The Number of Irreducible Polynomials of Even Degree over \mathbb{F}_2 with the First Four Coefficients Given

B. Omidi Koma
School of Mathematics and Statistics
Carleton University
bomidi@math.carleton.ca

July 22, 2010

- Introduction
 - Definitions and Background
 - Previous Results
- Que Generalizing Möbius Inversion Formula
- **3** Computing $F(n, t_1, t_2, t_3, t_4)$
- 4 The Formula For $N(n, t_1, t_2, t_3, t_4)$
- **6** Cosets of \mathbb{F}_{2^l} in \mathbb{F}_{2^n}
- 6 An Approximation of $N(n, t_1, t_2, t_3, t_4)$
- Some Outputs of Our Approximation
- 8 Future Directions
- References

Definitions and Background

For $\beta \in \mathbb{F}_{2^n}$ the k^{th} trace is denoted by $T_k(\beta)$, and defined as

$$T_k(\beta) = \sum_{0 \leq i_1 < i_2 < \dots < i_k \leq n-1} \beta^{i_1} \beta^{i_2} \cdots \beta^{i_k}.$$

 $F(n, t_1, \dots, t_r)$: the number of $\beta \in \mathbb{F}_{2^n}$ where $T_i(\beta) = t_i$, $1 \le i \le r$.

Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial of degree

n over \mathbb{F}_2 .

 a_{n-i} is the i^{th} trace of f, written as $T_i(f) = a_{n-i}$, for $1 \le i \le n$.

 $P(n, t_1, \dots, t_r)$: the set of irreducible polynomials of degree n over \mathbb{F}_2 ,

where $a_{n-i}=t_i\in\mathbb{F}_2$. Let $N(n,t_1,\cdots,t_r)=|P(n,t_1,\cdots,t_r)|$.

Previous Results

Let N(n,q) be the number of monic irreducible polynomials of degree

n over $\mathbb{F}_q[x]$. Then

$$q^n = \sum_{d|n} dN(n,q).$$

By Möbius inversion formula we have

$$N(n,q) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d = \frac{1}{n} \sum_{d|n} \mu(d) q^{\frac{n}{d}}.$$

The number of irreducible polynomials with the first coefficient prescribed

is given by Carlitz (1952).

Let *n* be an even integer, and $a \equiv b \pmod{4}$ be shortened to $a \equiv b$.

Then Cattell, Miers, Ruskey, Serra, and Sawada, (2003) proved that

$$\begin{array}{ll} \mathit{nN}(n,1,0) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(n/d,1,0) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(n/d,1,1), \\ \mathit{nN}(n,1,1) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(n/d,1,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(n/d,1,0), \\ \mathit{nN}(n,0,0) & = & \sum_{\substack{d \mid n \\ d \text{ odd}}} \mu(d) \mathit{F}(n/d,0,0) - \sum_{\substack{d \mid n, n/d \text{ even} \\ d \text{ odd}}} \mu(d) 2^{\frac{n}{2d}-1}, \\ \mathit{nN}(n,0,1) & = & \sum_{\substack{d \mid n \\ d \text{ odd}}} \mu(d) \mathit{F}(n/d,0,1) - \sum_{\substack{d \mid n, n/d \text{ even} \\ d \text{ odd}}} \mu(d) 2^{\frac{n}{2d}-1}. \end{array}$$

Also $F(n, t_1, t_2) = 2^{n-2} + G(n, t_1, t_2)$, and for n = 2m we have

Table: Values of $G(n, t_1, t_2)$

m (mod 4)	(0,0)	(0,1)	(1,0)	(1, 1)
0	-2^{m-1}	2^{m-1}	0	0
1	0	0	-2^{m-1}	2^{m-1}
2	2^{m-1}	-2^{m-1}	0	0
3	0	0	2^{m-1}	-2^{m-1}

The number of irreducible polynomials of even degree n over \mathbb{F}_2 with given first three coefficients is considered by Yucas and Mullen (2004). For odd degree n Fitzgerald and Yucas (2003) consider the same problem.

Generalizing Möbius Inversion Formula

For our study we proved the following generalization of Möbius Inversion.

