∣ �x� ⋅M ∣ MN ∣ Y �M
∣ if M then N else P
∣ . . .
∣ ⋇ fair coin
∣ valM monadic return
∣ let x = M in N sequential composition
∣ max ∣ min ∣ ⊕ average ((x + y)/2)
∣

∫
MN integration (

q∫
MN

y
∼
∫

x JMK (x)d JNK)

M,N : V Bool are eqv iff
q∫

1M
y

1 =
q∫

1N
y

1
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Escardó’s Argument

Theorem
Probabilistic (also, may-, must-) testing is semi-decidable.

Proof ideas:

Escardó [2009] reduces this to the problem of showing

J�(M)K1 = JMK1 for M : I

where �(M) is term that implements
∫

using ⊕ and fixpoints.
Target language is real PCF, which is computable (e.g., every
implementable boolean question is semi-decidable).

Manages to do using JV �K1 as free cone algebra.
. . . only works when J�K1 continuous, i.e., at low orders.

We know that J_K1 = J_K2 at ground types. So prove

J�(M)K2 = JMK2 for M : I

now we are in the cozy category of bc-domains, at all types.
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Appendix

Related Work

The troublesome probabilistic powerdomain [JungTix98]
Indexed valuations [V03] very much related to CRVs.
Indexed valuations (although not the kind presented here)
preserve FS-domains [Mislove07]
Models of non-deterministic+probabilistic choice
[MOW03,TKP05,JGL07]
Testing of higher-order programs [Escardó09]
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Appendix

Summary

New monads of prob. choice, through random variables
A definite plus, compared to the prob. powerdomain V:
they live in the cozy CCC of bc-domains
Clarifies notion of indexed valuation (see paper)
Random variables as good as valuations for semantics
(at ground types)
We solved an problem left open by M. Escardó: prob. (and
may-, must-) testing of extended PCF is semi-decidable.

We were initially looking for a concrete description of
indexed valuations: is there any?
Combining CRVs with non-determinism: doable?
comparison with previsions/convex non-determinism?
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Appendix Theories Proof

Road Map

1 Continuous Random Variables
The Classical Probabilistic Powerdomain
The Definition of Continuous Random Variables
In the CCC of BC-Domains
Equational Theories

2 Semantics
A Probabilistic Higher Order Language
Semi-Decidability of Testing
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Outline

3 Appendix
Equational Theories
A More Complete Proof of Escardó’s Claim
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Equational Theory for Non-Determinism

Hoare Powerdomain
The Hoare powerdomain H (X ) is the free algebra for the
equational theory

x ∪– x = x
x ∪– y = y ∪– x
(x ∪– y) ∪– z = x ∪– (y ∪– z)

x ≤ x ∪– y

This models angelic non-determinism.
What about languages with both non-determinism and
probabilities?
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Distributive laws

Theorem (Varacca, PhD Thesis, 2003)
There is no distributive law between the Hoare powerdomain
monad H and the continuous valuation monad V.

. . . and neither H V nor VH a monad
the categorical way of saying that probabilistic choice and
non-deterministic choice do not commute:

0.7 0.3 0.4 0.25
0.35

1.0

0.7 0.3

0.7 0.3 1
0.7 0.3 0.7

0.3

0.7
0.3

0.7

0.3

a b c d

Flip
1

Flip
1

a b c d

a b c d e

H

V H

V

V

H

?
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Solutions

Replace Hoare powerdomain by convex Hoare
powerdomain [MOW03, TKP05]: H cvxV is a monad

. . . i.e., use randomized, not pure, schedulers
to resolve non-determinism

Use previsions [JGL07]
. . . (roughly) isomorphic to previous [JGL08a]

Realize V satisfies too many equations, e.g., x ⊕p x = x .

