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Numerical Challenges

|mmersed Singular boundary force introduces discontinuities in fluid

Method solution. ou
o) 5 TuVu=-Vp+uViutF,
Mathematics, t

Duke V-u=0

University

- F(x,t) = / (s, £)3(x — X(s, £))ds
r

Pressure Velocity




Solution Approaches
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. e Unstructured grid: requires
nita Layton .

PESEREEN  mesh regeneration every

B time-step.

Introduction

e Immersed bounadry method
(Peskin, Acta Numerica, [
2002): replaces singular ¢ by a /' 10
smoother discrete §p,. /o \

o Immersed interface method (Li and Lai, JCP, 2001)



Features of Immersed Interface method

Immersed
Interface
Method

m Preserves sharp jumps in
solutions and derivatives.

University

Introduction

m Computes O(h?) accurate solutions.

m Can be applied to problems other than immersed boundary
problems.
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The Immersed
Interface Method

Numerical Solutions of
PDEs Involving Interfaces
and Irregular Domains

Zhilin Li
Kazufumi Ito




Example 1: Singular Sources
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Delta function singularity
Anita Layton
i m Elastic material with two ends fixed and a point source
m Solution is continuous, but the derivatives are not!

m Standard numerical methods may have big errors.

Problems of
Interests

[ul=0
ux) [uel =0




Example 1: Singular Sources

Immersed The equation

Interface
Method

Anita Layton U”(X) - 05(X - O[), 0 < X < ].
Departm of

aenane u(0) =0, u(l)=0

Equivalent problem

Problems of

Interests U" = 0, X € (0, Oé) U (Oé’ 1)
[ =0, [V]=0

(¢4

[u]l=0
ux) [u] =0



Example 2: Discontinuous Coefficients

Immersed
Interface

Method Heat propagation through heterogeneous materials
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Figure 1.1: Heat propagation in different materials. {a) Contour plot of the temperature,
() Mesh plot of the solution.




Example 2: Discontinuous Coefficients
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Model equation, IC, and BC:

ur =V - (BVu),(x,y) € [-1,1] x [-1,1]

ﬂ—{ Looxhyisg
Intarects ~ | 100, otherwise
u(x,y,0) =
u(—1,y,t) = ( -1,t)=0
u(x,1,t) =sin((x + 1)7/4)
u(l,y,t) =sin((y +1)m/4)



Other Examples
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~V - (3Vu) = £+ [ n(s)ilx — X(5))ds

m Multi-phase / singular sources
m Moving interface / free boundary
m Irregular domains

2D singular sources

University

Problems of
Interests

M= 30 ¢ = 10t e =0, dt= 3125107

re 160, 3= 108, die g4
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An 1D Example
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(Bu') = f(x) + 0d(x — a)
u(0) = us, u(l)=up

Equivalent problem:

(Bu) =f(x), x€(0,a)U(a,1)
1D Example u(a™) =u(a™), BT (a™)=p"dv(a)+0o
u(0) = us, u(l)=up

—® ifflj fl;-'j+1 —o—



Finite-Difference Discretization
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- m Approximate solution at grid points x; = ih, i =0,..., N.

m Regular grid points: standard centered difference scheme

Bi—1Ui—1 — 2BiU; + Bit1Uiv1
2

= f(x;)

Local trunction error O(h?) if u" exists.

m Irregular grid points, x; and x;11, what to do?



FD Scheme at Irregular Gridpoints
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m Un-determined coefficient method

Universit Yj-1 Uj—l + P}/jUj + ’Yj—l—lUj—f—l — f; + CJ

m Determine coefficients and correction term

1D Example

’.Yj—la 7J7 ’Yj-i-l? q
m Make use of interface relations

T=u, uf= ﬁ_ . ub =
’ X X XX
gt 6*

/6_
/B+ XX



FD Scheme at Irregular Gridpoints

Immersed
Interface

Method Use un-determined coefficient method to minimize local

trunction error at « (the solution is piecewise smooth):

Tj = vj-1u(x-1) + yu(x) + yru(xip1) — = G

(1) = 0+ w5z (g1 — ) + LD ug 1 ogm)
1D Example P
u(xj) =u" +u (x;—a)+ (Xj2a)u_ + O(h3)

WOg4) = o+ U (g — @)+ (“2“) 5+ O()

(XJ+1

a)?