Theorem

Suppose $a \equiv b \pmod 8$ be written as $a \equiv b$. Let A(n), B(n), C(n), D(n), $\alpha(n)$, $\beta(n)$, $\gamma(n)$, and $\delta(n)$ be functions defined on \mathbb{N} . Then

$$A(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \alpha\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \beta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \gamma\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \delta\left(\frac{n}{d}\right),$$

$$B(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \beta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \alpha\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \delta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \gamma\left(\frac{n}{d}\right),$$

$$C(n) = \sum_{\substack{d \mid n \\ d=1}} \gamma\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=3}} \delta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=5}} \alpha\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=7}} \beta\left(\frac{n}{d}\right),$$

$$D(n) = \sum_{\substack{d \mid n \\ d=1}} \delta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=3}} \gamma\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=5}} \beta\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d=7}} \alpha\left(\frac{n}{d}\right),$$

if and only if

(Countinued)

$$\alpha(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) A\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) B\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) C\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) D\left(\frac{n}{d}\right),$$

$$\beta(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) B\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) A\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) D\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) C\left(\frac{n}{d}\right),$$

$$\gamma(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) C\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) D\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) A\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) B\left(\frac{n}{d}\right),$$

$$\delta(n) = \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) D\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) C\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) B\left(\frac{n}{d}\right) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) A\left(\frac{n}{d}\right).$$

In general, we proved that when modulo is 2^{j} , where j > 3, we have 2^{j-1} functions in terms of some other 2^{j-1} functions. For our case, j = 3.

Computing $F(n, t_1, t_2, t_3, t_4)$

Lemma

Let $\beta \in \mathbb{F}_{2^n}$ and $f \in \mathbb{F}_2[x]$ of degree n/d be the minimal polynomial of β . Then the i^{th} trace of β is the coefficient of x^{n-i} in f^d , or $T_i(\beta) = T_i(f^d)$, where $1 \le i \le n$.

Lemma

Let $d \geq 1$ be an integer, and $f \in \mathbb{F}_2[x]$. Then

(i)
$$T_1(f^d) = dT_1(f)$$
;

(ii)
$$T_2(f^d) = {d \choose 2} T_1(f) + dT_2(f);$$

(iii)
$$T_3(f^d) = \binom{d}{3} T_1(f) + dT_3(f);$$

(iv)
$$T_4(f^d) = \begin{pmatrix} d \\ 4 \end{pmatrix} T_1(f) + \begin{pmatrix} d \\ 2 \end{pmatrix} T_2(f) + dT_4(f).$$

Lemma

Let d be a given integer such that $d \ge 1$. For $0 \le j \le 7$ we shorten $d \equiv j \pmod 8$ as $d \equiv j$. If $f \in \mathbb{F}_2[x]$ is a given polynomial, then for $0 \le j \le 7$ the coefficients $T_i(f^d)$ where i = 1, 2, 3, 4 are given in the following table.

Table: Different coefficients of f^d

$d \equiv i$	$T_1(f^d)$	$T_2(f^d)$	$T_3(f^d)$	$T_4(f^d)$
$d\equiv 0$	0	0	0	0
$d\equiv 1$	$T_1(f)$	$T_2(f)$	$T_3(f)$	$T_4(f)$
$d\equiv 2$	0	$T_1(f)$	0	$T_2(f)$
<i>d</i> ≡ 3	$T_1(f)$	$T_1(f) + T_2(f)$	$T_1(f)+T_3(f)$	$T_2(f)+T_4(f)$
$d \equiv 4$	0	0	0	$T_1(f)$
$d \equiv 5$	$T_1(f)$	$T_2(f)$	$T_3(f)$	$T_1(f)+T_4(f)$
<i>d</i> ≡ 6	0	$T_1(f)$	0	$T_1(f)+T_2(f)$
<i>d</i> ≡ 7	$T_1(f)$	$T_1(f) + T_2(f)$	$T_1(f)+T_3(f)$	$T_1(f) + T_2(f) + T_4(f)$

