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Costas Arrays

Definition

A Costas Array C (of order n) is an n x n grid containing n dots
such that

@ Each row and each column contains precisely one dot
(permutation matrix)
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Costas Arrays

Definition

A Costas Array C (of order n) is an n x n grid containing n dots
such that

@ Each row and each column contains precisely one dot
(permutation matrix)

@ All displacement vectors (i.e. vector between two dots) are
distinct
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Costas Arrays

Definition

A Costas Array C (of order n) is an n x n grid containing n dots
such that

@ Each row and each column contains precisely one dot
(permutation matrix)

@ All displacement vectors (i.e. vector between two dots) are
distinct

In other words, the autocorrelation function of C is always either
Oor1.
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Costas Arrays

Construction

@ Applications in radar and sonar
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Costas Arrays

Construction

@ Applications in radar and sonar

@ The number of Costas Arrays of a given order is not
known. In fact, the existence of Costas Arrays for all nis an
open problem.
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Costas Arrays

Construction

@ Applications in radar and sonar

@ The number of Costas Arrays of a given order is not
known. In fact, the existence of Costas Arrays for all nis an
open problem.

@ However, there are some constructions.
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Costas Arrays

Definition (Welch Array)

Let a be a primitive element of Fp, p a prime. Define a
permutation = on {1..0 — 1} by

n(i) =o'

Then = is a Costas permutation
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Costas Arrays

Definition (Welch Array)

Let a be a primitive element of Fp, p a prime. Define a
permutation = on {1..0 — 1} by

n(i) =o'

Then = is a Costas permutation

Definition (Golomb Array)

Let o and 3 be primitive elements of Fq, g a power of a prime.
Define a permutation = on {1..qg — 2} by

ai + ﬁﬂ(i) -1

Then 7 is a Costas permutation. Denote this by G, 3
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Cross-correlation

Suppose we had two Golomb arrays of the same order, G, g
and G,r gs, where (r,g—1) =(s,q—1) =1.
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Cross-correlation

Suppose we had two Golomb arrays of the same order, G, g
and G, gs, where (r,q—1) =(s,q—1) = 1. Then the
maximum cross-correlation between the two arrays can be
shown to equal the number of roots of the polynomial
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Cross-correlation

Suppose we had two Golomb arrays of the same order, G, g
and G, gs, where (r,q—1) =(s,q—1) = 1. Then the
maximum cross-correlation between the two arrays can be
shown to equal the number of roots of the polynomial

Frs(z):=2"+(1—-2)° -1

inIFg.

John Sheekey On the roots of a polynomial connected with Costas Arrays



Cross-correlation

Suppose we had two Golomb arrays of the same order, G, g
and G, gs, where (r,q—1) =(s,q—1) = 1. Then the
maximum cross-correlation between the two arrays can be
shown to equal the number of roots of the polynomial

Frs(z):=2"+(1—-2)° -1

inIFg.

Conjecture (Rickard)

F. s has at most %1 roots in Fy
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.
°®

F(z)=F(1-2)= —z’F,(1E)
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.
°®

F(z)=F(1-2)= —z’F,(1E)

@ If ais aroot, then 1 — a is a root
@ If a # 0 is aroot, then 1 is a root
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.

°
1

@ If ais aroot, then 1 — a is a root

@ If a # 0 is aroot, then 1 is a root

@ So there is an action by S3 on the roots of the polynomial
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.
°
F(z)=F(1-2)= —z’F,(1E)
@ If ais aroot, then 1 — a is a root
@ If a # 0 is aroot, then 1 is a root
@ So there is an action by S3 on the roots of the polynomial

@ This polynomial also arises in the cross-correlation of
m-sequences, and in the study of APN functions
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Cross-correlation

We consider the case r = s, r odd, and denote by F;.

@ 0 and 1 are roots for all r.
°
F(z)=F(1-2)= —z’F,(1E)
@ If ais aroot, then 1 — a is a root
@ If a # 0 is aroot, then 1 is a root
@ So there is an action by S3 on the roots of the polynomial

@ This polynomial also arises in the cross-correlation of
m-sequences, and in the study of APN functions

@ ltis related to Cauchy-Mirimanoff polynomials
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(Partial) Solution

Lemma

Let r be odd. Let S denote the set of non-zero roots of F, over
Fq.
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(Partial) Solution

Lemma

Let r be odd. Let S denote the set of non-zero roots of F, over
Fq. Suppose x and y are in S, withy # 1.
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(Partial) Solution

Let r be odd. Let S denote the set of non-zero roots of F, over
Fq. Suppose x and y are in S, withy # 1. Then

