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The trace mapping

Fpm . . . finite field of order pm, p is prime
F∗pm := Fpm \ {0}

Tr : Fpm → Fp . . . trace mapping given by:

Tr(x) =

m−1∑
i=0

xpi
= x + xp + · · ·+ xpm−1

.
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General Kloosterman map

Definition

The Kloosterman map is the mapping K : Fpm → R defined by

K (a) :=
∑

x∈F∗
pm

ωTr(x−1+ax),

where ω = e2πi/p.

Spectrum of binary Kloosterman sums⇑
(Lachaud and Wolfmann)⇓

Number of points on elliptic curves



Outline Binary Kloosterman sums Melas codes and caps Highly nonlinear functions Ternary Kloosterman sums

General Kloosterman map

Definition

The Kloosterman map is the mapping K : Fpm → R defined by

K (a) :=
∑

x∈F∗
pm

ωTr(x−1+ax),

where ω = e2πi/p.

Spectrum of binary Kloosterman sums⇑
(Lachaud and Wolfmann)⇓

Number of points on elliptic curves



Outline Binary Kloosterman sums Melas codes and caps Highly nonlinear functions Ternary Kloosterman sums

Binary Kloosterman curves

Theorem (Lachaud, Wolfmann)

An ordinary elliptic curve E over F2m can be transformed into one
of the Kloosterman curves:

K+
a : y2 + y = ax +

1

x
,

K−
a : y2 + y = ax +

1

x
+ τ,

where a, τ ∈ F2m , Tr(τ) = 1.

Theorem (Lachaud, Wolfmann)

Let a ∈ F2m . Then #K±a = 2m + 1± K (a).
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Applications of Kloosterman sums: cross-correlation
functions

Consider two binary sequences with period 2m − 1,
u(t) = Tr(αt) and v(t) = u(−t).

The cross-correlation function between u(t) and v(t) is
defined by

Ct(a) =

2m−2∑
t=0

(−1)u(t+a)+v(t) =
∑

x∈F∗
2m

(−1)Tr(x−1+ax) = K (a).

Problem: determine the values and the number of occurrences
of each value taken on by Ct(a).
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Applications of Kloosterman sums: K (a) = −1

Open problem: describe elements a ∈ F2m for which K (a) = −1.

Theorem (Lachaud, Wolfmann)

The set of K (a), a ∈ F∗2m is the set of all the integers s ≡ −1
(mod 4) in the range

[−2m/2+1, 2m/2+1].

Hence there are some a ∈ F2m for which K (a) = −1, but their
number is still unknown.

Partial results could narrow down the search field.
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Elliptic curve Et

Let t ∈ F2m , t 6∈ {0, 1}, and consider the elliptic curve

Et : y2 + xy = x3 + a2x2 + (t8 + t6),

where
a2 = Tr(t).

Later we will show that Et arises naturally in the problem of
counting coset leaders for the Melas code.
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3|K (a) ⇐⇒ a = t4 + t3

Theorem

Let m ≥ 3 be odd and let a ∈ F∗2m . Then K (a) is divisible by 3 if
and only if a = t4 + t3 for some t ∈ F2m .

“⇐” (Proved first by Helleseth and Zinoviev, 1999)

Due to Lachaud and Wolfmann we get

#Et =

{
2m + 1 + K (t4 + t3) if Tr(t) = 0,

2m + 1 − K (t4 + t3) if Tr(t) = 1.

We find a point on Et of order 6, hence 6|#Et .

Since 3|(2m + 1), we get 3|K (t4 + t3).
(We will later see a more combinatorial proof of 6|#Et)
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3|K (a) ⇐⇒ a = t4 + t3

“⇒”

Charpin, Helleseth and Zinoviev (2007):
3|K (a)⇔ Tr(a1/3) = 0

Tr(a1/3) = 0⇔ a = t4 + t3

In fact, we can generalize the last equivalence.
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Characterization for Tr(a1/(2k−1)) = 0

Theorem

Let m > 1 and let k be such that gcd(2k − 1, 2m − 1) = 1. Then
for each a ∈ F2m we have

Tr(a1/(2k−1)) = 0 if and only if a = t2k
+ t2k−1

for some t ∈ F2m .

(The case k = 1 is a well-known fact.)
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Binary linear codes

Definition

A binary linear [n, k , d ]-code C is a k-dimensional linear subspace
of Fn

2 such that any two different elements of the code are at
Hamming distance at least d .

