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Permutation Polynomials

I Fq := finite field of q = pm elements.

I Definition A polynomial f ∈ Fq[x ] is called a permutation
polynomial of Fq if the associated polynomial function
f : c → f (c) from Fq to Fq is a permutation of Fq.

I Example
1 f (x) = ax + b, a 6= 0 is a permutation polynomial.
2 f (x) = xn is a permutation polynomial of Fq

⇐⇒ (n, q − 1) = 1.

I Two Problems Counting permutation polynomials of Fq and
Constructing permutation polynomials of Fq.
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Counting and Constructing Permutation Polynomials

I By Lagrange’s interpolation, every mapping f : Fq → Fq can
be expressed uniquely by a polynomial of degree ≤ q − 1.

I

g(x) =
∑
c∈Fq

f (c)
(
1− (x − c)q−1

)
I We assume each polynomial defined over Fq has degree at

most (q − 1) because xq = x for each x ∈ Fq.

I (Kayal, 2004) There exists a deterministic polynomial-time
algorithm that given a polynomial f (x) determines whether it
is a permutation polynomial or not.

I Permutation polynomials are rare.

I

lim
q→∞

q!

qq
= 0
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Analogy With Primes

I There is a deterministic polynomial time for primality testing.

I The density of the set of primes in the set of integers is zero.

I There are many open problems regarding primes of prescribed
shapes, such as Mersenne primes, Fermat primes, and twin
primes.

I Similarly it is not always easy to count and construct
permutation polynomials of a prescribed shape.
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Hermite Criterion

I (Hermite, 1863) f ∈ Fq[x ] is a permutation polynomial if
and only if
(i) f has exactly one root in Fq.
(ii) For each integer t with 1 ≤ t < q − 1, t 6≡ 0 (mod p), the
reduction of (f (x))t mod (xq − x) has degree ≤ q − 2.

I Corollary If d > 1 is a divisor of q − 1 then there is no
permutation polynomial of Fq of degree d .
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Counting Permutation Polynomials by Degree

I Problem(Lidl-Mullen) Let Nd(q) denote the number of
permutation polynomials of Fq which have degree d .
We have the trivial boundary conditions:
(i) N1(q) = q(q − 1).
(ii) Nd(q) = 0 if d is a divisor of (q − 1) larger than 1.
(iii)

∑
Nd(q) = q! where the sum is over all 1 ≤ d < q − 1

such that d is either 1 or it is not a divisor of (q − 1).
Find Nd(q).
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Some Known Results

I Das (2002) Np−2(p) ∼ (1− 1
p )p! as p →∞.

I Almost all permutation polynomials of Fp have degree p − 2.

I Konyagin and Pappalardi (2002)∣∣∣∣Nq−2(q)− ϕ(q)

q
q!

∣∣∣∣ ≤
√

2e

π
q

q
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Terminology

I g(x) ∈ Fq[x ] is a monic polynomial of degree ≤ q − 1 with
g(0) = 0.

I r is the vanishing order of g(x) at zero.

I Let f1(x) := g(x)/x r .

I Let s be the largest divisor of q − 1 with the property that
there exists a polynomial f (x) of degree deg(f1)/s such that
f1(x) = f (x s).

I ` = (q − 1)/s.

I We call ` the index of g .

I Any polynomial h(x) ∈ Fq[x ] of degree ≤ q − 1 can be
written uniquely as

a(x r f (x (q−1)/`)) + b.
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Example

In F17 we have

h(x) = 3 x15 + 6x9 + 12x3 + 5

= 3 x3(x12 + 2x6 + 4) + 5

(17− 1, 12, 6) = 2.

h(x) = 3 x3
(
(x2)6 + 2(x2)3 + 4

)
+ 5

= 3 x3f (x2) + 5,

where f (x) = x6 + 2x3 + 4. So ` = 8 and

h(x) = 3 x3f (x
17−1

8 ) + 5.



Example

In F17 we have

h(x) = 3 x15 + 6x9 + 12x3 + 5

= 3 x3(x12 + 2x6 + 4) + 5

(17− 1, 12, 6) = 2.

h(x) = 3 x3
(
(x2)6 + 2(x2)3 + 4

)
+ 5

= 3 x3f (x2) + 5,

where f (x) = x6 + 2x3 + 4. So ` = 8 and

h(x) = 3 x3f (x
17−1

8 ) + 5.



Example

In F17 we have

h(x) = 3 x15 + 6x9 + 12x3 + 5

= 3 x3(x12 + 2x6 + 4) + 5

(17− 1, 12, 6) = 2.

h(x) = 3 x3
(
(x2)6 + 2(x2)3 + 4

)
+ 5

= 3 x3f (x2) + 5,

where f (x) = x6 + 2x3 + 4. So ` = 8 and

h(x) = 3 x3f (x
17−1

8 ) + 5.