Let n be an even positive integer and $t_i \in \mathbb{F}_2$, for $1 \le i \le 4$. Also let $a \equiv b \pmod{8}$ be shortened as $a \equiv b$. Then the number of elements $\beta \in \mathbb{F}_{2^n}$ with prescribed first four traces $T_i(\beta) = t_i$ can be given by

$$F(n, t_1, t_2, t_3, t_4) = \sum_{i=0}^{l} \bigcup_{\substack{d \mid n \\ d \equiv i}} \frac{n}{d} \cdot |S_i|,$$

where the sets S_0, \ldots, S_7 are defined as:

$$S_0 = \{ f \in P(n/d) : t_i = 0, i = 1, 2, 3, 4 \},$$

$$S_1 = \{ f \in P(n/d) : T_i(f) = t_i, i = 1, 2, 3, 4 \},$$

$$S_2 = \{ f \in P(n/d) : t_1 = t_3 = 0, T_1(f) = t_2, T_2(f) = t_4 \},$$

(Continued)

$$S_{3} = \begin{cases} f \in P(n/d) : T_{1}(f) = t_{1}, \ T_{1}(f) + T_{i}(f) = t_{i}, \ i = 2, 3, \\ T_{2}(f) + T_{4}(f) = t_{4} \end{cases},$$

$$S_{4} = \begin{cases} f \in P(n/d) : t_{i} = 0, \ i = 1, 2, 3, \ T_{1}(f) = t_{4} \end{cases},$$

$$S_{5} = \begin{cases} f \in P(n/d) : T_{i}(f) = t_{i}, \ i = 1, 2, 3, \ T_{1}(f) + T_{4}(f) = t_{4} \end{cases},$$

$$S_{6} = \begin{cases} f \in P(n/d) : t_{1} = t_{3} = 0, \ T_{1}(f) = t_{2}, \ T_{1}(f) + T_{2}(f) = t_{4} \end{cases},$$

$$S_{7} = \begin{cases} f \in P(n/d) : T_{1}(f) = t_{1}, \ T_{1}(f) + T_{i}(f) = t_{i}, \ i = 2, 3, \\ T_{1}(f) + T_{2}(f) + T_{4}(f) = t_{4} \end{cases}.$$

We use the last theorem and our generalization of Möbius Inversion

formula to find the number $N(n, t_1, t_2, t_3, t_4)$.

The Formula For $N(n, t_1, t_2, t_3, t_4)$

Theorem

For even degree n, different values of $N(n, t_1, t_2, t_3, t_4)$ are given as

$$\begin{array}{lll} (i) \ nN(n,1,1,1,0) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,1,1,1,0) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) F(n/d,1,0,0,0) \\ & + & \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) F(n/d,1,1,1,1) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) F(n/d,1,0,0,1), \\ & nN(n,1,0,0,1) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,1,0,0,0,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) F(n/d,1,1,1,0) \\ & + & \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) F(n/d,1,0,0,0) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) F(n/d,1,1,1,1), \\ & nN(n,1,1,1,1) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,1,1,1,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) F(n/d,1,0,0,0), \\ & + & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,1,1,1,1,0) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) F(n/d,1,0,0,0), \end{array}$$

(Continued)

$$\begin{array}{lll} \mathit{nN}(\mathit{n},1,0,0,0) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(\mathit{n/d},1,0,0,0) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(\mathit{n/d},1,1,1,1) \\ & + & \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) \mathit{F}(\mathit{n/d},1,0,0,1) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) \mathit{F}(\mathit{n/d},1,1,1,0), \\ (\mathit{iii}) \, \mathit{nN}(\mathit{n},0,0,1,0) & = & \sum_{\substack{d \mid n \\ d \, o \, d \, d}} \mu(d) \mathit{F}\left(\mathit{n/d},0,0,1,0\right), \\ (\mathit{iii}) \, \mathit{nN}(\mathit{n},0,0,1,1) & = & \sum_{\substack{d \mid n \\ d \, o \, d \, d}} \mu(d) \mathit{F}\left(\mathit{n/d},0,0,1,1\right), \\ (\mathit{iv}) \, \mathit{nN}(\mathit{n},1,1,0,0) & = & \sum_{\substack{d \mid n \\ d \, \equiv 1}} \mu(d) \mathit{F}\left(\mathit{n/d},1,1,0,0\right) + \sum_{\substack{d \mid n \\ d \, \equiv 3}} \mu(d) \mathit{F}\left(\mathit{n/d},1,1,0,1\right), \\ & + & \sum_{\substack{\mu \mid n \\ d \, \equiv 1}} \mu(d) \mathit{F}\left(\mathit{n/d},1,1,0,1\right) + \sum_{\substack{\mu \mid n \\ d \, \equiv 3}} \mu(d) \mathit{F}\left(\mathit{n/d},1,1,0,1,1,1,1\right), \\ \end{array}$$

