The Powerdomain of Continuous Random Variables

Jean Goubault-Larrecq, Daniele Varacca

LSV - ENS Cachan, PPS - Paris Diderot

LICS, June 21, 2011

Semantics of Higher-Order Probabilistic Languages

Open Problem:

Does there exist a Cartesian closed category (=interpret $\sigma \to \tau$) of continuous domains,

closed under the probabilistic powerdomain (=interpret $\nabla \tau$)?

We still do not know, but present an interesting alternative.

- Continuous Random Variables
 - The Classical Probabilistic Powerdomain
 - The Definition of Continuous Random Variables
 - In the CCC of BC-Domains
 - Equational Theories
- Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Road Map

- The Classical Probabilistic Powerdomain
- The Definition of Continuous Random Variables
- In the CCC of BC-Domains
- Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Outline

- The Classical Probabilistic Powerdomain
- The Definition of Continuous Random Variables
- In the CCC of BC-Domains
- Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Continuous Valuations

Classical view [JonesPlotkin89]: interpret $\nabla \tau$ as space of continuous valuations (=measures on a topology).

Definition (Continuous Valuation)

A function ν : Opens(X) \rightarrow [0, 1] with:

$$egin{array}{lll}
u(\emptyset) &=& 0 & (ext{strictness}) \ U\subseteq V &\Rightarrow&
u(U)\leq
u(V) \
u(U\cup V) +
u(U\cap V) &=&
u(U) +
u(V) \
u(\bigcup_{i\in I}^{\uparrow} U_i) &=&
 ext{sup}_{i\in I}^{\uparrow}
u(U_i) \end{array}$$

We shall also require $\nu(X) = 1$ (probability).

Dirac Valuations

A Prominent Example.

For any $x \in X$, the Dirac valuation δ_x is defined as

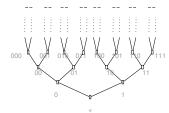
$$\delta_x(U) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{otherwise} \end{cases}$$

Simple valuations are finite linear combinations of Dirac valuations

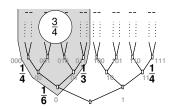
$$\sum_{i=1}^n a_i \delta_{x_i}$$

with $a_1, ..., a_n \ge 0, \sum_{i=1}^n a_i = 1$.

 Basic open sets: ↑ x for finite sequence x



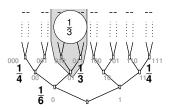
 $\{0,1\}^{\leq \omega}$: the Cantor tree.



Evaluating
$$\frac{1}{4}\delta_{00} + \frac{1}{6}\delta_0 + \frac{1}{3}\delta_{01} + \frac{1}{4}\delta_{11}$$
 on \uparrow 0

 Basic open sets: ↑x for finite sequence x

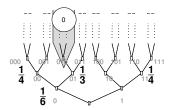
 $\{0,1\}^{\leq \omega}$: the Cantor tree.



Evaluating
$$\frac{1}{4}\delta_{00} + \frac{1}{6}\delta_{0} + \frac{1}{3}\delta_{01} + \frac{1}{4}\delta_{11}$$
 on \uparrow 01

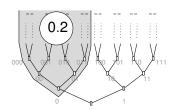
 Basic open sets: ↑x for finite sequence x

 $\{0,1\}^{\leq \omega}$: the Cantor tree.



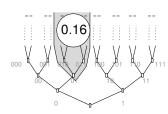
Evaluating
$$\frac{1}{4}\delta_{00} + \frac{1}{6}\delta_{0} + \frac{1}{3}\delta_{01} + \frac{1}{4}\delta_{11}$$
 on \uparrow 010

■ Basic open sets: ↑x for finite sequence x



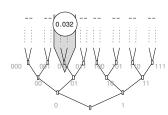
E.g.,
$$p = 0.2$$
, $q = 0.8$.

