Tutorial on Semantics Part III

A Survey of More Advanced Topics

Prakash Panangaden¹

School of Computer Science
 McGill University
 on sabbatical leave at
 Department of Computer Science
 Oxford University

Fields Institute, Toronto: 20th June 2011

Outline

- Introduction
- Modelling the untyped lambda calculus
- Recursive domain equations
- Topology and computability
- Stone duality
- 6 Axiomatic and synthetic domain theory
- Computational effects
- 8 Concurrency
- Probabilistic systems

A very special domain

- Recall, we needed a domain D such that $D \simeq [D \to D]$.
- This looks like a recursive construction but at the level of the category of domains rather than within a domain.
- First we give an ad-hoc description of how to construct this, then
 we give a more general theory of recursive domain equations later.
- Start with a simple domain $D_0 = \{\bot \leq \top\}$.

• The plan: inductively construct $D_{n+1} = [D_n \rightarrow D_n]$ and take the "limit."

The Details

We need to build a "chain"

$$D_0 \to D_1 \to D_2 \to \dots D_n \to D_{n+1} \to \dots$$

• but what is the arrow above?

An **embedding-projection pair** between domains D and E is a pair of functions $e:D\to E$ and $p:E\to D$ such that

$$p \circ e = id_D$$
 and $e \circ p \leq id_E$.

• In fact *e* determines *p*, for continuous domains the formula is

$$p(x) = \bigvee_{D} \{y | e(y) \le x\}.$$

 These e-p pairs compose and there is an obvious identity: so Scott domains and e-p pairs form a category.

More details

• Given an e-p pair $(e,p):D\to E$ we define a new e-p pair $(e',p'):[D\to D]\to [E\to E]$ as follows: Let $f\in [D\to D], g\in [E\to E]$, then

$$e'(f) = e \circ f \circ p, \quad p'(g) = p \circ g \circ e.$$

- We start it off with the standard e-p pair $(e_0, p_0) : D \to [D \to D]$ given by $e_0(d) = x \mapsto d$ and $p_0(f) = f(\bot)$.
- We construct the usual inverse limit of the sequence above: D_{∞} ; this is our goal

$$D_{\infty} \simeq [D_{\infty} \to D_{\infty}].$$

• The inverse limit is all sequences $\{(x_0, x_1, \dots, x_n, \dots)\}$ with $x_n \in D_n$ and $p_n(x_{(n+1)} = x_n)$.

T-algebras

- An initial object I in a category has a unique morphism to every other object.
- Given a functor $T: \mathcal{C} \to \mathcal{C}$, a T-algebra is an object A and a morphism $\alpha: TA \to A$.
- T-algebras form a category.

$$TA \xrightarrow{\alpha} A$$

$$Tf \downarrow \qquad \qquad \downarrow f$$

$$TB \xrightarrow{\beta} B$$

• An *initial T*-algebra; *a* must be unique:

Lambek's Lemma

Theorem

An initial T-algebra $TI \xrightarrow{\kappa} I$ defines an isomorphism: $\exists \lambda : I \to TI$ with $\kappa \circ \lambda = id_I$ and $\lambda \circ \kappa = id_{TI}$.

Proof



Fixed points for domain equations

How do we solve equations like

$$L \simeq 1 + At \times L$$
: Lists of Atoms

or

$$T \simeq At \times F$$
 and $F \simeq 1 + T \times F$: Trees and Forests.

or even

$$D\simeq [D o D]$$
 ?

- Lambek's lemma gives the clue: one can imitate fixed-point theory at the categorical level.
- Breakthrough idea: Use categories where the hom sets have order structure (Mitch Wand: 74,76)
- Develop systematially a theory of solving domain equations in such order-enriched categories: Plotkin and Smyth (79).
- Key result (roughly): one can lift results about limits and continuity from homsets to the category.

Continuity in analysis

Definition

A function $f: \mathbf{R} \to \mathbf{R}$ is continuous at x_0 if $\forall \epsilon > 0 \exists \delta > 0$ such that $\forall x \in (x_0 - \delta, x_0 + \delta), |f(x) - f(x_0)| \le \epsilon$.

