
Tutorial on Semantics
Part III

A Survey of More Advanced Topics

Prakash Panangaden1

1School of Computer Science
McGill University

on sabbatical leave at
Department of Computer Science

Oxford University

Fields Institute, Toronto: 20th June 2011

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 1 / 36

Outline

1 Introduction

2 Modelling the untyped lambda calculus

3 Recursive domain equations

4 Topology and computability

5 Stone duality

6 Axiomatic and synthetic domain theory

7 Computational effects

8 Concurrency

9 Probabilistic systems

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 2 / 36

A very special domain

Recall, we needed a domain D such that D ' [D −→ D].
This looks like a recursive construction but at the level of the
category of domains rather than within a domain.
First we give an ad-hoc description of how to construct this, then
we give a more general theory of recursive domain equations later.
Start with a simple domain D0 = {⊥ ≤ >}.

>

⊥

The plan: inductively construct Dn+1 = [Dn −→ Dn] and take the
“limit.”

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 3 / 36

The Details

We need to build a “chain”

D0 −→ D1 −→ D2 −→ . . .Dn −→ Dn+1 −→ . . .

but what is the arrow above?

An embedding-projection pair between domains D and E is a pair of
functions e : D −→ E and p : E −→ D such that

p ◦ e = idD and e ◦ p ≤ idE.

In fact e determines p, for continuous domains the formula is

p(x) =
∨
D

{y|e(y) ≤ x}.

These e-p pairs compose and there is an obvious identity: so
Scott domains and e-p pairs form a category.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 4 / 36

More details

Given an e-p pair (e, p) : D −→ E we define a new e-p pair
(e′, p′) : [D −→ D] −→ [E −→ E] as follows:
Let f ∈ [D −→ D], g ∈ [E −→ E], then

e′(f) = e ◦ f ◦ p, p′(g) = p ◦ g ◦ e.

We start it off with the standard e-p pair (e0, p0) : D −→ [D −→ D]
given by e0(d) = x 7→ d and p0(f) = f (⊥).
We construct the usual inverse limit of the sequence above: D∞;
this is our goal

D∞ ' [D∞ −→ D∞].

The inverse limit is all sequences {(x0, x1, . . . , xn, . . .)} with xn ∈ Dn

and pn(x(n+1) = xn.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 5 / 36

T-algebras

An initial object I in a category has a unique morphism to every
other object.
Given a functor T : C −→ C, a T-algebra is an object A and a
morphism α : TA −→ A.
T-algebras form a category.

TA
α //

Tf
��

A

f
��

TB
β

// B

An initial T-algebra; a must be unique:

TI κ //

Ta
��

I

a
��

TA α
// A

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 6 / 36

Lambek’s Lemma

Theorem

An initial T-algebra TI κ−→ I defines an isomorphism: ∃λ : I −→ TI with
κ ◦ λ = idI and λ ◦ κ = idTI.

Proof

TI κ //

Tλ
��

I

λ
��

TTI Tκ
//

Tκ
��

TI

κ

��
TI κ

// I

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 7 / 36

Fixed points for domain equations

How do we solve equations like

L ' 1 + At × L : Lists of Atoms

or
T ' At × F and F ' 1 + T × F : Trees and Forests.

or even
D ' [D −→ D] ?

Lambek’s lemma gives the clue: one can imitate fixed-point theory
at the categorical level.
Breakthrough idea: Use categories where the hom sets have
order structure (Mitch Wand: 74,76)
Develop systematially a theory of solving domain equations in
such order-enriched categories: Plotkin and Smyth (79).
Key result (roughly): one can lift results about limits and continuity
from homsets to the category.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 8 / 36

Continuity in analysis

Definition
A function f : R −→ R is continuous at x0 if ∀ε > 0∃δ > 0 such that
∀x ∈ (x0 − δ, x0 + δ), |f (x)− f (x0)| ≤ ε.

