On a generalization of the Hansen-Mullen conjecture for irreducible polynomials with a fixed coefficient

Georgios Tzanakis

Carleton University

July 21, 2010

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients Dirichlet's Theorem

Background

A generalization of the H-M conjecture Wan's method Variation The generalization Other results

pen questions

Questions about irreducible polynomials with fixed coefficients:

- Estimate their number
- Examine their existence

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients
Dirichlet's Theorem

Background

generalization of the I-M conjecture

Wan's method Variation The generalization Other results

Open questions

Questions about irreducible polynomials with fixed coefficients:

- Estimate their number
- Examine their existence

Two interesting cases:

- Hansen-Mullen conjecture
- Consecutive zero coefficients

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients Dirichlet's Theorem

Background

A generalization of the H-M conjecture

Wan's method Variation The generalization

pen questions

Questions about irreducible polynomials with fixed coefficients:

- Estimate their number
- Examine their existence

Two interesting cases:

- Hansen-Mullen conjecture
- Consecutive zero coefficients

Hansen-Mullen conjecture (proven by Wan)

Let m and n integers with $n \geq 3$, $n \geq m \geq 1$, and $\alpha \in \mathbb{F}_q$. There exists a monic irreducible polynomial of degree n over \mathbb{F}_q with the coefficient of x^{m-1} being α .

On a generalization of the H-M conjecture

 ${\sf Georgios}\ {\sf Tzanakis}$

Introduction

Fixed coefficients Dirichlet's Theorem

Background

A generalization of the H-M conjecture

Wan's method Variation The generalization

Open questions

- Estimate their number
- Examine their existence

Two interesting cases:

- Hansen-Mullen conjecture
- Consecutive zero coefficients

Hansen-Mullen conjecture (proven by Wan)

Let m and n integers with $n \geq 3$, $n \geq m \geq 1$, and $\alpha \in \mathbb{F}_q$. There exists a monic irreducible polynomial of degree n over \mathbb{F}_q with the coefficient of x^{m-1} being α .

Generalization of the Hansen-Mullen conjecture

Do irreducible polynomials exist with any 2 or more coefficients fixed to any elements of \mathbb{F}_a ?

Georgios Tzanakis

ntroduction

Fixed coefficients
Dirichlet's Theorem

Sackground

H-M conjecture Wan's method Variation

nen auestions

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients
Dirichlet's Theorem

Background

H-M conjecture
Wan's method
Variation
The generalization
Other results

pen questions

Bounds for $\pi(n, f, g)$ give the analogue of Dirichlet's theorem for primes in arithmetic progressions.

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients
Dirichlet's Theorem

Background

H-M conjecture
Wan's method
Variation
The generalization

nen questions

Bounds for $\pi(n, f, g)$ give the analogue of Dirichlet's theorem for primes in arithmetic progressions.

For suitable choice of g and f, we get the following:

 $\left| f \right| = 0$ coefficients that can be prescribed to any value

and

On a generalization of the H-M conjecture

Georgios Tzanakis

ntroduction

Fixed coefficients
Dirichlet's Theorem

Background

generalization of the

Wan's method Variation The generalization

on questions

Bounds for $\pi(n, f, g)$ give the analogue of Dirichlet's theorem for primes in arithmetic progressions.

For suitable choice of g and f, we get the following:

 $\left| \left| \right| \right| =$ coefficients that can be prescribed to any value

and

/// = coefficients that can be prescribed to any value

On a generalization of the H-M conjecture

Georgios Tzanakis

ntroduction

Fixed coefficients
Dirichlet's Theorem

Background

generalization of the

Wan's method Variation The generalization

oen questions

Bounds for $\pi(n, f, g)$ give the analogue of Dirichlet's theorem for primes in arithmetic progressions.