Computational version

A function f is continuous (at x_0) if whenever I prescribe a tolerance for the accuracy of the answer, there is a limit on the accuracy of the input that guarantees that the answer will be within the prescribed tolerance.

Continuity is a coomputability concept. Might computability be a topological concept?

The Scott topology

• The use of the word "continuity" suggests topology.

The Scott topology

An open set $U \subset D$ in a continuous domain has the property that if $X \subset D$ is a directed set with $\bigvee X \in U$ then $X \cup U \neq \emptyset$.

- This is just like the open sets of real analysis.
- If a sequence converges to a limit inside some open interval then the sequence itself must enter the open interval.

Observability

- Open sets are the observable properties!
- The axioms of topology make sense from the point of view of being "physically" testable properties: Smyth.
- The computable functions are continuous: to obtain a finite piece of the answer one needs only a finite piece of the input.
- In fact concepts like compactness can be given a computational meaning (Escardo): one can exhaustively search infinite sets by exploiting compactness!
- These concepts have even been fruitfully used in physics [Keye Martin, P. Comm. Math. Phys. 2006].

The Lawson topology

- With the Scott topology, compactness cannot be used effectively in domains with a least element.
- Lawson topology: take and Scott-open set U, take any finite set F and take as basis for the topology seet sets of the form $U \setminus \uparrow F$, where $\uparrow F = \{x | \exists y \in F, \ y \leq x\}$.
- The Lawson topology carries some negative information.
- For any continuous lattice the Lawson topology is compact and Hausdorff.
- For an algebraic dcpo the Lawson topology is metrizable.
- For streams with the prefix order

$$d(x, y) = 2^n$$
, where $x[n] \neq y[n]$ and $\forall m < n, x[m] = y[m]$.

Classical Stone duality

- Every boolean algebra is isomorphic to a boolean algebra of sets:
 Stone representation theorem.
- Given B we construct the set of ultrafilters (or maps into the two-element boolean algebra) ordered by inclusion.
- Much more is true: we can make the collection of ultrafilters into a topological space S: for every $x \in \mathcal{B}$ we define U_x to be the set of ultrafilters that contain x. This gives the base for a topology.
- With this topology S is Hausdorff, compact and has a base of closed and open (clopen) sets: it is called a *Stone space*.
- If there is a BA homomorphism $h: \mathcal{B}_1 \to \mathcal{B}_2$ we get a *continuous* map $\hat{h}: \mathcal{S}_2 \to \mathcal{S}_1$ by composition.

The categorical picture

- Call the category of boolean algebras BA and the category of Stone spaces Stone.
- Then one has functors from BA to Stone^{op}.
- The composites are naturally isomorphic to the identity functors.
- As categories Stone^{op} and BA are the same.
- One has two views of the same structures: algebraic and topological.
- Other examples: Compact Hausdorff spaces and C*-algebras.
- Vector spaces and itself!
- Many, many, many more...
- Denotational semantics and axiomatic semantics.

Predicate transformers: Dijkstra

- In operational semantics: given a state (or set of states) and a transition system (which may be nondeterministic) what are the next states after the execution of a command.
- In predicate transformers: if after the execution of a command a property P holds what must have been true before? The weakest precondition.
- Note the backward flow in wp semantics.
- Given two continuous domains D and E, viewed as topological spaces with the open sets written \mathcal{O}_D and \mathcal{O}_E , a **predicate transformer** is a *strict*, *continuous and multiplicative* map $p:\mathcal{O}_E$ $\to \mathcal{O}_D$.
- We can (but won't) formalize what a state transformer is as well.
- Duality: The category of state transformers is equivalent to the (opposite of) the category of predicate transformers. (Smyth, Plotkin)

Duality more generally

 This can be extended to the realm of probabilistic programs and expectation transformers. (Kozen)

•	Logic	Probability
	States s	Distributions μ
	Formulas P	Random variables f
	Satisfaction $s \models P$	Integration $\int f \mathrm{d}\mu$

- One can define a generalized transition system as a co-algebra and a (modal) logic as an algebra.
- One obtains a general Stone-type duality between co-algebras and algebras: between generalized transition systems and modal logics.
- Bonsangue, Kurz, Moss, Pattinson, Schröder, Rutten, Jacobs, Silva, Worrell, Pavlovic, Mislove, Simpson, Kupke, Bezhanishvili and Panangaden.