- Basic open sets: ↑x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's



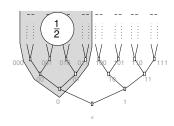
E.g.,
$$p = 0.2$$
, $q = 0.8$.

- Basic open sets: ↑x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's



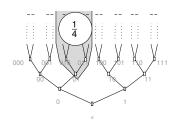
E.g., p = 0.2, q = 0.8.

- Basic open sets: ↑ x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's



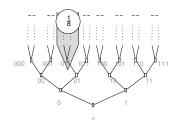
- Basic open sets: ↑ x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's
- If p = q = 1/2 the induced valuation is the uniform valuation Λ (on the top elts)

$$\{0,1\}^{\leq \omega}$$
: the Cantor tree.

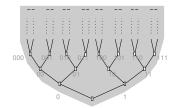


- Basic open sets: ↑ x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's
- If p = q = 1/2 the induced valuation is the uniform valuation Λ (on the top elts)

$$\{0,1\}^{\leq \omega}$$
: the Cantor tree.

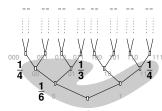


- Basic open sets: ↑ x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's
- If p = q = 1/2 the induced valuation is the uniform valuation Λ (on the top elts)



The support of Λ is the whole Cantor tree

- Basic open sets: ↑ x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's
- If p = q = 1/2 the induced valuation is the uniform valuation Λ (on the top elts)
- The support supp ν , is the complement of the largest U such that $\nu(U) = 0$



The support of $\frac{1}{4}\delta_{00} + \frac{1}{6}\delta_0 + \frac{1}{3}\delta_{01} + \frac{1}{4}\delta_{11}$

- Basic open sets: ↑x for finite sequence x
- Any biased coin (p, q) with p + q = 1 induces a continuous valuation $\nu(x) = p^a(1 p)^b$ where a is the number of 0's in x, while b is the number of 1's
- If p = q = 1/2 the induced valuation is the uniform valuation Λ (on the top elts)
- The support supp ν , is the complement of the largest U such that $\nu(U) = 0$

The Troublesome Probabilistic Powerdomain

The functor **V** preserves the category of continuous domains.

The category of continuous domains is not Cartesian closed.

No Cartesian closed subcategory of continuous domains is known to be preserved by **V**.

No known (interesting) denotational semantics of probabilistic higher order languages.

Continuous Random Variables Semantics Valuations Random Variables CCC Theorie

Outline

- The Classical Probabilistic Powerdomain
- The Definition of Continuous Random Variables
- In the CCC of BC-Domains
- Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Random Variables

Continuous Random Variables

Random variable=

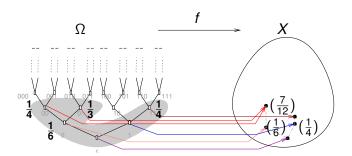
measure on a space Ω + a measurable map $f: \Omega \to X$:

- induces a measure on X (the image measure)
- Ω is the sample space
- X is the space of observations or outcomes

Continuous Random Variables

A continuous random variable is a continuous valuation ν on some space Ω , together with a continuous function $f: \operatorname{supp} \nu \to X$.

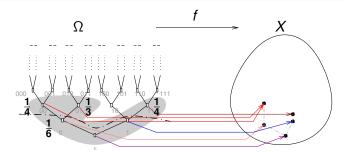
We will fix Ω to be the Cantor tree.



If $F = \text{supp } \nu$, let $p_F(w)$ be largest prefix of w in F (projection).

Definition (≦)

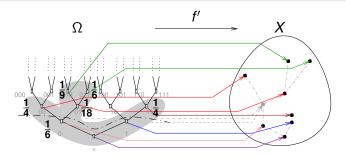
$$(\nu, f) \leq (\nu', f')$$
 iff:



If $F = \text{supp } \nu$, let $p_F(w)$ be largest prefix of w in F (projection).