(Continued)

$$\begin{array}{lll} \mathit{nN}(\mathit{n},1,0,1,1) & = & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,0) + \\ & + & \sum_{\substack{d \mid n \\ d \equiv 5}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,0) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) \mathit{F}(\mathit{n/d},1,1,0,1), \\ & + & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(\mathit{n/d},1,1,0,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(\mathit{n/d},1,1,0,0) + \sum_{\substack{d \mid n \\ d \equiv 7}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,0), \\ & + & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,0) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(\mathit{n/d},1,1,0,0) \\ & + & \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) \mathit{F}(\mathit{n/d},1,0,1,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) \mathit{F}(\mathit{n/d},1,1,0,0). \end{array}$$

(Continued) In the following cases, $a \equiv b$ represents $a \equiv b \pmod{4}$.

$$(v) \, nN(n,0,1,1,1) \quad = \quad \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,0,1,1,1) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) F(n/d,0,1,1,0), \\ nN(n,0,1,1,0) \quad = \quad \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(n/d,0,1,1,0) + \sum_{\substack{d \mid n \\ d \equiv 3}} \mu(d) F(n/d,0,1,1,1), \\ (vi) \, nN(n,0,0,0,0) \quad = \quad \sum_{\substack{d \mid n \\ d \text{ odd}}} \mu(d) F(n/d,0,0,0,0,0) - \sum_{\substack{d \mid n, \frac{n}{d} \text{ even} \\ d \text{ odd}}} \mu(d) F(n/2d,0,0), \\ (vii) \, nN(n,0,0,0,1) \quad = \quad \sum_{\substack{d \mid n \\ d \text{ odd}}} \mu(d) F(n/d,0,0,0,0,1) - \sum_{\substack{d \mid n, \frac{n}{d} \text{ even} \\ d \text{ odd}}} \mu(d) F(n/2d,0,0), \\ \end{cases}$$

d odd

(Continued) and finally,

$$(\textit{viii}) \, \textit{nN}(\textit{n}, 0, 1, 0, 0) = \sum_{\substack{d \mid \textit{n} \\ d \equiv 1}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 1}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 3}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 3}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 1}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 1}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid \textit{n}, \frac{\textit{n}}{\textit{d}} \, \text{even} \\ d \equiv 1}} \mu(\textit{d}) F(\textit{n}/\textit{d}, 1, 0, 0) .$$

(Continued) and finally,

$$(\textit{viii}) \, \textit{nN}(\textit{n}, 0, 1, 0, 0) = \sum_{\substack{d \mid n \\ d \equiv 1}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 1}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 3}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 3}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 1}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 1) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 1}} \mu(d) F(\textit{n}/\textit{d}, 0, 1, 0, 0) - \sum_{\substack{d \mid n, \frac{n}{d} \, \text{even} \\ d \equiv 1}} \mu(d) F(\textit{n}/\textit{d}, 1, 0, 0) .$$

Cosets of \mathbb{F}_{2^l} in \mathbb{F}_{2^n}

Let n=4I. For a given $\alpha\in\mathbb{F}_{2^l}$ the linear functional $L_\alpha:\mathbb{F}_{2^l}\to\mathbb{F}_2$ is defined as $L_\alpha(\beta)=T_{2^l}(\alpha\beta)$, for all $\beta\in\mathbb{F}_{2^l}$. We define

$$W_0=\operatorname{Ker}(T_{2^l})=\{\beta\in\mathbb{F}_{2^l}\mid T_{2^l}(\beta)=0\},$$
 and $W_i(\gamma)=\{\beta\in\mathbb{F}_{2^l}\mid T_i(\beta+\gamma)=T_i(\beta)+T_i(\gamma)\},$ for $i=1,\ldots,4.$

For $\gamma \in \mathbb{F}_{2^n}$ there exist three possibilities for $W_i(\gamma)$, where i=2,3,4.

Either $W_i(\gamma) = \mathbb{F}_{2^i}$, or $W_i(\gamma) = W_0$, or $W_i(\gamma)$ is a hyperplane different that W_0 . In total there exist 27 different cases. We proved that some of these cases are possible. We divide them into three groups, based on W_2 .