Locales

- One can study topological spaces in terms of their complete lattice of open sets.
- These lattices are complete and satisfy the infinite distributivity law:

$$x \land \bigvee S = \bigvee \{x \land s | s \in S\}.$$

They are called frames.

- The category of frames has morphisms that preserve finite meets and arbitrary joins: the spirit of topology.
- Locales are the opposite category of frames.
- Many ideas are clarified by taking the dual view and working with locales instead of spaces and points.
- This is the point-free of topology.
- It shall be very fruitful (one day) in probability theory.
- Fantastic book: Stone Spaces by Peter Johnstone.

Domain theory in logical form

- A famous paper by Abramsky with the above title spells out and implements the following programme based on the perspective of Stone duality.
- Define a metalanguage for types and terms (programs)
- Interpret types as domains and terms as elements in appropriate domains: denotational semantics.
- Give a logical interpretation of the same language: types are propositional theories, the finite elements are the propositions.
- In the logical view, terms are described by axiomatizing satisfaction. A modal logic of programs.
- The two interpretations are shown to be Stone duals.
- Ties together semantics, logic and verification.

Axiomatic domain theory

- What should a category of domains be?
- Categories of domains should have enough structure to support the solution of recursive domain equations.
- Axiomatic domain theory: require products, exponentials, sums, limits and colimits, the ability to solve recursive domain equations.
- Also require that one has Stone-type duality to give a logic of observable properties.
- Most of the emphasis in axiomatic domain theory was finding the right axioms for solving recursive domain equations: fundamental early work by Alex Simpson and Marcelo Fiore.
- It gave an axiomatic framework for studying adequacy in extensions of PCF.
- It also provided reasoning principles for recursive types.

Synthetic domain theory

- Scott: domains should be "sets" perhaps in another mathematical universe.
- Toposes are alternative mathematical universes or alternative set theories.
- From the "inside" it looks like you are doing set theory.
- From the "outside" it looks very different.
- Can one build toposes where one gets domains by just doing naive set theory inside the topos?

What are effects?

- Consider a computation that produces a result but also updates a store or produces output.
- These were called "side effects" suggesting that they happened on the side.
- Moggi initiated the systematic study of these through the theory of monads.
- This was so influential that they even became a languge mechanism in Haskell.

Plotkin and Power's theory of effects

- Describe effects not as monads but as a particular kind of formalism called a Lawvere theory which puts the emphasis on operations and equational laws for the effects.
- It is equivalent to working with monads but it is much easier to see how to combine different effects.
- The key achievement is to provide a modular way to combine semantics for different kinds of effects: update, IO, jumps, nondterminism, probability etc.

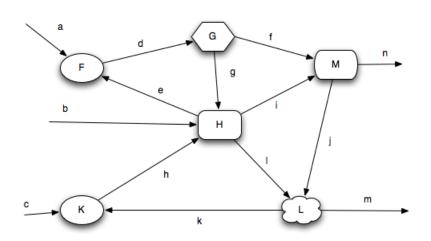
What is concurrency?

- Describe autonomous, interacting computational entities.
- The computational agents are not necessarily performing a single task.
- In parallel programming one wants to exploit parallelism to mask latency.
- Here one is interested in modelling that, but also distributed transactions, operating systems, communication protocols and other tasks.
- No universally-acknowledged fundamental paradigm: synchronous vs asynchronous, communication by message passing, by shared variables, by broadcast, mobile or not.
- Proliferation of formalisms, semantic models and logics.

Kahn-McQueen networks

- Network of autonomous computing agents connected by unbounded FIFO buffers as comunication channels. Channels are named, point-to-point and directional.
- Each agent runs a sequential program. Communication primitives: read c and write e to c. Read is *blocking*.

An example network



$$d = F(a,e), f = G_1(d), g = G_2(d), i = H_2(b,g,h).$$

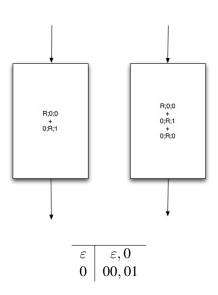
The Kahn principle

- Each agent computes a continuous function from input streams to output streams. Not functional at the token level. The network is described by a set of equations.
- The networks may have cycles, so the set of equations may be recursive.
- Operational semantics is by token pushing.
- Denotational semantics is by least fixed point theory: Kahn principle.