Definition (≦)

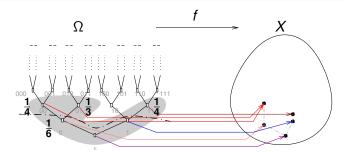
$$(\nu, f) \leq (\nu', f')$$
 iff:



If $F = \text{supp } \nu$, let $p_F(w)$ be largest prefix of w in F (projection).

Definition (≦)

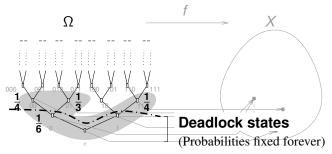
$$(\nu, f) \leq (\nu', f')$$
 iff:



If $F = \text{supp } \nu$, let $p_F(w)$ be largest prefix of w in F (projection).

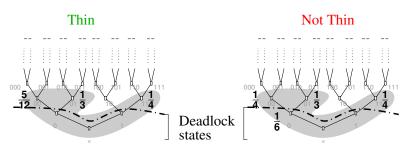
Definition (≦)

$$(\nu, f) \leq (\nu', f')$$
 iff:



Thin Random Variables

A continuous valuation that does not deadlock is called thin, as all the information can be gathered on the maximal elements of the support (a "thin" set).

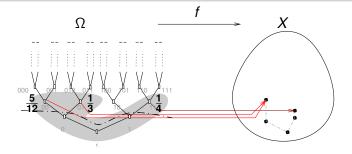


Note: the uniform valuation Λ is thin.

Thin Random Variables

Definition (Thin CRV (ν, f))

- ν is a thin continuous valuation on Ω
- f is a continuous map from Max supp ν to X
 ... so f is defined only on the non-deadlock elements of supp ν.



Note to the purist: if X is a bc-domain (needed later anyway), f extends canonically to supp ν . So thin CRVs are CRVs in this sense.

The Monad of Thin CRVs

Theorem

Thin CRVs form a monad.

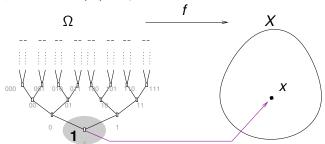
Proof: Arise as a free dcpo-algebra for some equational theory (see later.)

- This says things such as (A; B); C = A; (B; C), and other expected equations.
- Not the case for (non-thin) CRVs.

The Monad of Thin CRVs

Explicitly,

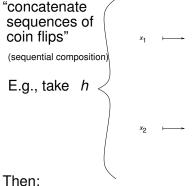
- $\theta \mathbf{R}(X)$ is space of thin CRVs over X;
- unit $\eta_X : X \to \theta \mathbf{R}(X)$ maps x to

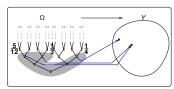


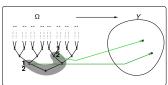
"Flip no coin, return x right away"

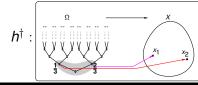
The Monad of Thin CRVs

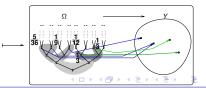
Extension $h^{\dagger}: \theta \mathbf{R}(X) \to \theta \mathbf{R}(Y)$ of $h: X \to \theta \mathbf{R}(Y)$:











Continuous Random Variables Semantics Valuations Random Variables CCC Theori

Outline

- The Classical Probabilistic Powerdomain
- The Definition of Continuous Random Variables
- In the CCC of BC-Domains
- Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

The Category of Bc-Domains

Definition

A dcpo D is a bc-domain iff

- it is continuous (there is a notion of approximation)
- it is bounded-complete (any finite set of elements that has an upper bound has a least one)
- The bc-domains are exactly the densely injective T_0 spaces [Scott, Escardó], a fact we require in the paper.

The Cartesian Closed Category of Bc-Domains

Theorem (Jung)

The category of bc-domains and continuous functions is Cartesian closed.

Thin CRVs and Bc-Domains

Theorem

Thin CRVs over a bc-domain D form a bc-domain $\theta \mathbf{R}(D)$.