For suitable choice of g and f, we get the following:

 $\frac{1}{2}$ = coefficients that can be prescribed to any value

and

/// = coefficients that can be prescribed to any value

More generally,

= coefficients that can be prescribed to any value

On a generalization of the H-M conjecture

Georgios Tzanakis

Introduction

Fixed coefficients
Dirichlet's Theorem

Background

generalization of the

Wan's method Variation The generalization

pen questions

Variation The generalization Other results

Open questions

Definition

Let $f \in \mathbb{F}_q[x]$. A Dirichlet character modulo f, is a map χ from $\mathbb{F}_q[x]$ to \mathbb{C} such that for all $a, b \in \mathbb{F}_q[x]$ we have

- $2 \chi(a)\chi(b) = \chi(ab)$

A generalization of the H-M conjecture

Wan's method Variation The generalization

Onen questions

Definition

Let $f \in \mathbb{F}_q[x]$. A Dirichlet character modulo f, is a map χ from $\mathbb{F}_q[x]$ to \mathbb{C} such that for all $a, b \in \mathbb{F}_q[x]$ we have

- $2 \chi(a)\chi(b) = \chi(ab)$

Consider the sums:

$$c_n(\chi) = \sum_{g \in \mathbb{M}_n} \Lambda(g) \chi(g)$$
 $c_n'(\chi) = \sum_{P \in \mathbb{I}_n} \chi(P)$

A generalization of the H-M conjecture Wan's method

Variation
The generalization

pen questions

Bounds (Weil)

Let $f \in \mathbb{F}_q[x]$ and χ a Dirichlet character modulo f . We have

$$|c_n(\chi)| \le (\deg(f) - 1)q^{n/2},$$

$$c_n(\chi_0) = q^n,$$

and

$$|c_n'(\chi)| \leq \frac{\deg(f)}{n}q^{n/2},$$

 $|c_n'(\chi_0)| \leq |\mathbb{I}_n|.$

A generalization of the H-M conjecture

Wan's method Variation The generalization

pen questions

Let $\alpha \in \mathbb{F}_q^*$, $n \geq m \geq 1$. Consider

$$\begin{split} W &= \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \sum_{P \equiv h \pmod{x^m}} 1 \\ &= \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \left(\sum_{P \in \mathbb{I}_n} \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(P) \overline{\chi(h)} \right) \\ &= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) \sum_{h \in \mathbb{H}_{m-1}} \Lambda(h) \overline{\chi(h)} \sum_{P \in \mathbb{I}_n} \chi(P) \\ &= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) c_{m-1}(\overline{\chi}) c_{n'}(\chi). \end{split}$$

A generalization of the H-M conjecture

Wan's method Variation The generalization

pen questions

Let $\alpha \in \mathbb{F}_q^*$, $n \geq m \geq 1$. Consider

$$W = \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \sum_{P \equiv h \pmod{x^m}} 1$$

$$= \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \left(\sum_{P \in \mathbb{I}_n} \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(P) \overline{\chi(h)} \right)$$

$$= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) \sum_{h \in \mathbb{H}_{m-1}} \Lambda(h) \overline{\chi(h)} \sum_{P \in \mathbb{I}_n} \chi(P)$$

$$= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) c_{m-1}(\overline{\chi}) c_n'(\chi).$$

With the help of the Weil bound, we obtain a lower bound for W.

A generalization of the H-M conjecture

Wan's method Variation The generalization

pen questions

Let $\alpha \in \mathbb{F}_q^*$, $n \geq m \geq 1$. Consider

$$\begin{split} W &= \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \sum_{P \in \mathbb{I}_n \pmod{x^m}} 1 \\ &= \sum_{h \in \alpha \mathbb{H}_{m-1}} \Lambda(h) \left(\sum_{P \in \mathbb{I}_n} \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(P) \overline{\chi(h)} \right) \\ &= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) \sum_{h \in \mathbb{H}_{m-1}} \Lambda(h) \overline{\chi(h)} \sum_{P \in \mathbb{I}_n} \chi(P) \\ &= \frac{1}{\Phi(x^m)} \sum_{\chi \in X_{x^m}} \chi(\alpha) c_{m-1}(\overline{\chi}) c_n'(\chi). \end{split}$$

With the help of the Weil bound, we obtain a lower bound for W. When $q^{n-m+1} \ge (q-1)^2 m^4$, W is positive.