Computational version
A function f is continuous (at x0) if whenever I prescribe a tolerance for
the accuracy of the answer, there is a limit on the accuracy of the input
that guarantees that the answer will be within the prescribed tolerance.

Continuity is a coomputability concept. Might computability be a
topological concept?

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 9 / 36

The Scott topology

The use of the word “continuity” suggests topology.

The Scott topology
An open set U ⊂ D in a continuous domain has the property that if
X ⊂ D is a directed set with

∨
X ∈ U then X ∪ U 6= ∅.

This is just like the open sets of real analysis.
If a sequence converges to a limit inside some open interval then
the sequence itself must enter the open interval.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 10 / 36

Observability

Open sets are the observable properties!
The axioms of topology make sense from the point of view of
being “physically” testable properties: Smyth.
The computable functions are continuous: to obtain a finite piece
of the answer one needs only a finite piece of the input.
In fact concepts like compactness can be given a computational
meaning (Escardo): one can exhaustively search infinite sets by
exploiting compactness!
These concepts have even been fruitfully used in physics [Keye
Martin, P. Comm. Math. Phys. 2006].

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 11 / 36

The Lawson topology

With the Scott topology, compactness cannot be used effectively
in domains with a least element.
Lawson topology: take and Scott-open set U, take any finite set F
and take as basis for the topology seet sets of the form U\ ↑ F,
where ↑ F = {x|∃y ∈ F, y ≤ x}.
The Lawson topology carries some negative information.
For any continuous lattice the Lawson topology is compact and
Hausdorff.
For an algebraic dcpo the Lawson topology is metrizable.
For streams with the prefix order

d(x, y) = 2n, where x[n] 6= y[n] and ∀m < n, x[m] = y[m].

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 12 / 36

Classical Stone duality

Every boolean algebra is isomorphic to a boolean algebra of sets:
Stone representation theorem.
Given B we construct the set of ultrafilters (or maps into the
two-element boolean algebra) ordered by inclusion.
Much more is true: we can make the collection of ultrafilters into a
topological space S: for every x ∈ B we define Ux to be the set of
ultrafilters that contain x. This gives the base for a topology.
With this topology S is Hausdorff, compact and has a base of
closed and open (clopen) sets: it is called a Stone space.
If there is a BA homomorphism h : B1 −→ B2 we get a continuous
map ĥ : S2 −→ S1 by composition.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 13 / 36

The categorical picture

Call the category of boolean algebras BA and the category of
Stone spaces Stone.
Then one has functors from BA to Stoneop.
The composites are naturally isomorphic to the identity functors.
As categories Stoneop and BA are the same.
One has two views of the same structures: algebraic and
topological.
Other examples: Compact Hausdorff spaces and C∗-algebras.
Vector spaces and itself!
Many, many, many more...
Denotational semantics and axiomatic semantics.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 14 / 36

Predicate transformers: Dijkstra

In operational semantics: given a state (or set of states) and a
transition system (which may be nondeterministic) what are the
next states after the execution of a command.
In predicate transformers: if after the execution of a command a
property P holds what must have been true before? The weakest
precondition.
Note the backward flow in wp semantics.
Given two continuous domains D and E, viewed as topological
spaces with the open sets written OD and OE, a predicate
transformer is a strict, continuous and multiplicative map p : OE

−→ OD.
We can (but won’t) formalize what a state transformer is as well.
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers. (Smyth,
Plotkin)

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 15 / 36

Duality more generally

This can be extended to the realm of probabilistic programs and
expectation transformers. (Kozen)

Logic Probability
States s Distributions µ

Formulas P Random variables f
Satisfaction s |= P Integration

∫
f dµ

One can define a generalized transition system as a co-algebra
and a (modal) logic as an algebra.
One obtains a general Stone-type duality between co-algebras
and algebras: between generalized transition systems and modal
logics.
Bonsangue, Kurz, Moss, Pattinson, Schröder, Rutten, Jacobs,
Silva, Worrell, Pavlovic, Mislove, Simpson, Kupke, Bezhanishvili
and Panangaden.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 16 / 36

Locales

One can study topological spaces in terms of their complete lattice
of open sets.
These lattices are complete and satisfy the infinite distributivity
law:

x ∧
∨

S =
∨
{x ∧ s|s ∈ S}.