Table: Group one, $W_2(\gamma) = \mathbb{F}_{2^l}$

W_4 W_4	$\mathbb{F}_{2'}$	W_0	$W_3 \neq W_0, \mathbb{F}_{2^l}$
$\mathbb{F}_{2'}$	Cat A	N/A	N/A
W_0	Cat A ₁	N/A	N/A
$W_4 \neq W_0, \mathbb{F}_{2'}$	Cat A ₂	N/A	N/A

Table: Group two, $W_2(\gamma) = W_0$

W_4 W_3	\mathbb{F}_{2^l}	W_0	$W_3 \neq W_0, \mathbb{F}_{2^l}$
\mathbb{F}_{2^l}	N/A	N/A	N/A
W_0	Cat B ₁	Cat C ₁	N/A
$W_4 \neq W_0, \mathbb{F}_{2'}$	Cat B ₂	Cat C ₂	N/A

Table: Group three, $W_2(\gamma) \neq W_0$, $\mathbb{F}_{2'}$

W_4 W_4	$\mathbb{F}_{2'}$	W_0	$W_3 \neq W_0, \mathbb{F}_{2^l}$
$\mathbb{F}_{2'}$	N/A	N/A	N/A
W_0	Cat F ₁	Cat D ₁	$Cat\;E_1$
$W_4 \neq W_0, \mathbb{F}_{2^l}$	Cat F ₂	Cat D ₂	$Cat\;E_2$

For each category we have some conditions on $\gamma \in \mathbb{F}_{2^n}$. For example, a coset $\gamma + \mathbb{F}_{2^l}$ is in D_1 iff $\hat{\gamma} = \gamma + \gamma^{2^l} + \gamma^{2^{2^l}} + \gamma^{2^{3^l}} \neq 1$ and either

(i)
$$T_{2^l}(\hat{\gamma})=0$$
 and $\hat{\gamma}^4=\hat{\gamma}+1$, or

(ii)
$$T_{2^l}(\hat{\gamma}) = 1$$
 and $\hat{\gamma}^4 = \hat{\gamma}^2 + \hat{\gamma} + 1$.

For $\gamma \in \mathbb{F}_{2^n}$ the coset $\gamma + \mathbb{F}_{2^l}$ is in one of the 13 categories. Then we can compute different traces of an element $\gamma + \beta$ from the coset $\gamma + \mathbb{F}_{2^l}$, where $\beta \in \mathbb{F}_{2^l}$. For example if the coset $\gamma + \mathbb{F}_{2^l}$ is in category D_1 , the traces of an element $\gamma + \beta$ are given in the following table.

Table: Traces in Category D₁

$\beta \in \mathbb{F}_{2^l}$ $T_i(\beta + \gamma)$	$T_1(eta+\gamma)$	$T_2(\beta+\gamma)$	$T_3(\beta+\gamma)$	$T_4(eta+\gamma)$
$\beta \in W_2 \cap W_0$	$T_1(\gamma)$	$T_2(\gamma)$	$T_3(\gamma)$	$T_4(\gamma)$
$\beta \in W_2 \setminus (W_2 \cap W_0)$	$T_1(\gamma)$	$T_2(\gamma)$	$T_3(\gamma)+1$	$T_4(\gamma)$
$\beta \in W_0 \setminus (W_2 \cap W_0)$	$T_1(\gamma)$	$T_2(\gamma)+1$	$T_3(\gamma)$	$T_4(\gamma)$
$eta \in \mathbb{F}_{2^l} \setminus (W_2 \cup W_0)$	$T_1(\gamma)$	$T_2(\gamma)+1$	$T_3(\gamma)+1$	$T_4(\gamma)$

In different categories $T_i(\gamma + \beta)$, $1 \le i \le 4$, is in terms of $T_i(\gamma)$, which is either zero or one. To complete the study, we need to know in each category for how many of the elements γ we have $T_i(\gamma) = 0$, and $T_i(\gamma) = 1$. We expect that $T_i(\gamma)$ depends on m, or l, where n = 2m = 4l. Once the conditions are obtained one is able to compute the the exact value of $N(n, t_1, t_2, t_3, t_4)$, where n = 4I. Similar results to these studies are then needed for the case n = 4l + 2.