Definition

H is called a parity check matrix for a linear code C if
x ∈ C ⇐⇒ HxT = 0. Then HxT is called the syndrome of x .

Definition

A coset leader for a coset D of C is an element of D with the
smallest Hamming weight. The weight of a coset is the weight of
its coset leader(s).
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Melas codeMm

F2m ' Fm
2 , α a primitive element of F2m

The standard parity check matrix of the Melas code Mm is

HM =

(
α . . . αi . . . α2m−1

α−1 . . . α−i . . . α−(2m−1)

)
.

HM will be used to produce syndromes. We wish to find the
number of coset leaders for a coset of Mm of weight 3
corresponding to a given syndrome (a, b)T ∈ F2m × F2m .

The number of coset leaders is the number of different error
patterns of weight 3 resulting in the same syndrome and we
would like to minimize this quantity.
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A system of algebraic equations

We are led to counting the number of solutions to the
following system of equations over F∗2m :

u + v + w = 1
u−1 + v−1 + w−1 = r

(1)

where r ∈ F2m is a fixed constant.

Consider the general case when r 6∈ {0, 1}.
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The number of solutions

Theorem

Let r ∈ F2m \ {0, 1}. The number of solutions (u, v ,w) ∈ (F∗2m)3 of
(1) is an integer T such that

T ∈ [2m + 1 − 2m/2+1 − 6 , 2m + 1 + 2m/2+1 − 6]

6 divides T .

Conversely, each T satisfying these two conditions occurs as the
number of solutions for at least one r ∈ F2m \ {0, 1}.
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A substitution motivated by Lachaud & Wolfmann

We eliminate w and homogenize as u = U/Z , v = V /Z .

Next we apply the substitution

r = 1 +
1

t
,

U =
1

t
x + (t + 1)z ,

V =
1

t2
(y + sx) + (t2 + t)z ,

Z =
t + 1

t2
x + (t + 1)z .

Note: r ∈ F2m \ {0, 1} implies t ∈ F2m \ {0, 1}.
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The number of solutions (u, v ,w) is #Et − 6

We obtain the same curve Et as before!

A lot of technical calculations show that exactly 6 points on Et do
not produce a solution (u, v ,w):

The point at infinity O ∈ Et .

3 points on Et that correspond to (u, v ,w) being a
permutation of (0, 0, 1).

2 points on Et that make the homogenization variable Z = 0.

Distinct points on Et produce distinct solutions (u, v ,w), if any.
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The proof in one direction is complete:

The assumption r 6= 1 forces u, v ,w to be distinct in any solution
(u, v ,w). Thus the number of solutions is divisible by 3! = 6. This
is the combinatorial proof for 6|#Et promised earlier.

By the Hasse Theorem the number of solutions (u, v ,w) is in

[2m + 1 − 2m/2+1 − 6, 2m + 1 + 2m/2+1 − 6] ∩ 6Z

for each t ∈ F2m \ {0, 1}, and hence for each r ∈ F2m \ {0, 1}.
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The coset leaders and the symmetry

Corollary

Let m ≥ 3 be an odd integer. Let a, b ∈ F∗2m , a 6= b. Suppose that
the syndrome (a, b)T corresponds to a coset D of weight 3 ofMm.
Then the number of coset leaders of D is an integer L such that

6L ∈ [2m + 1 − 2m/2+1 − 6, 2m + 1 + 2m/2+1 − 6].

Conversely, each such L occurs as the number of coset leaders for
at least one such coset D.

Theorem

Let N(k) denote the number of those r ∈ F2m \ {0, 1} for which the
number of solutions to (1) is equal to k. Then for each l ∈ N we
have N(2m − 5 + l) = N(2m − 5 − l). That is, the values N(k) are
symmetric about k = 2m − 5.



Outline Binary Kloosterman sums Melas codes and caps Highly nonlinear functions Ternary Kloosterman sums

The coset leaders and the symmetry

Corollary

Let m ≥ 3 be an odd integer. Let a, b ∈ F∗2m , a 6= b. Suppose that
the syndrome (a, b)T corresponds to a coset D of weight 3 ofMm.
Then the number of coset leaders of D is an integer L such that

6L ∈ [2m + 1 − 2m/2+1 − 6, 2m + 1 + 2m/2+1 − 6].

Conversely, each such L occurs as the number of coset leaders for
at least one such coset D.