Proof (sketch.)

- Thin CRVs arise as retract from semi-thin CRVs (i.e., (ν, f)) where ν thin, but f defined on whole of supp ν), construction through dense injectivity
- Retracts of bc-domains are bc-domains, so prove semi-thin CRVs form a bc-domain:
- Approximation on semi-thin CRVs $(\nu, f) \ll (\nu', f')$ iff ν has finite support, $(\nu, f) \leq (\nu', f')$ and $f(w) \ll f'(w)$ for every w
- Least upper bound of (ν, f) and (ν', f') if they have an upper bound (ν'', f'') at all: project (ν'', f'') onto supp $\nu \cup \text{supp } \nu'$.

We can use thin CRVs for semantics!

Uniform CRVs

Definition (Uniform CRVs)

 (ν, f) uniform iff thin + $\nu = p_{\text{supp }\nu}(\Lambda)$ (proj. of uniform valuation).

"Flip all bits with probability $\frac{1}{2}$, independently"

Theorem

Uniform CRVs also form a monad.

Theorem

Uniform CRVs over a bc-domain D form a bc-domain $v\mathbf{R}(D)$.

Proof: Sups of uniform CRVs taken in θ **R**(*D*) are uniform.

We can use uniform CRVs for semantics!

Continuous Random Variables Semantics Valuations Random Variables CCC Theorie

Outline

- The Classical Probabilistic Powerdomain
- The Definition of Continuous Random Variables
- In the CCC of BC-Domains
- Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Equational Theories

Sorry, I don't think we'll have time for a complete tour.

In short:

- Nice characterizations through equational theories
- We exhibit relationship with DV's indexed valuations
- Nice interplay with angelic non-determinism (distributive law)

Valuations

Equational Theory for **V**

with $x \oplus_{p} y$ continuous in $x, y, p \in [0, 1]$

Layered Hoare Indexed Valuations

Equational Theory for \mathscr{IV} [This paper, variant]

$$4$$
 $X \leq X \oplus_{\mathcal{D}} X$

(Hoare indexed)

with $x \oplus_{p} y$ continuous in $x, y, p \in [0, 1]$

(layered)

Equational Theory for θR [This paper]

- $x \oplus_1 y$ independent of $y, x \oplus_0 y$ independent of x
- $A \subseteq X \oplus_{\mathcal{D}} X$

with $x \oplus_{p} y$ continuous in $x, y, \frac{p \in [0, 1]}{p}$

Equational Theory for vR [This paper]

- \bigcirc $X \oplus_1 Y = X, X \oplus_0 Y = Y$ $x \oplus_1 y$ independent of y, $x \oplus_0 y$ independent of x
- $A \times X \subseteq X \oplus_{\mathcal{D}} X$

with $x \oplus_p y$ continuous in $x, y, p \in [0, 1]$ and $p \in \{0, \frac{1}{2}, 1\}$

Road Map

- Continuous Random Variables
 - The Classical Probabilistic Powerdomain
 - The Definition of Continuous Random Variables
 - In the CCC of BC-Domains
 - Equational Theories
- Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

- Continuous Random Variables
 - The Classical Probabilistic Powerdomain
 - The Definition of Continuous Random Variables
 - In the CCC of BC-Domains
 - Equational Theories
- Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

How Good are CRVs at Giving Semantics?

We claim that:

Theorem (somewhat imprecise for now)

Thin CRVs, uniform CRVs are as good as valuations in giving semantics of higher-order programming languages.