What happens if we introduce nondeterminism?

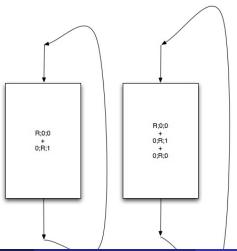
- The input-output relation is not a function.
- We cannot just work with relations.
- The IO relation is not compositional.

An example



An example

Now the one on the left outputs ε or 01 but the one on the right can output 00 as well as the previous two possibilities.



- There is a rich theory of expressive power of nondeterministic dataflow but this is not the place for it.
- Fully abstract semantics based on traces were developed by several workers but Bengt Jonsson deservedly gets the credit for doing it first.
- One needs new abstractions to deal with concurrent computation.
- Process calculi were started by Milner as foundational calculi for concurrent computation.
- Independently Hoare invented CSP as a concurrent computation paradigm.
- Concurrency theory needs a 30 hour tutorial!

Powerdomains

- Concurrency almost always introduces indeterminacy. Plotkin introduced the domain theoretic analogue of the powerset.
- How to order sets of elements from a domain?
- Consider three programs: P, Q, R. P outputs 1, Q may output 1 or may loop forever and R just loops forever. Are they equivalent?
- One view P and Q are the same since the set of possible results are the same. One can define an order on sets based on this intuition and obtain a domain called the Hoare or lower powerdomain.
- Another view Q and R are the same since we cannot guarantee anything about their termination behaviour. The powerdomain based on this intuition is called the Smyth or upper powerdomain.
- Finally, all three are different: this leads to the Plotkin or convex powerdomain.

The Plotkin powerdomain

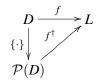
 For flat domains one can formalize the third powerdomain with the Egli-Milner order

$$A \sqsubseteq_{EM} B \text{ iff } \forall x \in A \exists y \in B, \ x \leq y \land \forall y \in B \exists x \in A, \ x \leq y.$$

- For non-flat domains D, one starts with all non-empty finite subsets of D and orders them by the EM order; this gives a pre-order.
- To construct the Plotkin powerdomain $\mathcal{P}(D)$ we form the ideal completion of this preorder.
- Viewed as subsets of D the elements of $\mathcal{P}(D)$ are non-empty, convex, Lawson-compact subsets of D ordered by the EM order.
- Lawson compactness captures the idea that the programs are finitely-branching.

Algebraic properties

- One can define a continuous operation $\cup: \mathcal{P}(D) \times \mathcal{P}(D) \to \mathcal{P}(D)$ (union) which makes $\mathcal{P}(D)$ a semi-lattice and a map $\{\cdot\}: D \to \mathcal{P}(D)$ which is the continuous analogue of the singleton embedding.
- There is a canonical way of extending any continuous map $f:D \to L$ to $f^{\dagger}:\mathcal{P}(D) \to L$ in such a way that the diagram below commutes



Categorical properties

- If D is a Scott domain then $\mathcal{P}(D)$ may not be a Scott domain.
- If one wants to combine nondeterminism with higher types one needs a CCC which is closed under the action of $\mathcal{P}(\cdot)$.
- Plotkin found the category SFP which is a CCC of algebraic domains which is closed under the action of forming the convex powerdomain.
- \bullet Smyth showed that this is the largest CCC of $\omega\text{-algebraic}$ domains.

Probabilistic systems

- Probability is important to formalize many kinds of systems.
- Much research on discrete probabilistic systems.
- In the late 1980s Claire Jones and Plotkin developed probabilistic powerdomains.
- We still do not know any CCC of continuous domains which is closed under the formation of the probabilistic powerdomain.
- In the last 1990s Blute, Desharnais, Edalat, P. introduced labelled transition systems on continuous state spaces: labelled Markov processes and showed some striking results about logic and bisimulation.
- Desharnais et al. constructed a universal LMP by solving a recursive domain equation in the category of Lawson compact continuous domains.
- Lots of hard mathematics needed to combine probability and nondeterminism; an ongoing project.