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Definitions and Background

For 3 € Fan the k' trace is denoted by Ty(3), and defined as

T(B) = > CLICLENYCLS
0<ii<ip<---<ix<n—1
F(n,ti, -+ ,t/): the number of 3 € Fan where T;(5) =t;, 1 <i<r.

Let f(x) = x" 4+ ap_1x"1 + .- 4+ a1x + ap be a polynomial of degree
n over FF».

a,_;i is the it trace of f, written as T;(f) = a,_;, for 1 <i < n.
P(n,ty,--- ,t;): the set of irreducible polynomials of degree n over [y,

where a,_; = t; € Fp. Let N(n, ty,--- ,t,) = |P(n, t1,--- , t/)|.
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Previous Results

Let N(n,q) be the number of monic irreducible polynomials of degree

n over Fy[x]. Then

q" = Z dN(n, q).
d|n
By Mobius inversion formula we have
1 n d 1 n
N(nq)=—> u (3) g’ == u(d)gs.
d|n d|n
The number of irreducible polynomials with the first coefficient prescribed

is given by Carlitz (1952).
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Let n be an even integer, and a = b (mod 4) be shortened to a = b.

Then Cattell, Miers, Ruskey, Serra, and Sawada, (2003) proved that

nN(n,1,0) = Zu F(n/d,1,0) —l—Zu F(n/d,1,1),

d|n

d=3
nN(n,1,1) = Z” F(n/d,1,1)+ Y u(d)F(n/d,1,0),
d 1 dd;3
nN(n,0,0) = > u(d)F(n/d,0,0)— > p(d)22 ",
dln d|n,n/deven
d odd d odd
nN(n,0,1) = Y u(d)F(n/d,0,1)— Y p(d)22a ",
d'odd T
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Also F(n, t,t) = 272 + G(n, t1, t2), and for n = 2m we have

Table: Values of G(n, t1, t2)

m (mod 4) | (0,0) (0,1) (1,0) (1,1)
0 —om=11 pm-1 0 0
1 0 0 —om-1 1 pm-1
2 om—1 1 _om-1 0 0
3 0 0 2m—T [ —om-T

The number of irreducible polynomials of even degree n over F, with given

first three coefficients is considered by Yucas and Mullen (2004) . For odd

degree n Fitzgerald and Yucas (2003) consider the same problem.
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Generalizing Mobius Inversion Formula

For our study we proved the following generalization of Mobius Inversion.

Suppose a = b (mod 8) be written as a = b. Let A(n), B(n),

a(n), B(n), v(n), and 6(n) be functions defined on N. Then

A(n) =

B(n) =

n=3s(" )+Zv( )+Zﬁ( )+>a(5).

if and only if

el )+Zﬁ( )+Zv( )+25( )

d|n
d=1

28(g)+ (g )+Z5( )+ZW(S)’

dln d|n
d=1 d3 d5 d=7

=2 (G 2 (@2 (3)+ 28 ()

dln d|n
d=1 d=3 d 5 d 7

d|n dln
d=1 d 3 d 5 d=7

C(n), D(n),

4
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(Countinued)
= ;u(d)A (3)+ ;u(d)s (3)+ ;M(d)c (5)+ ;M(d)o (%),
m pm m ot
n)=§;u(d)l3( )+Zu A(S)+§;u(d)0(§)+§;u(d)C(Z),
= gu(d)C( ) +Zu(d D(2) +dd_zju(d)A(§) +§u(d)3 (%)
= 00 (2)+ Eca (2 + T (2) + on(2)
& I & &

In general, we proved that when modulo is 2 where j > 3, we have 2j—1
functions in terms of some other 27~1 functions. For our case, j = 3.
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Computing F(n, ty, t, t3, ts)

Let B € Fan and f € Fo[x] of degree n/d be the minimal polynomial of (3.
Then the it trace of 3 is the coefficient of x"~ in 9, or T;(3) = T;(f9),
where 1l < i < n.

Lemma

Let d > 1 be an integer, and f € Fy[x]. Then
() Ta(f) = dTu(f);

() Ta(r) = () Ti() + 9T
(i) Ta(f9) ( )Tl ) + dT3(f);
(iv) Ta(f9) = < >T1 < ) 2(f) + dT4(f).

4
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Lemma

Let d be a given integer such that d > 1. For 0 < j < 7 we shorten d = j
(mod 8) as d =j. If f € Fy[x] is a given polynomial, then for 0 < j <7
the coefficients T;(f9) where i = 1,2,3,4 are given in the following table.