They are called frames.
The category of frames has morphisms that preserve finite meets
and arbitrary joins: the spirit of topology.
Locales are the opposite category of frames.
Many ideas are clarified by taking the dual view and working with
locales instead of spaces and points.
This is the point-free of topology.
It shall be very fruitful (one day) in probability theory.
Fantastic book: Stone Spaces by Peter Johnstone.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 17 / 36

Domain theory in logical form

A famous paper by Abramsky with the above title spells out and
implements the following programme based on the perspective of
Stone duality.
Define a metalanguage for types and terms (programs)
Interpret types as domains and terms as elements in appropriate
domains: denotational semantics.
Give a logical interpretation of the same language: types are
propositional theories, the finite elements are the propositions.
In the logical view, terms are described by axiomatizing
satisfaction. A modal logic of programs.
The two interpretations are shown to be Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 18 / 36

Axiomatic domain theory

What should a category of domains be?
Categories of domains should have enough structure to support
the solution of recursive domain equations.
Axiomatic domain theory: require products, exponentials, sums,
limits and colimits, the ability to solve recursive domain equations.
Also require that one has Stone-type duality to give a logic of
observable properties.
Most of the emphasis in axiomatic domain theory was finding the
right axioms for solving recursive domain equations: fundamental
early work by Alex Simpson and Marcelo Fiore.
It gave an axiomatic framework for studying adequacy in
extensions of PCF.
It also provided reasoning principles for recursive types.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 19 / 36

Synthetic domain theory

Scott: domains should be “sets” perhaps in another mathematical
universe.
Toposes are alternative mathematical universes or alternative set
theories.
From the “inside” it looks like you are doing set theory.
From the “outside” it looks very different.
Can one build toposes where one gets domains by just doing
naive set theory inside the topos?

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 20 / 36

What are effects?

Consider a computation that produces a result but also updates a
store or produces output.
These were called “side effects” suggesting that they happened
on the side.
Moggi initiated the systematic study of these through the theory of
monads.
This was so influential that they even became a languge
mechanism in Haskell.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 21 / 36

Plotkin and Power’s theory of effects

Describe effects not as monads but as a particular kind of
formalism called a Lawvere theory which puts the emphasis on
operations and equational laws for the effects.
It is equivalent to working with monads but it is much easier to see
how to combine different effects.
The key achievement is to provide a modular way to combine
semantics for different kinds of effects: update, IO, jumps,
nondterminism, probability etc.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 22 / 36

What is concurrency?

Describe autonomous, interacting computational entities.
The computational agents are not necessarily performing a single
task.
In parallel programming one wants to exploit parallelism to mask
latency.
Here one is interested in modelling that, but also distributed
transactions, operating systems, communication protocols and
other tasks.
No universally-acknowledged fundamental paradigm:
synchronous vs asynchronous, communication by message
passing, by shared variables, by broadcast, mobile or not.
Proliferation of formalisms, semantic models and logics.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 23 / 36

Kahn-McQueen networks

Network of autonomous computing agents connected by
unbounded FIFO buffers as comunication channels. Channels are
named, point-to-point and directional.
Each agent runs a sequential program. Communication primitives:
read c and write e to c. Read is blocking.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 24 / 36

An example network

d = F(a, e), f = G1(d), g = G2(d), i = H2(b, g, h).

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 25 / 36

The Kahn principle

Each agent computes a continuous function from input streams to
output streams. Not functional at the token level. The network is
described by a set of equations.
The networks may have cycles, so the set of equations may be
recursive.
Operational semantics is by token pushing.
Denotational semantics is by least fixed point theory: Kahn
principle.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 26 / 36

What happens if we introduce nondeterminism?