 Intuition: no primitive in the language has explicit access to the random bits

A Higher-Order Probabilistic Language

```
\gamma ::= Bool | Nat | ... base types
     \sigma, \tau ::= \gamma
                                    pairs
                                    functions
                                    probability distributions
M, N, P ::=
                                          all sorts
               \lambda x_{\sigma} \cdot M
                                          of constructs
                                          from the
                if M then N else P PCF language,
                Y^T M
                                          or extensions
                                          fair coin
                                          monadic return
               let x = M in N
                                          sequential composition
```

The Valuation Semantics

| | | is the standard valuation-based semantics

The Random Variable Semantics

[] is the uniform CRV-based semantics

Definition (
$$\llbracket \mathbb{L} \rrbracket_2$$
)
$$\llbracket \mathbb{V}\tau \rrbracket_2 = v \mathbf{R}(\llbracket \tau \rrbracket_2)$$

$$\llbracket * \rrbracket_2 = \underbrace{v \mathbf{R}(\llbracket \tau \rrbracket_2)}_{2} \text{ fair coin}$$

$$\llbracket \text{val } M \rrbracket_2 = \eta(\llbracket M \rrbracket_2)$$

$$\llbracket \text{let } x = M \text{ in } N \rrbracket_2 = (x \mapsto \llbracket N \rrbracket_2(x))^{\dagger}(\llbracket M \rrbracket_2)$$

Note: The val and let cases are as in every monad.

 $[\![\tau]\!]_2$ (not $[\![\tau]\!]_1$) is a bc-domain for every τ .

CRVs are as Good as Valuations

Theorem (Random Variables are as Good as Valuations)

Let M be any closed term of ground type γ . Then

$$[\![M]\!]_1 = [\![M]\!]_2$$

Proof: Define a logical relation $(R_{\tau})_{\tau \text{ type}}$, where $R_{\tau} \subseteq [\![\tau]\!]_1 \times [\![\tau]\!]_2$:

$$\mu R_{\forall \tau} (\nu, f)$$
 iff $\int_{x} h_{1}(x) d\mu = \int_{w} h_{2}(f(w)) d\nu$ whenever $h_{1} \widehat{R_{\tau}} h_{2}$
 $h_{1} \widehat{R_{\tau}} h_{2}$ iff $h_{1}(x_{1}) = h_{2}(x_{2})$ whenever $x_{1} R_{\tau} x_{2}$

" μ is obs. indistinguishable from image measure $\nu \circ f^{-1}$ of (ν, f) "

Prove the Basic Lemma: $[\![M]\!]_1 R_\tau [\![M]\!]_2$ for all $M : \tau$. At ground types, R_γ is equality: conclude.

Outline

- - The Classical Probabilistic Powerdomain
 - The Definition of Continuous Random Variables
 - In the CCC of BC-Domains
 - Equational Theories
- Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Probabilistic Testing

Definition (Testing Equivalence)

M, N : V Bool are probabilistically equivalent iff $Prob[M \downarrow 1] = Prob[N \downarrow 1]$

- Escardó [2009] also defines may-testing, must-testing equivalence (replace *Prob* by ∃, ∀) — l'll skip this, see paper.
- Formally requires operational semantics

• *Prob* defined by " $* \Downarrow 1$ or $* \Downarrow 0$ with prob. $\frac{1}{2}$ "

Decidability?

Escardó's goal [2009] is to show that probabilistic testing is semi-decidable.

Theorem

Probabilistic testing is undecidable.

Proof: by reduction from PFA reachability ([Paz71,CondonLipton89,BlondelCanterini03], see nice proof of undecidability by [GimbertOualhadi, ICALP'09]).

Going Denotational

Definition (Testing Equivalence)

M, N : V Bool are probabilistically equivalent iff $\int 1d [M]_1 = \int 1d [N]_1.$

This is equivalent to previous definition by computational adequacy.

Escardó describes all this elegantly by adding a testing operator \int (integration) into the language.