Table: Different coefficients of ¢

d=i | T.(F7) T2(f%) T3(f9) Ta(f)

d=0 0 0 0 0

d=1| Ti(f) T>(f) Ts(f) T.(f)

d=2 0 T1(f) 0 T2(f)

d=3 Tl(f) T1(f)+ Tz(f) T1(f)-|—T3(f) T2(f)+ T4(f)
d=4 0 0 0 T.(f)

d=5 Tl(f) Tz(f) T3(f) Tl(f)+ T4(f)
d=6 0 T1(f) 0 T1(f) + To(f)
d=7 Tl(f) T1(f)+ Tz(f) T1(f)-|—T3(f) T1(f)-|— T2(f)+ T4(f)
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Theorem

Let n be an even positive integer and t; € [Fp, for 1 < i < 4. Also let
a= b (mod 8) be shortened as a = b. Then the number of elements
B € Fon with prescribed first four traces T;(3) = t; can be given by

7
n
F(") tl) t27 t37 t4) = Z U 9 ‘Sl| )

i=0 d|n
d=i

where the sets Sg, . ..,S7 are defined as:
So= {feP(n/d):t=0,i=1,23,4},

S {f € P(n/d): Ti(f)=t;, i =1,2,3,4},
So= {feP(n/d):t1=1t3=0, Ti(f) = tp, To(f) = ta},
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Theorem
(Continued)

Ss= {feP(n/d): Tai(f) =t1, Ta(f)+ Ti(f) = t;, i = 2,3,
T2(f) T T4(f) = t4},

Sa= {feP(n/d):t;=0,i=1,23, T1(f) = t4},

Ss= {feP(n/d): Tif)=t;, i =1,2,3, T1(f) + Ta(f) = ta},

Se= {feP(n/d):ti=t3=0, Ti(f) = to, T1(f) + To(f) = ta},

Sr= {f € P(n/d): Ti(f) = t1, Ta(f) + Ti(f) = t;, i = 2,3,
T1(f) + To(f) + Ta(f) = ta}.

We use the last theorem and our generalization of Mobius Inversion

formula to find the number N(n, t1, to, t3, ts).
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The Formula For N(n, ty, to, t3, ts)

For even degree n, different values of N(n, ty, to, t3, t4) are given as

(YnN(n,1,1,1,0) = Z”

d 1

+Zu

d 5

ZM

nN(n,1,0,0,1)

+Zu

nN(n,1,1,1,1) = ZN

d 1

+Zu

d 5

)F(n/d,1,1,1,0) + »  u(d)F(n/d,1,0,0,0)

din
d=3

)F(n/d,1,1,1,1) + Y " pu(d)F(n/d,1,0,0,1),

d|n
d=7

)F(n/d,1,0,0,1) + Y u(d)F(n/d,1,1,1,0)

d|n
d=3

)F(n/d,1,0,0,0) + Y u(d)F(n/d,1,1,1,1),
d|n
d=7
)F(n/d,1,1,1,1) + > pu(d)F(n/d,1,0,0,1)

din
d=3

)F(n/d,1,1,1,0) + Y " u(d)F(n/d,1,0,0,0),

d|n
d=7
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(Continued)
nN(n,1,0,0,0) = Y u(d)F(n/d,1,0,0,0)+ Y u(d)F(n/d,1,1,1,1)
b0} s
+ Y _ u(d)F(n/d,1,0,0,1) + > " u(d)F(n/d,1,1,1,0),
A vy
(ii)nN(n,0,0,1,0) = Y pu(d)F(n/d,0,0,1,0),
ddl‘)Z'd
(i) nN(n,0,0,1,1) = Y p(d)F (n/d,0,0,1,1),
ddz‘ag’d
(iv)nN(n,1,1,0,0) = Z,u(d (n/d,1,1,0,0) +Z,u(d (n/d,1,0,1,0)
d 1 ddL:3
+ > u(d)F(n/d,1,1,0,1) + > pu(d)F(n/d,1,0,1,1),
d=5 ddL:n7
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(Continued)
nN(n,1,0,1,1) = Y u(d)F(n/d,1,0,1,1)+ Y u(d)F(n/d,1,1,0,0)
d=1 dd‘_3
+ Zu(d) (n/d,1,0,1,0)+ > u(d)F(n/d,1,1,0,1),
dd‘_7
nN(n,1,1,0,1) = Zp(d (n/d,1,1,0,1) + > pu(d)F(n/d,1,0,1,1)
dd‘*li
+ Zu(d (n/d,1,1,0,0)+ > u(d)F(n/d,1,0,1,0),
iy
nN(n,1,0,1,0) = Zp(d (n/d,1,0,1,0)+ > pu(d)F(n/d,1,1,0,1)
d 1 dd‘_3
+ > u(d)F(n/d,1,0,1,1) + > u(d)F(n/d,1,1,0,0).
d|n
d=5 d=7
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Theorem

(Continued) In the following cases, a = b represents a = b (mod 4).