An Approximation of $N(n, t_1, t_2, t_3, t_4)$

We have 16 cases for (t_1, t_2, t_3, t_4) . In our main theorem these 16 cases are divided to 8 groups, and each group has some of the cases of (t_1, t_2, t_3, t_4) that are connected to each other. Then for different groups the formulas for the number $N(n, t_1, t_2, t_3, t_4)$ are given in terms of $F(n/d, t'_1, t'_2, t'_3, t'_4)$'s where $d \mid n$, and (t'_1, t'_2, t'_3, t'_4) is from the same group as (t_1, t_2, t_3, t_4) . Assume that

$$F(n/d, t_1^{'}, t_2^{'}, t_3^{'}, t_4^{'}) = \begin{cases} 2^{\frac{n}{d}-4} & \text{if } \frac{n}{d} \ge 4, \\ 0 & \text{otherwise.} \end{cases}$$

We let $n=2^{k_0}p_1^{k_1}\cdots p_s^{k_s}$, where $k_0,\ldots,k_s\geq 1$, and p_1,\ldots,p_s are odd prime divisors of n. Assume that $S_1=\{p_1,\ldots,p_s\}$, and for $2\leq q\leq s$ let $S_q=\{d:d\mid n,d \text{ is the product of exactly }q\text{ distinct odd primes }p_i\in S_1\}$ For the first 12 cases of (t_1,t_2,t_3,t_4) which are in groups (i) to (v), the number $N(n,t_1,t_2,t_3,t_4)$ can be given as

$$N(n,t_1,t_2,t_3,t_4) = \frac{1}{n} \left(2^{n-4} + \sum_{q=1}^{s} \sum_{d \in S_q} [n/d \ge 4] (-1)^q 2^{n/d-4} \right).$$

For (t_1,t_2,t_3,t_4) from groups (vi) we have $(t_1,t_2,t_3,t_4)=(0,0,0,0)$ and

$$N(n,0,0,0,0) = \frac{1}{n} \left(2^{n-4} + \sum_{q=1}^{s} \sum_{d \in S_q} [n/d \ge 4] (-1)^q 2^{n/d-4} \right) - \frac{1}{n} \left((F(n/d,0,0) + \sum_{q=1}^{s} \sum_{d \in S_q} (-1)^q F(n/2d,0,0) \right).$$

In group (vii) we have $(t_1, t_2, t_3, t_4) = (0, 0, 0, 1)$ and

$$N(n,0,0,0,1) = \frac{1}{n} \left(2^{n-4} + \sum_{q=1}^{s} \sum_{d \in S_q} [n/d \ge 4] (-1)^q 2^{n/d-4} \right) - \frac{1}{n} \left((F(n/d,0,1) + \sum_{q=1}^{s} \sum_{d \in S_q} (-1)^q F(n/2d,0,1) \right).$$

Finally in group (viii), if $(t_1, t_2, t_3, t_4) = (0, 1, 0, 0)$ then the estimate for

 $N(n, t_1, t_2, t_3, t_4)$ can be given as

$$\frac{1}{n}\left(2^{n-4}+\sum_{q=1}^{s}\sum_{d\in S_q}(-1)^q[n/d\geq 4]2^{n/d-4}-F(n/2,1,0)\right)$$

$$- \frac{1}{n} \left(\sum_{q=1}^{s} \sum_{d \in S_q} (-1)^q ([d \equiv 1] F(n/2d, 1, 0) + [d \equiv 3] F(n/2d, 1, 1)) \right),$$

and if $(t_1, t_2, t_3, t_4) = (0, 1, 0, 1)$ the estimate for $N(n, t_1, t_2, t_3, t_4)$ is

$$\frac{1}{n}\left(2^{n-4}+\sum_{q=1}^{s}\sum_{d\in S_q}(-1)^q[n/d\geq 4]2^{n/d-4}-F(n/2,1,1)\right)$$

$$- \frac{1}{n} \left(\sum_{q=1}^{s} \sum_{d \in S_q} (-1)^q ([d \equiv 1] F(n/2d, 1, 1) + [d \equiv 3] F(n/2d, 1, 0)) \right).$$

Table: Different values of $N(16, t_1, t_2, t_3, t_4)$, where $t_i = 0, 1$.