Escardó's MMP

Let MMP [Escardó09] be PCF+the V monad(+others)+testing operators.

```
\gamma ::= Bool | Nat | I | ... base types ([\![I]\!] = [0,1]_{\sigma})
M, N, P ::= X_{\tau}
                \lambda \mathbf{x}_{\sigma} \cdot \mathbf{M} \mid \mathbf{MN} \mid \mathbf{Y}^{\tau} \mathbf{M}
                    if M then N else P
                                                      fair coin
                    val M
                                                       monadic return
                    let X = M in N
                                                      sequential composition
                    max | min | \oplus
                                        average ((x + y)/2)
                    \int MN integration ( [\![ \int MN ]\!] \sim \int_{\mathcal{N}} [\![ M ]\!] (x) d [\![ N ]\!] )
```

```
M, N : V \text{ Bool are eqv iff } || \int 1M ||_1 = || \int 1N ||_1
```


Escardó's Argument

Theorem

Probabilistic (also, may-, must-) testing is semi-decidable.

Proof ideas:

Escardó [2009] reduces this to the problem of showing

$$[\![\phi(M)]\!]_1 = [\![M]\!]_1$$
 for $M : I$

where $\phi(M)$ is term that implements \int using \oplus and fixpoints. Target language is real PCF, which is computable (e.g., every implementable boolean question is semi-decidable).

• Manages to do using $\llbracket \nabla \tau \rrbracket_1$ as free cone algebra. ... only works when $\llbracket \tau \rrbracket_1$ continuous, i.e., at low orders.

Escardó's Argument

Theorem

Probabilistic (also, may-, must-) testing is semi-decidable.

Proof ideas:

Escardó [2009] reduces this to the problem of showing

$$\llbracket \phi(M) \rrbracket_1 = \llbracket M \rrbracket_1 \text{ for } M : I$$

where $\phi(M)$ is term that implements \int using \oplus and fixpoints. Target language is real PCF, which is computable (e.g., every implementable boolean question is semi-decidable).

- Manages to do using $\llbracket \forall \ \tau \rrbracket_1$ as free cone algebra. ... only works when $\llbracket \tau \rrbracket_1$ continuous, i.e., at low orders.
- We know that $[\![\]]_1 = [\![\]]_2$ at ground types. So prove

$$\llbracket \phi(M) \rrbracket_{\mathbf{2}} = \llbracket M \rrbracket_{\mathbf{2}} \text{ for } M : \mathbb{I}$$

• now we are in the cozy category of bc-domains, at all types.

Related Work

- The troublesome probabilistic powerdomain [JungTix98]
- Indexed valuations [V03] very much related to CRVs.
- Indexed valuations (although not the kind presented here) preserve FS-domains [Mislove07]
- Models of non-deterministic+probabilistic choice [MOW03,TKP05,JGL07]
- Testing of higher-order programs [Escardó09]

Summary

- New monads of prob. choice, through random variables
- A definite plus, compared to the prob. powerdomain V: they live in the cozy CCC of bc-domains
- Clarifies notion of indexed valuation (see paper)
- Random variables as good as valuations for semantics (at ground types)
- We solved an problem left open by M. Escardó: prob. (and may-, must-) testing of extended PCF is semi-decidable.

Summary

- New monads of prob. choice, through random variables
- A definite plus, compared to the prob. powerdomain V: they live in the cozy CCC of bc-domains
- Clarifies notion of indexed valuation (see paper)
- Random variables as good as valuations for semantics (at ground types)
- We solved an problem left open by M. Escardó: prob. (and may-, must-) testing of extended PCF is semi-decidable.
- We were initially looking for a concrete description of indexed valuations: is there any?
- Combining CRVs with non-determinism: doable? comparison with previsions/convex non-determinism?

Road Map

- Continuous Random Variables
 - The Classical Probabilistic Powerdomain
 - The Definition of Continuous Random Variables
 - In the CCC of BC-Domains
 - Equational Theories
- 2 Semantics
 - A Probabilistic Higher Order Language
 - Semi-Decidability of Testing

Outline

- Equational Theories
- A More Complete Proof of Escardó's Claim

Equational Theory for Non-Determinism

Hoare Powerdomain

The Hoare powerdomain $\mathcal{H}(X)$ is the free algebra for the equational theory

- \bullet $x \mapsto x = x$
- \bullet $x \cup y = y \cup x$
- \bullet $x < x \mapsto y$

This models angelic non-determinism.