XX



FD Scheme at Irregular Gridpoints

Immersed
Interface

Method Tj = vj—1u(xj-1) + vulx) + vjsru(xp1) = = G

Apply Taylor expansion, interface relations, un-determined
coefficient method

= Tj=u (-1 +7% +75+1)

_ B~
1D Example + ug (71—1()9’—1 —a)+ (x5 —a) + w+1ﬁt(Xj+1 —a)

2 2
_ Xi_1 — Q& Xj — «
+Uxx<7j—1(J > ) +’)’j(J > )

— X _ 2
+’Yj+lg+(xj+l2 & )

p
+7j+1ﬁj¢7(xj+1 —a)=fi=G



Coefficients and Correction
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The linear system for the coefficients

Anita Layton
Departm of
Matt s _
ke u (-1 + 5 ++1) =0

B
Y-1(Xji-1 — @) + (% — @) + ’Yj+1ﬁj(xj+1 —a)=0

xample (X._]- — a)z (X' B a)z ﬁ_ (X'-i-l - 04)2 —
1D E pl ’Yj—l J 2 + ,.yJ J 2 + ,yj+157+ J 2 — 6

The correction term

G = 07j+1g+(xj+1 —a)



Key Steps of [IM

Immersed
Interface
Method

Anit
Departr

i Un-determined coefficient method at grid points near/on
o the interface

Y-1Uji1 + Ui+l =+ G

1D Bxample Expand u(x; 4 jh) at u(a) on the interface from each side.

Use jump conditions to express the quantities of one side
in terms of the other

B Choose coefficients and correction term to minimize local
trunction errors.



Numerical Results
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Example
(Bu') = 3(x — a)
u(0)=0, wu(l)=0

with 8~ =1, 8 = 100, and a = 1/3.

1D Example

The exact solution is

(x) = Bx(1-a), 0<x<a
o= Ba(l—x), a<x<1

where B=—1/(Ta+ (1 — «)).




Numerical Results

Immersed

Interface Compare accuracy of
Method

Anita Layton IIM
Departm of
Matt

ematics Smoothing + discrete delta:
Universit Smooth ((x) using

Be(x) =B+ (B7(x) = B~ (x))He(x — a)

1D Example

X < —€
(1+24+Lsinm) |x| <e
) X > €

H.(x) =

== O

Use discrete cosine delta function

1 TX
_ Te(1+C0576)7 |X|<2€
%(x) { 0, |x| > 2¢



Results and Comparison
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Universit:

1D Example

Solid line: exact solution
* 1IM; o smoothing + discrete delta (e = 2h).
h = 1/40.



lIM for Immersed Boundary Problems
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[IM for Stokes Equations

Immersed Stokes problem with a singular source on a closed curve I'

Interface
Method

V-u=0
Universit F = / f(S)(S(X - X(S)) ds
r

le'

Stokes Equations 17 _Q_"'




Jump Conditions

Immersed
Interface
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(LeVeque and Li, SINUM, 1994)
Assume no-slip along the immersed boundary,

0

—X(s,t) =u(X(s,t

X (5,) = u(X(5,1))

Balancing forces in the normal and tangential directions, we
can express the j jump conditions in terms of the boundary
forces (A =f-n i =f-7):

Stokes Equations

R o -
— N
[Pl="H, lpn]= 5P
[l =[v]=0, [uus]=tsind, [uv,]=Fcosd



Solving the Stokes Equations Using [IM
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Given boundary configuration I'(t,), compute boundary
force f.

Universit:

With f, compute jump conditions.