(v)nN(n,0,1,1,1) = > u(d)F(n/d,0,1,1,1) + » _ u(d)F(n/d,0,1,1,0),
dd;nl ddL:n3
nN(n,0,1,1,0) = > u(d)F(n/d,0,1,1,0)+ > pu(d)F(n/d,0,1,1,1),
dd;nl ddL:n3
(vi) nN(n,0,0,0,0) = > u(d)F(n/d,0,0,0,0)— > u(d)F(n/2d,0,0),
S alngover
(vii) nN(n,0,0,0,1) = > u(d)F(n/d,0,0,0,1) = > u(d)F(n/2d,0,0),
ddggld ¢ ‘g’ fdef"
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Theorem
(Continued) and finally,

(viii) nN(n,0,1,0,0) = Zp(d (n/d,0,1,0,0)— > u(d)F(n/2d,1,0)
d 1 d\d iven

+ Zu(d (n/d,0,1,0,1) — > u(d)F(n/2d,1,1),
d*3 d\d ;vsn

N(n,0,1,0,1)

Zp(d (n/d,0,1,0,1) — > u(d)F(n/2d,1,1)

d|n, B even

d 1 d=1
+ > u(d)F(n/d,0,1,0,0)— > u(d)F(n/2d,1,0).
dd;n3 d\d ;ven
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Theorem
(Continued) and finally,

(viii) nN(n,0,1,0,0) = Zp(d (n/d,0,1,0,0)— > u(d)F(n/2d,1,0)
d 1 d\d iven

+ Zu(d (n/d,0,1,0,1) — > u(d)F(n/2d,1,1),
d*3 d\d ;vsn

N(n,0,1,0,1)

Zp(d (n/d,0,1,0,1) — > u(d)F(n/2d,1,1)

d|n, B even

d 1 d=1
+ > u(d)F(n/d,0,1,0,0)— > u(d)F(n/2d,1,0).
dd;n3 d\d ;ven
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Cosets of Fy in Fon

Let n = 4/. For a given o € [F5 the linear functional L, : Fy — > is
defined as L, (8) = Ty(ap), for all 5 € Fy. We define

Wo = Ker(Ty) = {8 € Fy | To(5) = 0},
and Wi(y) ={B € Fy | Ti(B+7) = Ti(B) + Ti(7)}, for i =1,...,4.

For v € Fan there exist three possibilities for W;(y), where i = 2,3, 4.
Either W;(v) = Fy, or Wi(y) = Wp, or Wj(~) is a hyperplane different
that Wy. In total there exist 27 different cases. We proved that some of

these cases are possible. We divide them into three groups, based on W5.
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Table: Group one, Wh(y) = Fy

Ws Fo Wo | W5 # W, Fo
Wy
F Cat A | N/A N/A
Wo Cat A; | N/A N/A
Wy # W, Fao Cat A; N/A N/A

Table: Group two, Ws(v) = Wo

Wil m | W | Wa £ W, By
Wy
Fy N/A N/A N/A
Wo Cat By | Cat ¢4 N/A
W, 7é Wo, o Cat B, | Cat G, N/A
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Table: Group three, Wa(v) # Wp, Fy

Ws Fo Wo W3 # Wo, Fy
Wy
T N/A | NJA N/A
Wo Cat F; | Cat Dy Cat E;
W, 7& Wo, o Cat F, | Cat Dy Cat E

For each category we have some conditions on v € Fon. For example, a

coset v+ Fyr isin Dy iff 4 = v+ ’y2l + 722’ + 723/ = 1 and either
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For v € Fyn the coset v + F, is in one of the 13 categories. Then we
can compute different traces of an element v + 3 from the coset v + [y,
where 3 € F,. For example if the coset v + Fo is in category Dy, the

traces of an element v + 3 are given in the following table.

Table: Traces in Category Dy

B € Fy TN g +9) | TB+7) | o6+ | TalB+7)
BeWan Wo T1(7) T2(7) T5(7) Ta(7)
B e We\ (Won Wh) T1(7) T2(7) Ts(y) +1 Ta(7)
B € Wo\ (Won Wh) Ti(7) Ta(y) +1 T3(7) Ta(7)
B € Fy\ (WaU W) Ti(7) (V) +1 ] T3(y)+1 Ta(7)
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In different categories T;(y+ ), 1 <i <4, is in terms of T;(y), which is
either zero or one. To complete the study, we need to know in each
category for how many of the elements v we have T;(y) =0, and