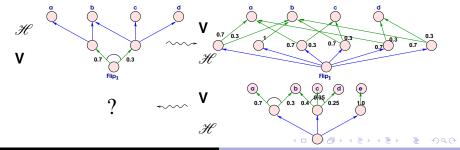
What about languages with both non-determinism and probabilities?

Distributive laws

Theorem (Varacca, PhD Thesis, 2003)

There is no distributive law between the Hoare powerdomain monad \mathcal{H} and the continuous valuation monad \mathbf{V} .

- ... and neither \(\mathcal{H} \mathbf{V} \) nor \(\mathbf{V} \mathcal{H} \) a monad
- the categorical way of saying that probabilistic choice and non-deterministic choice do not commute:



Solutions

- Replace Hoare powerdomain by convex Hoare powerdomain [MOW03, TKP05]: \(\mathcal{H}^{CVX} \mathbf{V} \) is a monad ...i.e., use randomized, not pure, schedulers to resolve non-determinism
- Use previsions [JGL07]
 ... (roughly) isomorphic to previous [JGL08a]
- Realize **V** satisfies too many equations, e.g., $x \oplus_{p} x = x$.
 - \sim Keep \mathscr{H} , but replace **V** by indexed valuations \mathscr{IV} [V03].

Valuations

Equational Theory for V

with $x \oplus_p y$ continuous in $x, y, p \in [0, 1]$

Layered Hoare Indexed Valuations

Equational Theory for \mathscr{IV} [This paper, variant]

$$4 \quad X \leq X \oplus_{\mathcal{D}} X$$

(Hoare indexed)

with $x \oplus_p y$ continuous in $x, y, p \in [0, 1]$

(layered)

Thin Random Variables

Equational Theory for $\theta \mathbf{R}$ [This paper]

with $x \oplus_{p} y$ continuous in x, y, $p \in [0, 1]$ (layered)

Uniform Random Variables

Equational Theory for vR [This paper]

- 3 $x \oplus_1 y = x$, $x \oplus_0 y = y$ $x \oplus_1 y$ independent of y, $x \oplus_0 y$ independent of x

with $x \oplus_p y$ continuous in x, y, $p \in [0, 1]$ and $p \in \{0, \frac{1}{2}, 1\}$

Indexed valuations

Indexed valuations are between valuations and CRVs:

Theorem There are collapse maps $\theta \mathbf{R}(X) \longrightarrow \mathscr{IV}(X) \longrightarrow \mathbf{V}(X)$ $\{(a, \operatorname{prob} \frac{5}{12}), \quad \frac{3}{4}\delta_a \\ (a, \operatorname{prob} \frac{1}{3}), \quad +\frac{1}{4}\delta_b \\ (b, \operatorname{prob} \frac{1}{4})\}$

Proof: In each arrow $A \rightarrow B$ above, B is a T-algebra and A the free T-algebra for some T.

Note: The composite $q_X : \theta \mathbf{R}(X) \to \mathbf{V}(X)$ maps (ν, f) to the image measure of ν by f ("forgets coin flips")

Distributive Laws

Theorem

There is a distributive law between \mathcal{H} and $\theta \mathbf{R}$.

Resulting monad obtained by:

- taking unions of equational theories of \mathcal{H} , $\theta \mathbf{R}$
- making \forall and \oplus_p distribute

Outline

- 3 Appendix
 - Equational Theories
 - A More Complete Proof of Escardó's Claim

Escardó's Argument

Theorem

Probabilistic (also, may-, must-) testing is semi-decidable.