Theorem

Let N(k) denote the number of those r ∈ F2m \ {0, 1} for which the
number of solutions to (1) is equal to k. Then for each l ∈ N we
have N(2m − 5 + l) = N(2m − 5 − l). That is, the values N(k) are
symmetric about k = 2m − 5.



Outline Binary Kloosterman sums Melas codes and caps Highly nonlinear functions Ternary Kloosterman sums

Caps with many free pairs of points

A cap in PG(n, 2) is a set C of points such that no three of
them are collinear.

Points of C are columns of the parity check matrix HC for a
code of minimum distance 4 (or more).

We say that {s, t} ⊂ C is a free pair of points if {s, t} is not
contained in any coplanar quadruple of C .

Clearly, all pairs of points of C are free if and only if HC

defines a code of minimum distance 5 (or more).
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Motivation

Application: statistical experiment design - caps with many free
pairs of points are known as clear two-factor interactions.

The goal: Given the size (number of points) of the cap and its
projective dimension, maximize the number of free pairs of points
in the cap.
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Construction based on linear codes of distance 5

Start with the parity check matrix H∗ of a binary linear code
of distance 5 and carefully add columns to it.

If z is a newly added column and if a, b, c are three columns
of H∗ such that a + b + c = z , then the free pairs {a, b}, {a, c}

and {b, c} are destroyed.

It is therefore desirable to add to H∗ syndromes z that
correspond to cosets of weight 3 such that the number of
coset leaders is minimized.
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Highly nonlinear functions

Let f : Fpm 7→ Fpm and let N(a, b) be the number of solutions
x ∈ Fpm of f (x + a) − f (x) = b, a, b ∈ Fpm . Consider

∇f = max{N(a, b) : a ∈ F∗pm , b ∈ Fpm }.

The smaller the value of ∇f , the further f is from being linear.

∇f = 1 . . . f : Fpm 7→ Fpm is a perfect nonlinear function

∇f = 2 . . . f : F2m 7→ F2m is almost perfect nonlinear

Notice that the solutions to f (x + a) − f (x) = b in F2m occur
in pairs {x0, x0 + a}, hence the almost perfect nonlinear.
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APN functions on F2m and codes of distance 5

Theorem

(Carlet, Charpin and Zinoviev (1998)) Let f : F2m → F2m ,
f (0) = 0. Let Cf be the binary code defined be the parity check
matrix

Hf =

(
1 α α2 · · · α2m−1

f (1) f (α) f (α2) · · · f (α2m−1)

)
.

Then f is almost perfect nonlinear (APN) if and only if d = 5.
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Almost bent functions

Definition (Fourier Transform)

The Fourier transform of f µf : Fm
2 × Fm

2 → Z is defined as follows:

µf (a, b) =
∑
x∈Fm

2

(−1)〈a,x〉(−1)〈b,f (x)〉,

where a, b ∈ F2m and 〈·, ·〉 denotes the standard inner product.

Definition (Almost Bent Function)

A mapping f from Fm
2 to itself is called almost bent (AB) if

µf (a, b) ∈ {0,±2(m+1)/2} for all (a, b) 6= (0, 0).

Note: AB functions exist only for m odd.
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Number of solutions for AB functions

Theorem

(van Dam and Fon-Der-Flaass, 2003) A function f : Fm
2 → Fm

2 is
AB if and only if the system{

u + v + w = a
f (u) + f (v) + f (w) = b

has q − 2 or 3q − 2 solutions (u, v ,w) for every (a, b), where
q = 2m. If so, then the system has 3q − 2 solutions if b = f (a) and
q − 2 solutions otherwise.

AB ⊂ APN
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Construction based on APN functions: Summary

Recall: We start with the parity check matrix H∗ of a binary
linear code of distance 5. Let’s restrict to codes defined by
APN functions.

We add to H∗ syndromes that correspond to cosets of
weight 3 for which the number of coset leaders is small.

In (Lisonek, 2006) this was worked out for the Gold function
f (x) = x3 on F2m (BCH codes). When m is odd, Gold
functions are AB and van Dam & Fon-Der-Flaass theorem
applies: the number of solutions is always q − 2.
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Comparison of Gold and Inverse functions

On the other hand, f (x) = x−1 is APN for m odd, but not
AB. Therefore, the number of solutions can be as low as
roughly q − 2

√
q, thus yielding a further improvement.