Case No.	(t_1, t_2, t_3, t_4)	our estimate	$N(16, t_1, t_2, t_3, t_4)$
1	(1,1,1,0)	256	260
2	(1,0,0,1)	256	260
3	(1, 1, 1, 1)	256	252
4	(1,0,0,0)	256	252
5	(0,0,1,0)	256	256
6	(0,0,1,1)	256	256
7	(1,1,0,0)	256	256
8	(1,0,1,1)	256	256
9	(1,1,0,1)	256	256
10	(1,0,1,0)	256	256
11	(0,1,1,1)	256	264
12	(0,1,1,0)	256	264
13	(0,0,0,0)	252.5	240
14	(0,0,0,1)	251.5	256
15	(0,1,0,0)	252	248
16	(0,1,0,1)	252	248
Total		4080	4080

Table: Different values of $N(18, t_1, t_2, t_3, t_4)$, where $t_i = 0, 1$.

Case No.	(t_1, t_2, t_3, t_4)	our estimate	$N(18, t_1, t_2, t_3, t_4)$
1	(1, 1, 1, 0)	910	917
2	(1,0,0,1)	910	896
3	(1, 1, 1, 1)	910	917
4	(1,0,0,0)	910	896
5	(0,0,1,0)	910	921
6	(0,0,1,1)	910	892
7	(1,1,0,0)	910	927
8	(1,0,1,1)	910	917
9	(1, 1, 0, 1)	910	893
10	(1,0,1,0)	910	917
11	(0,1,1,1)	910	921
12	(0,1,1,0)	910	892
13	(0,0,0,0)	906.89	913
14	(0,0,0,1)	903.5	900
15	(0,1,0,0)	906.44	913
16	(0,1,0,1)	906.44	900
Total		14543.27	14532

Future Directions

- (1) A natural way to extend this problem is completing the counting argument to find $N(n, t_1, t_2, t_3, t_4)$.
- (2) Studying the number $N(n, t_1, t_2, t_3, t_4)$, where n is an odd number.
- (3) Change the finite field to a general field \mathbb{F}_q
- (4) Studying the number $N(n, t_1, \ldots, t_k)$, where $4 \le k \le n$.

Thank You

References

- L. Carlitz, A theorem of Dickson on irreducible polynomials, *Proc. Amer. Math. Soc.*, **3** (1952), 693-700.
- K. Cattell, C. R. Miers, F. Ruskey, M. Serra and J. Sawada, The number of irreducible polynomials over GF(2) with given trace and subtrace, *J. Combin. Math. Combin. Comput.*, **47** (2003), 31-64.
- S. D. Cohen, Explicit theorems on generator polynomials, *Finite Fields and Their Applications*, **11** (2005), 337-357.
- S. D. Cohen, M. Presern, Primitive polynomials with prescribed second coefficient, *Glasgow Mathematical Journal Trust*, **48** (2006), 281-307.
- S. D. Cohen, Primitive elements and polynomials with arbitrary trace, *Journal of American Mathematics Society*, **83** (1990), 1???7.

- R. W. Fitzgerald and J. L. Yucas, Irreducible polynomials over GF(2) with three prescribed coefficients, *Finite Fields and Their Applications*, **9** (2003), 286-299.
- E. N. Kuz???min, On a class of irreducible polynomials over a finite field, *Dokl. Akad. Nauk SSSr* **313 (3)** (1990), 552-555. (Russian: English translation in *Soviet Math. Dokl.* **42(1)** (1991), 45-48.)
- R. Lidl and H. Niederreiter, "Finite Fields", Cambridge Univ. Press, Cambridge, second edition, 1994.
- M. Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Artith., to appear
- M. Moisio and K. Ranto, Elliptic curves and explicit enumeration of irreducible polynomials with two coefficients prescribed, *Finite Fields and Their Applications*, **14** (2008), 798-815.

- J.L. Yucas, Irreducible polynomials over finite fields with prescribed trace/prescribed constant term. Finite Fields and Their Applications, 12 (2006), 211-221.
- J. L. Yucas and G. L. Mullen, Irreducible polynomials over GF(2) with prescribed coefficients, *Discrete Mathematics*, **274** (2004), 265-279.
- D. Wan, Generators and irreducible polynomials over finite fields. Math. Comp., **219** (1997), 1195-1212.