Proof: [Escardó09]

Ompile MMP to sub-language PCF + S + I (=MMP minus ∫):

$$\phi(V\tau) = Cantor \rightarrow \phi(\tau)$$
 where $Cantor = Nat \rightarrow Bool$ ("infinite sequences of coin flips")

$$\phi(\int MN) = int(\phi(N) \circ \phi(M))$$

where int is integration wrt. to uniform prob. on Cantor:

$$\operatorname{int}(h) = \max(h(\bot), \operatorname{int}(\lambda s \cdot h(\operatorname{cons} 1s)) \oplus \operatorname{int}(\lambda s \cdot h(\operatorname{cons} 0s)))$$

- ② Show $\llbracket \phi(M) \rrbracket_1 = \llbracket M \rrbracket_1$ for M : I (*)
- **③** Show comp. adequacy for PCF + S + I: $M \Downarrow V$ iff $\llbracket M \rrbracket_1 = V$.
- 4 Since reachability in PCF + S + I semi-decidable, conclude.

ϕ is Correct

So everything boils down to proving

Correctness

$$\llbracket \phi(M) \rrbracket_1 = \llbracket M \rrbracket_1 \text{ for } M : I$$

• Escardó proves this for M at low orders: restrict $\forall \tau$ so that $[\![\forall \tau]\!]_1$ is free cone algebra, e.g., $[\![\tau]\!]_1$ continuous "The troublesome probabilistic powerdomain"

ϕ is Correct

So everything boils down to proving

Correctness

$$\llbracket \phi(M) \rrbracket_1 = \llbracket M \rrbracket_1 \text{ for } M : I$$

- Escardó proves this for M at low orders: restrict $\forall \tau$ so that $[\![\forall \tau]\!]_1$ is free cone algebra, e.g., $[\![\tau]\!]_1$ continuous "The troublesome probabilistic powerdomain"
- But remember random variables as good as valuations: $[N]_1 = [N]_2$ for all $N : \gamma$.
- So boils down to proving $[\![\phi(M)]\!]_2 = [\![M]\!]_2$ for $M : I \dots$
- and now we are in the cozy category of bc-domains, at all types.

Coin Flips

Therefore:

Theorem (This paper)

Probabilistic (also, may-, must-) testing is semi-decidable.

Proof: (sketch) We must show $\llbracket \phi(M) \rrbracket_2 = \llbracket M \rrbracket_2$ whenever $M : \gamma$.

- $\llbracket \phi(\lor\tau) \rrbracket_2$ is a fair-coin algebra, $\llbracket \lor\tau \rrbracket_2 = \upsilon \mathbf{R}(\llbracket \tau \rrbracket_2)$ is the free fair-coin algebra \Rightarrow unique fair-coin algebra morphism $\psi : \llbracket \lor\tau \rrbracket_2 \to \llbracket \phi(\lor\tau) \rrbracket_2$.
- int implements integration correctly:

$$[\![int]\!]_2(k\circ\psi(\nu,f))=\int_{x\in X}k(x)dq_X(\nu,f)$$

- Define logical relation $R_{\tau} \subseteq \llbracket \tau \rrbracket_2 \times \llbracket \phi(\tau) \rrbracket_2$ with $(\nu, f) R_{\forall \tau} \xi$ iff $\llbracket \text{int} \rrbracket_2 (k_1 \circ \psi(\nu, f)) = \llbracket \text{int} \rrbracket_2 (k_2 \circ \xi)$ whenever $k_1 R_{\tau \to \mathbb{I}} k_2$
- Since R_{γ} is equality, conclude.

Comparing Ω and Cantor

CRVs and Escardó's translation both flip coins.

	uniform CRVs	ϕ translation
Monad?	Yes	No
Coin flips	$\{1,0\}^{\leq \omega}$	$\{1,0\}_\perp^{=\omega}$
Extension	concatenation	interleaving
(sequential	10 110	100 110
composition)	10110	110100