↝ Keep H , but replace V by indexed valuations I V
[V03].
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Valuations

Equational Theory for V
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
4 x = x ⊕p x

with x ⊕p y continuous in x , y , p ∈ [0,1]
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Layered Hoare Indexed Valuations

Equational Theory for I V [This paper, variant]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
4 x ≤ x ⊕p x (Hoare indexed)

with x ⊕p y continuous in x , y , p ∈ [0,1] (layered)
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Thin Random Variables

Equational Theory for �R [This paper]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
x ⊕1 y independent of y , x ⊕0 y independent of x

4 x ≤ x ⊕p x (Hoare indexed)

with x ⊕p y continuous in x , y , p ∈ [0,1] (layered)
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Uniform Random Variables

Equational Theory for �R [This paper]
1 x ⊕p y = y ⊕1−p x
2 x ⊕p (y ⊕q z) = (x ⊕ p

p+q−pq
y)⊕p+q−pq z

3 x ⊕1 y = x , x ⊕0 y = y
x ⊕1 y independent of y , x ⊕0 y independent of x

4 x ≤ x ⊕p x

with x ⊕p y continuous in x , y , p ∈ [0,1] and p ∈ {0, 1
2 ,1}
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Indexed valuations

Indexed valuations are between valuations and CRVs:

Theorem
There are collapse maps

Ω X

+ 1
4�b

3
4�a

00 111001

�R(X )

{(a, prob 5
12 ),

(b, prob1
4 )}

(a, prob1
3 ),

a
b

1
4

0
�

1

5
12

111
1
3

000 001010011 101100 110

I V (X ) V(X )

Proof: In each arrow A→ B above, B is a T -algebra and A the free
T -algebra for some T .

Note: The composite qX : �R(X )→ V(X ) maps (�, f ) to the
image measure of � by f (“forgets coin flips”)
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Distributive Laws

Theorem
There is a distributive law between H and �R.

Resulting monad obtained by:
taking unions of equational theories of H , �R
making ∪– and ⊕p distribute
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Outline

3 Appendix
Equational Theories
A More Complete Proof of Escardó’s Claim
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Escardó’s Argument

Theorem
Probabilistic (also, may-, must-) testing is semi-decidable.

Proof: [Escardó09]
1 Compile MMP to sub-language PCF + S + I(=MMP minus

∫
):

�(V�) = Cantor→ �(�) where Cantor = Nat→ Bool

(“infinite sequences of coin flips”)

�(

∫
MN) = int(�(N) ∘ �(M))

where int is integration wrt. to uniform prob. on Cantor:

int(h) = max(h(⊥),int(�s ⋅h(cons 1s))⊕int(�s ⋅h(cons 0s)))

2 Show J�(M)K1 = JMK1 for M : I (*)
3 Show comp. adequacy for PCF + S + I: M ⇓ V iff JMK1 = V .
4 Since reachability in PCF + S + I semi-decidable, conclude.
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� is Correct

So everything boils down to proving

Correctness
J�(M)K1 = JMK1 for M : I

Escardó proves this for M at low orders: restrict V � so that
JV �K1 is free cone algebra, e.g., J�K1 continuous

“The troublesome probabilistic powerdomain”

But remember random variables as good as valuations:
JNK1 = JNK2 for all N : 
.
So boils down to proving J�(M)K2 = JMK2 for M : I. . .
and now we are in the cozy category of bc-domains,

at all types.
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Coin Flips

Therefore:

Theorem (This paper)
Probabilistic (also, may-, must-) testing is semi-decidable.

Proof: (sketch) We must show J�(M)K2 = JMK2 whenever M : 
.

J�(V�)K2 is a fair-coin algebra, JV�K2 = �R(J�K2) is the free
fair-coin algebra
⇒ unique fair-coin algebra morphism  : JV�K2 → J�(V�)K2.

int implements integration correctly:

JintK2 (k ∘  (�, f )) =

∫
x∈X

k(x)dqX (�, f )

Define logical relation R� ⊆ J�K2 × J�(�)K2 with (�, f ) RV� � iff

JintK2 (k1 ∘  (�, f )) = JintK2 (k2 ∘ �) whenever k1 R�→I k2

Since R
 is equality, conclude.

Goubault-Larrecq, Varacca The Powerdomain of Continuous Random Variables



Appendix Theories Proof

Comparing Ω and Cantor

CRVs and Escardó’s translation both flip coins.

uniform CRVs � translation
Monad? Yes No
Coin flips {1,0}≤! {1,0}=!

⊥
Extension concatenation interleaving
(sequential
composition)

10 110
10110

100 . . . 110 . . .
110100 . . .
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