Wan's method

A generalization of the H-M conjecture

Variation
The generalization

nen questions

Let $n \geq m_1 \geq l_1 > m_2 \geq l_2 \cdots > m_r \geq l_r \geq 1$ and $\alpha_1, \cdots, \alpha_r \in \mathbb{F}_q^*$. Set $m = \sum_i m_i$, $l = \sum_i l_i$.

Consider

$$W' = \sum_{h_1 \in \alpha_1 \mathbb{H}_{l_1-1}} \Lambda(h_1) \sum_{h_2 \in \alpha_2 \mathbb{H}_{l_2-1}} \Lambda(h_2) \cdots \sum_{h_r \in \alpha_r \mathbb{H}_{l_r-1}} \Lambda(h_r) \sum_P 1$$

where the last sum is taken over all $P \in \mathbb{I}_n$ such that $P \equiv h_i \pmod{x_i^{m_i}}$.

A generalization of the H-M conjecture

Wan's method
Variation
The generalization

nen questions

Let $n \geq m_1 \geq l_1 > m_2 \geq l_2 \cdots > m_r \geq l_r \geq 1$ and $\alpha_1, \cdots, \alpha_r \in \mathbb{F}_q^*$. Set $m = \sum_i m_i$, $l = \sum_i l_i$.

Consider

$$W' = \sum_{h_1 \in \alpha_1 \mathbb{H}_{l_1-1}} \Lambda(h_1) \sum_{h_2 \in \alpha_2 \mathbb{H}_{l_2-1}} \Lambda(h_2) \cdots \sum_{h_r \in \alpha_r \mathbb{H}_{l_r-1}} \Lambda(h_r) \sum_P 1$$

where the last sum is taken over all $P \in \mathbb{I}_n$ such that $P \equiv h_i \pmod{x_i^{m_i}}$.

//// = zero coefficients

A generalization of the H-M conjecture

Wan's method
Variation
The generalization

nen questions

Let $n \ge m_1 \ge l_1 > m_2 \ge l_2 \cdots > m_r \ge l_r \ge 1$ and $\alpha_1, \cdots, \alpha_r \in \mathbb{F}_q^*$. Set $m = \sum_i m_i$, $l = \sum_i l_i$.

Consider

$$W' = \sum_{h_1 \in \alpha_1 \mathbb{H}_{l_1-1}} \Lambda(h_1) \sum_{h_2 \in \alpha_2 \mathbb{H}_{l_2-1}} \Lambda(h_2) \cdots \sum_{h_r \in \alpha_r \mathbb{H}_{l_r-1}} \Lambda(h_r) \sum_{P} 1$$

where the last sum is taken over all $P \in \mathbb{I}_n$ such that $P \equiv h_i \pmod{x_i^{m_i}}$.

//// = zero coefficients

When 2m - I is less than roughly n, then W' > 0

Wan's method The generalization

Using this result we get the following:

There exists an irreducible polynomial of degree n with r coefficients fixed to any element of \mathbb{F}_q , if at least r-1 of them are among roughly the n/2r most or least significant ones.

A generalization of the H-M conjecture Wan's method

Variation
The generalization
Other results

pen questions

When 2m - l is roughly less than n, then irreducible polynomials of the form below exist.

A generalization of the H-M conjecture Wan's method Variation The generalization

Other results

When 2m - l is roughly less than n, then irreducible polynomials of the form below exist.

Let $\alpha \in \mathbb{F}_q$ and c be a real number such that 0 < c < 1/4. Then there exists an integer n and an irreducible polynomial over \mathbb{F}_q with trace α and a sequence of $\lfloor cn \rfloor$ consecutive zero coefficients.

 $\frac{n}{4}$ = roughly $\frac{n}{4}$ zero coefficients

Georgios Tzanakis

ntroduction

Fixed coefficients Dirichlet's Theorem

Background

H-M conjecture
Wan's method
Variation
The generalization
Other results

Open questions

 Can the Hansen-Mullen conjecture be generalized in two (or more) coefficients without restrictions?

Georgios Tzanakis

ntroduction

Fixed coefficients Dirichlet's Theorem

Background

H-M conjecture
Wan's method
Variation
The generalization

Open questions

- Can the Hansen-Mullen conjecture be generalized in two (or more) coefficients without restrictions?
- Can we estimate the number of the polynomials whose existence we examined?