Solve three Poisson problems:

1 1
Ap=V-F, Au=—py, Av=—p,
M M

Stokes Equations



Solving the Stokes Equations using [IM

Immersed For pressure

Interface
Method 1

(Pi+1,j +Pi_1;—4Pj+ Pijy1+ P,'J_l) =G ;

Anita Layton

h2
Departm o h
J At regular grid points C;; = 0, at irregular grid points, C;; is
determined using the un-determined coefficient method as
before.

Stokes Equations

N




Solving the Stokes Equations using [IM
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For velocity

1 1 A
= (Uip1j+ Vi1 —4Uij+ Uijpr + Ui j1) = ;(Px)ij + Ciyj

Update I
Shisfes Eapreifars X"+1 = X"+ AtU(X”)



Stokes Example
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Stokes Example

Immersed
Interface
Method

Anita Layton .
Department of Ve|OCIty (
Mathematics,
Duke
University

Stokes Equations




Alternative: Boundary Integral Solution

Immersed

Interface Stokes solutions are given by the boundary integrals

p(x) = /r VG(x— y)f(y)ds(y)
u(x) = /r V(x - y)F(y)ds(y).

VG and V are determined by the spatial dimensions and
boundary conditions. For 2D free space,

VG(x) = —

Boundary -
Integral Solution 27T|X‘2

2
_ R X1X
1 |Og |X‘ + |x\2 \x|2

V(x)

T Ar X1%2 _ %
X2 log x| + Ix|2



Two Problems with Integral Solutions

Immersed
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Anit #  Using boundary integrals eliminate the need for corrections,

Departr

Mather but...
Du
Universit:

m Accuracy. The kernels V and VG are singular!

2
. L[ e
Ve = o V=4 wy S
it —log x| + 5

Near the immersed interface, nearly singular integrals give
rise to large quadrature errors.

Boundary
Integral Solution

m Efficiency. Using boundary integrals to compute solution
values at N2 grid-points takes O(N3) time.



Accuracy: Modified Stokeslets

Immersed

herface Replace point source by a “blob” (Cortez, SISC, 2001)

363

¢e(f):m

Then the Green's function of AG = § becomes regularized:

€ \

V2 +e?,

sl where r = |x|. Stokes solutions are given by the boundary
Integral Solution |ntegra|s, eg'

G(r) = % log(r) = Ge(r) = % (Iog( rP4+e+e)—

p(x) = /r VG.(x — y)f(y)ds(y)



Accuracy: Modified Stokeslets

Immersed
Interface
Method

G But Stokes solutions computed using the regularized Green's
Depa

Matt function are smooth near the boundary, i.e., the jump
discontinuities in p and in the derivatives of u are not preserved.

This leads to O(h) errors in u and O(1) errors in p.

To achieve better accuracy, corrections can be added:

p(x) =D VGe(x—sk)f(si)As+ Ti(x) + To(x) + O(As® + )
k

Boundary
Integral Solution

where T1 and T, correct for the quadrature and regularization
errors (Beale and Lai, SINUM, 2001).



Efficiency: Hybrid Approach

Immersed

herface m Combine boundary integrals with mesh-based solver.

Anita Layton m Compute integral solutions only near boundary (cost:
O(N?)), enough values to form discrete five-point
Laplacian at irregular grid points.

]

Boundary
Integral Solution

P /—\\
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Boundary
Integral Solution

Hybrid Approach

Solve three Poisson problems:

B irreg points

Pit1,j+Pij+1—4Pi j+Pi—1,i+Pij—1
App : ’ .
0, reg points

p values in RHS Laplacian computed using modified Stokeslets.

L AU u )
Au SEsRREALL l;,'iﬁu' Lt irreg points

U = )
Vp, reg points

u values in RHS Laplacian computed using modified Stokeslets.
Vp computed using finite difference.

e Solve Poisson problems using FFT, O(N? log N).



Resolving Boundary Layers

N m Stiff boundary forces may generate a steep gradient in the
herface solutions near the boundary.