The input-output relation is not a function.
We cannot just work with relations.
The IO relation is not compositional.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 27 / 36

An example

ε ε, 0
0 00, 01

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 28 / 36

An example

Now the one on the left outputs ε or 01 but the one on the right can
output 00 as well as the previous two possibilities.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 29 / 36

There is a rich theory of expressive power of nondeterministic
dataflow but this is not the place for it.
Fully abstract semantics based on traces were developed by
several workers but Bengt Jonsson deservedly gets the credit for
doing it first.
One needs new abstractions to deal with concurrent computation.
Process calculi were started by Milner as foundational calculi for
concurrent computation.
Independently Hoare invented CSP as a concurrent computation
paradigm.
Concurrency theory needs a 30 hour tutorial!

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 30 / 36

Powerdomains

Concurrency almost always introduces indeterminacy. Plotkin
introduced the domain theoretic analogue of the powerset.
How to order sets of elements from a domain?
Consider three programs: P,Q,R. P outputs 1, Q may output 1 or
may loop forever and R just loops forever. Are they equivalent?
One view P and Q are the same since the set of possible results
are the same. One can define an order on sets based on this
intuition and obtain a domain called the Hoare or lower
powerdomain.
Another view Q and R are the same since we cannot guarantee
anything about their termination behaviour. The powerdomain
based on this intuition is called the Smyth or upper powerdomain.
Finally, all three are different: this leads to the Plotkin or convex
powerdomain.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 31 / 36

The Plotkin powerdomain

For flat domains one can formalize the third powerdomain with the
Egli-Milner order

A vEM B iff ∀x ∈ A∃y ∈ B, x ≤ y ∧ ∀y ∈ B∃x ∈ A, x ≤ y.

For non-flat domains D, one starts with all non-empty finite
subsets of D and orders them by the EM order; this gives a
pre-order.
To construct the Plotkin powerdomain P(D) we form the ideal
completion of this preorder.
Viewed as subsets of D the elements of P(D) are non-empty,
convex, Lawson-compact subsets of D ordered by the EM order.
Lawson compactness captures the idea that the programs are
finitely-branching.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 32 / 36

Algebraic properties

One can define a continuous operation ∪ : P(D)× P(D) −→ P(D)
(union) which makes P(D) a semi-lattice and a map {·} : D
−→ P(D) which is the continuous analogue of the singleton
embedding.
There is a canonical way of extending any continuous map f : D
−→ L to f † : P(D) −→ L in such a way that the diagram below
commutes

D
f //

{·}
��

L

P(D)

f †
==zzzzzzzz

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 33 / 36

Categorical properties

If D is a Scott domain then P(D) may not be a Scott domain.
If one wants to combine nondeterminism with higher types one
needs a CCC which is closed under the action of P(·).
Plotkin found the category SFP which is a CCC of algebraic
domains which is closed under the action of forming the convex
powerdomain.
Smyth showed that this is the largest CCC of ω-algebraic domains.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 34 / 36

Probabilistic systems

Probability is important to formalize many kinds of systems.
Much research on discrete probabilistic systems.
In the late 1980s Claire Jones and Plotkin developed probabilistic
powerdomains.
We still do not know any CCC of continuous domains which is
closed under the formation of the probabilistic powerdomain.
In the last 1990s Blute, Desharnais, Edalat, P. introduced labelled
transition systems on continuous state spaces: labelled Markov
processes and showed some striking results about logic and
bisimulation.
Desharnais et al. constructed a universal LMP by solving a
recursive domain equation in the category of Lawson compact
continuous domains.
Lots of hard mathematics needed to combine probability and
nondeterminism; an ongoing project.

Panangaden (McGill University) Tutorial on Semantics Part III LICS Toronto June 2011 35 / 36

	Introduction
	Modelling the untyped lambda calculus
	Recursive domain equations
	Topology and computability
	Stone duality
	Axiomatic and synthetic domain theory
	Computational effects
	Concurrency
	Probabilistic systems