Moreover, the distribution of the number of solutions for
f (x) = x−1 is symmetric about q − 5. Consequently, roughly
one half of the choices for syndromes yield better results than
what can be achieved when using f (x) = x3.
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Ternary Kloosterman sums

Recall that Kloosterman sums over F3m are defined as follows:

K (a) :=
∑

x∈F∗
3m

(
−

1

2
+

√
3

2
i

)Tr(x−1+ax)

.
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Moisio’s result

Theorem (Moisio, 2007)

Let c ∈ F∗3m and let Φ be an elliptic curve over F3m defined by

Φ : y2 = x3 + x2 − c .

Then #Φ = 3m + 1 + K (c).

We use this connection between ternary Kloosterman sums and
ternary elliptic curves to classify and count those a ∈ F3m for which
K (a) ≡ 0, 2 (mod 4).
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Properties of ternary Kloosterman sums

Lemma

K (a) is an integer for all a ∈ F3m .

Lemma

Let a ∈ F3m . Let N(a) denote the number of solutions x ∈ F∗3m to
the equation Tr(x−1 + ax) = 1. Then K (a) ≡ N(a) (mod 2).

Lemma

Let a ∈ F3m . Then K (a) ≡ 2 (mod 3).
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Properties of ternary Kloosterman sums (continued)

Theorem

K (a) is odd if and only if a = 0 or a is a square and Tr(
√

a) 6= 0.

Corollary

K (a) is odd for 3m−1 + 1 elements a ∈ F3m .
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System of equations

Consider the following system of equations over F∗3m :

u + v + w = 1,
u−1 + v−1 + w−1 = 1/t,

(2)

where t ∈ F3m \ {0, 1} is a fixed constant.

Let S(1/t) denote the total number of solutions to (2).
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Grouping solutions

We can pair up the solutions: (u, v ,w) and ( t
u ,

t
v ,

t
w ).

We wish to see how many distinct ordered solutions there are
in the set composed of all permutations of (u, v ,w) and all
permutations of ( t

u ,
t
v ,

t
w ).

In most cases there will be 12 triples in total except when
|{u, v ,w }| < 3 or ( t

u ,
t
v ,

t
w ) is a permutation of (u, v ,w).
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Number of solutions modulo 12

Theorem

Let t ∈ F3m \ {0, 1}.

S(1/t) ≡

{
6 (mod 12) if t or 1-t is a square,

0 (mod 12) otherwise.
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Elliptic curve

Let Ēt denote the following elliptic curve over F3m :

Ēt : y2 = x3 + x2 − (t6 − t9).

Theorem

Let t ∈ F3m \ {0, 1}. Then

S(1/t) = #Ēt − 6,

where #Ēt denotes the number of points on Ēt over F3m .
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Idea for the proof

As in the binary case we eliminate w , homogenize the
resulting equation and use a substitution to obtain an elliptic
curve in Weierstrass form, denote it by Ēr .

There are 6 points on Ēr that do not correspond to a solution
of (2).

We then apply another substitution to obtain Ēt . Since the
two curves are isomorphic, we have #Ēr = #Ēt , so
S(1/t) = #Ēt − 6.
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Partitioning of F3m

Theorem

Let m ≥ 3 and let

A1 = {a ∈ F3m |a = 0 or a is a square and Tr(
√

a) 6= 0},

A2 = {a ∈ F3m |a = t2 − t3 for some t ∈ F3m \ {0, 1},

t or 1 − t is a square},

A3 = {a ∈ F3m |a = t2 − t3 for some t ∈ F3m \ {0, 1},

both t and 1 − t are non-squares}.

Then the sets A1, A2, A3 partition F3m .
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Kloosterman sums modulo 4

Corollary

Let m ≥ 3 and a ∈ F3m . Then exactly one of the following cases
occurs:

a ∈ A1 and K (a) ≡ 1 (mod 2),

a ∈ A2 and K (a) ≡ 2m + 2 (mod 4),

a ∈ A3 and K (a) ≡ 2m (mod 4).
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Kloosterman sums modulo 4 (continued)

Theorem

Parity of m K (a) Number of a ∈ F∗3m

m is even 0 (mod 4) q/4 − 1/4
2 (mod 4) 5q/12 − 3/4

m is odd 0 (mod 4) 5q/12 − 5/4
2 (mod 4) q/4 + 1/4
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New ternary quasi-perfect codes

Danev and Dodunekov (2008) constructed a new family of
ternary quasi-perfect codes with minimum distance 5 and
covering radius 3.

A major step in their proof is showing that the system (2) is
solvable over F∗3m for any t. This is done by explicitly finding
a solution.

We offer an alternative proof of the solvability of (2) over F3m .
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