Rigorous Approximated Determinization Lof Weighted Automata

Benjamin Aminof (Hebrew University)
Orna Kupferman (Hebrew University)
Robby Lampert (Weizmann Institute)
Israel

Outline

- Weighted automata
- Determinizability of weighted automata
- Mohri's determinization algorithm
- Approximated-determinization algorithm
- Correctness and termination
- Summary
- Future work

Weighted Automata (WFA)

A:

weight functions

c: transitions! R

f: accepting states! R

$$cost(w)=(1+2+1)+0=4$$

$$cost(w)=(1+1+1+1)+0=4$$

$$cost(w) = min\{5,3\} = 3$$

Weighted Automata – language

- A run of A on a word $w=w_1...w_n$ is a sequence $r=r_0 r_1 r_2 ... r_n$ over Q such that $r_1 2 Q_0$ and for all $1 \cdot i \cdot n$, we have
- A run r is accepting \$ r_n is accepting. (standard finite-word accepting condition)
- L(A)={w: A has an accepting run on w}

Weighted Automata – costs

• A cost of a run $r=r_0 r_1 r_2 ... r_n$ is

$$cost(r) = \sum_{i=1}^{n} c(r_{i-1} \xrightarrow{w_i} r_i) + (r_n)$$

defined only for accepting runs

- A cost of a word w=w₁...w_n is
 cost(w)=min_{accepting runs r of A on w} cost(r)
 - If w62L(A) then cost(w)=1.

Weighted Automata – more

 A WFA A is trim if each of its states is reachable from some initial state, and has a reachable accepting state.

A WFA A is unambiguous (single-run) if it has at most one accepting run on every word.

Applications of WFA

- formal verification of quantitative properties
- automatic speech recognition
- image compression
- pattern matching (widely used in computational biology)

• ...

A₁ is non-determinizable

- $= cost(ab^kc) = 2k+2, cost(ab^kd) = k+2$
- After reading the word ab, the difference between the costs of reading c and d is k.
- For i≠j, a deterministic WFA must be in different states after reading ab and ab.
- A deterministic WFA must have 1 states.

Determinizability

- Weighted automata are not necessarily determinizable.
- To decide whether a given weighted automaton is determinizable is an open question.
- A sufficient condition for determinizability + algorithm [Mohri '97].

A sufficient condition [Mohri '97]

- The twins property: For every two states q,q'2Q, and two words u,v2Σ*, if q,q'2δ(Q₀,u), q2δ(q,v), and then cost(q,v,q)=cost(q',v,qf)2δ(q',v),
- In case the automaton is trim (no empty states) and unaminations (single-run), the two property haracterization.

Determinization algorithm

Determinization algorithm - another example

Determinization algorithm - non-determinizable example

Determinization algorithm - a bad determinizable example

Mohri's algorithm - remarks

- Mohri's algorithm terminates iff the original automaton has the twins property.
- For trim and unambiguous WFAs, there is a polynomial algorithm for testing the twins property.
- There are determinizable WFAs that do not satisfy the twins property.

Approximated determinization

Given a WFA A and an approximation factor $t \ge 1$, construct a deterministic WFA A', such that for every word w we have $cost(A,w) \le cost(A',w) \le t \cdot cost(A,w)$.

- When exact determinization is impossible.
- When the result of exact determinization is too large.

Succinctness

 $L(A_4) = \Sigma^+$ $L(A_$

A deterministic equivalent requires 2 states

A t-approximate deterministic?

2 states

Approx. determinization algorithm

[Buchsbaum-

Giancarlo-Westbrook '01]

- Based on Mohri's algorithm.
- Relaxes the condition for unification of states – rather than requiring residuals of corresponding states to be identical, requires them to be close (within 1+ε of the smaller one).
- No guarantees about the new costs.
- No sufficient condition for termination.

Our algorithm: t-determinization

- Determinization up to a factor t
 - The new cost of any accepted word w is between cost(w) and t¢cost(w).
- differs from Mohri's algorithm
 - Weights are multiplied by t.
 - For each state in a subset we maintain a range of residues rather than one.
 - The criterion for unification of states is relaxed (they may be non-identical).

2-determinization of A₁

2-determinization of A₂

Correctness of the algorithm

Thm: If the algorithm terminates on a given WFA A, with the result A', then for every word w we have

 $cost(A,w) \leq cost(A',w) \leq t \cdot cost(A,w)$.

Termination of the algorithm

- Thm: If a WFA has the t-twins property, then the algorithm terminates on it.
 - The weights and the factor t are rational.
- Thm: For trim unambiguous WFAs, a WFA is t-determinizable iff it has the t-twins property.
- Thm: Deciding the t-twins property for trim unambiguous WFAs can be done in polynomial time.

Summary

- Why approximate determinization?
 - Non-determinizable WFA
 - Equivalent deterministic is large
- t-determinization algorithm
 - Weights multiplied by t
 - Use ranges rather than single residues
 - Collapse to a state whose ranges are contained in mine
- A sufficient condition
 - The t-twins property
 - For unambiguous WFAs characterizes determinizability
 - Decidable in polynomial time

Future work

- Generalize the termination proof to the case where the weights and the factor t are real numbers ($\mathbb{R}^{,0}$).
- An algorithm to decide whether a WFA is determinizable. Alternatively – prove that it is undecidable.

Thank you!