Ti(y) = 1. We expect that T;(~y) depends on m, or /, where n =2m = 4/.
Once the conditions are obtained one is able to compute the the exact
value of N(n, ty, to, t3, ts), where n = 4/. Similar results to these studies

are then needed for the case n = 4/ 4 2.
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An Approximation of N(n, t1, tp, t3, ts)

We have 16 cases for (t1, to, t3, t4). In our main theorem these 16 cases
are divided to 8 groups, and each group has some of the cases of

(t1, to, t3, ta) that are connected to each other. Then for different groups
the formulas for the number N(n, t1, tp, t3, t4) are given in terms of
F(n/d, t}, ty, t5,t,)'s where d | n, and (t;, t,, t3, t;) is from the same
group as (t1, to, t3, ta). Assume that

it i >4

’ / ’ ’ 2
Fln/d,ti, t2, 13, 1) = { 0 otherwise.
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We let n = 2kp k... p. ks where kg, ..., ks > 1, and p1,. .., ps are odd
prime divisors of n. Assume that S; = {p1,...,ps}, and for 2 < g < s let
Sq=1{d: d|n,dis the product of exactly g distinct odd primes p; € S}
For the first 12 cases of (t1, t, t3, t4) which are in groups (i) to (v), the

number N(n, t1, tp, t3, t4) can be given as

1 S
N(n,t1, t2, 13, ta) = — 2" +3 "N "[n/d > 4](-1)927 "
q=1ldeS,
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For (t1, to, t3, t4) from groups (vi) we have (t1, tp, t3, t4) = (0,0,0,0) and

1 S
N(n,0,0,0,0) = = [2"*4+> > [n/d > 4](—1)727¢*
" g=1deS,
1
- Z|(F n/dOO—i—ZZ 1)7F(n/2d,0,0)
n q=1deS,

In group (vii) we have (t1, to, t3,ts) = (0,0,0,1) and

(F(n/d,0,1) +ZZ 1)9F(n/2d,0,1)

g=1deS,

N(n,0,0,0,1) = % (2”4 + Z > [n/d > 4](~1)92"/9~*
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Finally in group (viii), if (t1, t2, t3, t4) = (0,1,0,0) then the estimate for

N(n, t1, to, t3, ta) can be given as

2" 4 Z > (=1)%n/d > 4]2"/9~* — F(n/2,1,0)

g=1deS,

S|

S|

(—-1)9([d = 1]F(n/2d,1,0) + [d = 3]F(n/2d,1,1)) | ,
q= 1d€5q
and if (t1, t, t3, ta) = (0,1,0, 1) the estimate for N(n, t1, to, t3, ta) is

274N (—1)9[n/d = 412777 — F(n/2,1,1)

S|
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Table: Different values of N(16, t1, to, t3, ts), where t; = 0, 1.

Case No. | (ti,t2, ts, ta) | our estimate | N(16, t1, to, t3, ta)
1 (1,1,1,0) 256 260
2 (1,0,0,1) 256 260
3 (1,1,1,1) 256 250
g (1,0,0,0) 256 252
5 (0,0,1,0) 256 256
6 (0,0,1,1) 256 256
7 (1,1,0,0) 256 256
8 (1,0,1,1) 256 256
9 (1,1,0,1) 256 256
10 (1,0,1,0) 256 256
11 (0,1,1,1) 256 264
1 (0,1,1,0) 256 264
13 (0,0,0,0) 252.5 240
14 (0,0,0,1) 2515 256
15 (0,1,0,0) 250 248
16 (0,1,0,1) 252 243
Total 4080 4080
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Table: Different values of N(18, t1, to, t3, ts), where t; = 0, 1.

Case No. | (ti,t2, t3, ta) | our estimate | N(18, t, to, t3, ta)
1 (1,1,1,0) 910 917
2 (1,0,0,1) 910 896
3 (1,1,1,1) 910 917
4 (1,0,0,0) 910 896
5 (0,0,1,0) 910 921
6 (0,0,1,1) 910 892
7 (1,1,0,0) 910 927
8 (1,0,1,1) 910 17
9 (1,1,0,1) 910 893
10 (1,0,1,0) 910 917
11 (0,1,1,1) 910 921
2 (0,1,1,0) 910 892
13 (0,0,0,0) 906.89 913
14 (0,0,0,1) 9035 900
15 (0,1,0,0) 906.44 913
16 (0,1,0,1) 906.44 900
Total 14543.27 14532
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Future Directions

(1) A natural way to extend this problem is completing the counting
argument to find N(n, t1, to, t3, ts).

(2) Studying the number N(n, t1, t, t3, t4), where n is an odd number.
(3) Change the finite field to a general field Fq

(4) Studying the number N(n, t1,..., tx), where 4 < k < n.
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Thank You
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