Anita Layton_ m Even though the solutions are “smooth” away from the
boundary, finite-difference approximation of the Laplacian
may have large discretization errors.

m Remedy: Expanding the “band” where we use boundary

integrals to compute the discrete Laplacian.

Boundary
Integral Solution

Mo



Resolving Boundary Layers

Immersed
Interface

Method Aup p’+1’j+pi’j+1_4ﬁ'§’j+pi71’j+pi’j71, inside band
L hp = .
0, outside band
. . C o —Au; o C . .
A M T Z ML TUEL - nside band
hU = .
Vp, outside band
L ] [ ] [ ] [ ] [ ]
.-—-—"'_---
P

Boundary
Integral Solution

[ ]
e /‘_\\




Stokes Example

Interface is a unit circle.

Immersed
Interface
Method

£(0) = 14sin(70)x(0),  p(r,0) = { f_‘;ssii:((%)): r>1

r<l

Anita Layton
Department of
Mathematics,
Duke
University

Introduction

1D Example
Immersed
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Problems

Boundary
Integral Solution

Summary




Immersed Boundary Problem with NS Flows

Immersed
Interface

Methéd (|_i and Lai, JCP, 2001)

Navier-Stokes Equations with Singular sources

)
a—l:+u-vu=—vp+uv2u+F,

V-u=0
ulpo = up
u(x,0) =ug

F(x,t) = /r (s, £)0(x — X(s, £))ds

Navier-Stokes
Equations



[IM for Navier-Stokes

Immersed

Interface [IM from t, to t,4+1 can be written as
Method

* n
D—\r;m”“LHx to n‘ u Atu + (U . th)n—’—% — —vnpn_§ (th + V%u") + Ci’,
Matk s
T where
2 1
(u- Vou)™s = 3 (U Viu)" — 3 (U Vpu)" ' +C5

The projection step is as follows

vh¢n+1 vh u”

c?
“Ar O3

n+1
Navier-Stokes a¢
Equations
on

u™l = u* — AtV 0" 4+ CF

Vhpn—’_% = Vhpn_% + Vpo"tt 4 C:



Determining the Correction Terms

Immersed
Interface
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Let u(x) be a piecewise twice differentiable function. Assume
that u(x) and its derivatives have jumps [u], [ux], and [ux] at
x* = x + «h, then

u(x + h) — u(x — h) {u’(x)+c(xa)+(’)(h2) 0<ac<l

2h U (x) = CE9 L o), —1<a<0
u(x+ h) —2u(x)+ u(x—h C(x,a
(o B) =20 e =) _ i C50) o
where
N:viet(;Stokes 1 o 2h2
Clx,@) = [u] + (1 — a)h + [iso] S 12D

2



Determining the Correction Terms for C7

Immersed

n
Interface From (u . th)

Method . B X* 9
A (I CREPS R TAEC S PN
From (u- Vyu)"!
Xip1 — X*)?
i (19210502 =)+ 13220 e )
From Vhp”*%
T (U RACA CREPD)
From puAp(u”/2)

_ﬁ <[u§](x,'+1 —x")+ [”Qx](XIH2_X*)2>

Navier-Stokes
Equations




The Velocity Decomposition Approach

Immersed (Beale and Layton, JCP 2009)

Interface
Method

u=us+u,
The Stokes solution satisfies
Vps = uVus+f, V-us=0

Substituting into the Navier-Stokes equations:

8(u5(;ur) +u-V(us+u)=—-V(ps +pr)

+uV? (us +u,) + f,

Eavtons = %utr +u-Vu, = —Vp, + uV?u, + fy,
V-u, =0,

Fy = — 2% . v,

ot



Summary

Immersed
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Some recent applications of the IIM:
m Free boundary problem with moving contact lines;
Immersed interface finite element methods;
Navier-Stokes equations in irregular domains;
Surfactant-laden drop-drop interactions;
Stokes equations with discontinuous viscosity;
Navier-Stokes equations with discontinuous viscosity;
Tracking interface using the level-set method;

Higher than second-order accuracy;

Summary

More: today'’s talks!
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