X 1—x

—eS& €S
y 1—y
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(Partial) Solution

Lemma

Let r be odd. Let S denote the set of non-zero roots of F, over
Fq. Suppose x and y are in S, withy # 1. Then

{ES<:>1;XES
y 1—-y

x and y are roots of F,, so

X' +(1—=x)"=1
y'+Q1-y)=1
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(Partial) Solution

Lemma

Let r be odd. Let S denote the set of non-zero roots of F, over
Fq. Suppose x and y are in S, withy # 1. Then

{ES<:>1;XES
y 1—-y

x and y are roots of F,, so

X' +(1—=x)"=1
y+(1-y) =1
=X —y'=(1-y)-(1-x)

O
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(Partial) Solution

Proof(contd.)
Then § is a root
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(Partial) Solution

Proof(contd.)
Then § is a root

John Sheekey On the roots of a polynomial connected with Costas Arrays



(Partial) Solution

Proof(contd.)
Then § is a root

& (B +0 -3y =1

X4y —x) =y
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(Partial) Solution

Proof(contd.)
Then § is a root

&) +(1-%) =1
SxX +(y-x) =y

ex -y =x-y)
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(Partial) Solution

Proof(contd.)
Then § is a root

&Gy +(1-3) =1

T
><ﬁ
+
<
|
X
I
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(Partial) Solution

Proof(contd.)
Then § is a root

)+ -3)=1
Sx +y-x) =y
X -y =(x-y)
s(1-y)-01-x)=Kx-y
S1=-x)+Kx=-y)=00-y)

r
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(Partial) Solution

Proof(contd.)
Then § is a root

&Gy +(1-3) =1

S (1-y) =1 -x" =
(1 =x)"+(x-y) =(

s (2 + () =1
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(Partial) Solution

Proof(contd.)
Then § is a root

&Gy +(1-3) =1

S (1-y) =1 -x" =
(1 =x)"+(x-y) =(

s (2 + () =1
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(Partial) Solution

Proof(contd.)
Then § is a root

&Gy +(1-3) =1

S (1-y) =1 -x" =
(1 =x)"+(x-y) =(

s (2 + () =1

& =% is aroot of F;
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(Partial) Solution

Applying this result to } and ;, we also have
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(Partial) Solution

Applying this result to } and ;, we also have

Suppose x and y are in S, with y # 1. Then

X X(1_X

-eS& )e S
y x'1—y
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(Partial) Solution

Suppose now that c is any non-root of F;.
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(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set

165 — (x| F(cx) = 0}
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(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set
165 — (x| F(cx) = 0}

Letx € SN1S,

John Sheekey On the roots of a polynomial connected with Costas Arrays



(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set
165 — (x| F(cx) = 0}

Letx € SN 158, i.e. x and cx are both roots of F;.
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(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set
165 — (x| F(cx) = 0}

Letx e SN 158, i.e. x and cx are both roots of F,. Then by the
previous lemma,

1—x
1—cx
and ]
—X
C(1—cx)

are both non-roots of F;
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(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set
165 — (x| F(cx) = 0}

Letx e SN 158, i.e. x and cx are both roots of F,. Then by the
previous lemma,

1—x
1—cx
and ]
—X
C(1—cx)

are both non-roots of F; (as ¢ = < is not a root).
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(Partial) Solution

Suppose now that c is any non-root of F,. Consider the set
165 — (x| F(cx) = 0}

Letx e SN 158, i.e. x and cx are both roots of F,. Then by the
previous lemma,

1—x
1—cx
and ]
—X
C(1—cx)

are both non-roots of F, (as ¢ = < is not a root). Hence for
every element x of SN 158, there is an element 11;;; which is
notin SU LS.
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(Partial) Solution

So if we set ] ]
—X

U
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(Partial) Solution

So if we set
U= { |xeSm S}

we have that |U| = |SN 158],
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(Partial) Solution

So if we set
1—x

1—cx

U={ |xeSﬂ%S}

we have that |U| = |SN 15|, and hence
Uu 3ulsy — 25| < q—1

proving the result:
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(Partial) Solution

So if we set ]
1 _
we have that |U| = |SN 15|, and hence

U={

X xesnls
(0).4 (]

]UUSUlS[—2\S\ <q-1

proving the result:

Ifr is odd and p — 1 does not divide r — 1, then the polynomial

Z'+(1-2) -1

has at most 95" roots in F,.
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Summary

Summary

@ We have proved Rickard’s Conjecture for the case r = s
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Summary

Summary

@ We have proved Rickard’s Conjecture for the case r = s

@ Future work
o r#s?
e Exact number of roots?
e F; irreducible over Z[z]?
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