Example

In F17 we have

h(x) = 3 x15 + 6x9 + 12x3 + 5

= 3 x3(x12 + 2x6 + 4) + 5

(17− 1, 12, 6) = 2.

h(x) = 3 x3
(
(x2)6 + 2(x2)3 + 4

)
+ 5

= 3 x3f (x2) + 5,

where f (x) = x6 + 2x3 + 4. So ` = 8 and

h(x) = 3 x3f (x
17−1

8 ) + 5.



Rogers-Dickson Polynomials

I (Rogers-Dickson) x r f (x
q−1

` )` is a permutation polynomial if

and only if (r , q − 1) = 1, and f (x
q−1

` ) has no non-zero root
in Fq.
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Notations

I Let ` ≥ 2 be a divisor of q − 1. Let s := (q − 1)/`. Let m, r
be positive integers, and ē = (e1, . . . , em) be an m-tuple of
integers that satisfy the following conditions:
(i) 0 < e1 < e2 · · · < em ≤ `− 1,
(ii) (e1, . . . , em, `) = 1,
(iii) r + ems ≤ q − 1.
For a tuple ā := (a1, . . . , am) ∈

(
F∗q
)m

, we let

g ā
r ,ē(x) := x r (xems + a1x

em−1s + · · ·+ am−1x
e1s + am) .

I If g ā
r ,ē(x) is a permutation polynomial then (r , s) = 1.
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be positive integers, and ē = (e1, . . . , em) be an m-tuple of
integers that satisfy the following conditions:
(i) 0 < e1 < e2 · · · < em ≤ `− 1,

(ii) (e1, . . . , em, `) = 1,
(iii) r + ems ≤ q − 1.
For a tuple ā := (a1, . . . , am) ∈

(
F∗q
)m

, we let

g ā
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Existence of Permutation Polynomials

I Carlitz-Wells (1966) (i) Let ` > 1. Then for q sufficiently
large, there exists a ∈ Fq such that the polynomial
x(x (q−1)/` + a) is a permutation polynomial of Fq.
(ii) Let ` > 1, (r , q − 1) = 1, and k be a positive integer.
Then for q sufficiently large, there exists a ∈ Fq such that the
polynomial x r (x (q−1)/` + a)k is a permutation polynomial of
Fq.

I Laigle-Chapuy (2007) The first assertion of Carlitz-Wells’

theorem is true for q > `2`+2
(
1 + `+1

``+2

)2
.

I Masuda and Zieve (2007) For more general binomials of the
form x r (xe1(q−1)/` + a) The first assertion of Carlitz-Wells’
theorem is true for q > `2`+2.
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I Corollary For any admissible q, r , ē, m, `, and q > `2`+2,
there exists an ā ∈ (F∗q)m such that the (m + 1)-nomial
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r ,ē(x) = x r (xems + a1x
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e1s + am)

is a permutation polynomial of Fq.

I For q ≥ 7 we have `2`+2 < q as long as ` < log q
2 log log q .
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r ,ē(x) = x r (xems + a1x

em−1s + · · ·+ am−1x
e1s + am)

is a permutation polynomial of Fq.

I For q ≥ 7 we have `2`+2 < q as long as ` < log q
2 log log q .



Application

I The Main Result∣∣∣∣Nm
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r ,ē(`, q)− `!

``
qm

∣∣∣∣ < ` · `!qm− 1
2 .

I Corollary For any admissible q, r , ē, m, `, and q > `2`+2,
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I s = (q − 1)/`, (r , s) = 1.

I Wan-Lidl (1991) g(x) = x r f (x s) permutes Fq if and only if
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I ζ := an `-th root of unity in C
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{
0 if ζ 6= 1
` if ζ = 1.

I α:= A generator of F∗q.
I ψ:= A multiplicative character of order ` of µ`.

I ω:= A primitive `-th root of unity in C.

I Define ψ(αs) = ω, and extend it with ψ(0) = 0.
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Detecting Permutations of µ`

I For any permutation σ ∈ S`, and any β1, · · · , β` ∈ µ`, we
define

Pσ(β1, . . . , β`) =
∏̀
i=1

`−1∑
j=0

(
ψ(βi )ψ(αs)−σ(i)

)j

 .

I {β1, . . . , β`} = µ` if and only if

there exists a unique σ ∈ S` such that Pσ(β1, . . . , β`) = ``.
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A Formula for the Number of Permutation Polynomials

I g ā(x) = x r (xems + a1x
em−1s + · · ·+ am−1x

e1s + am).

I The polynomial g ā permutes Fq if and only if the following
two conditions are satisfied:
(i) αiems + a1α

iem−1s + · · ·+ am−1α
ie1s + am 6= 0, for each

i = 1, . . . , `;
(ii) g ā(αi )s 6= g ā(αj)s , for 1 ≤ i < j ≤ `.

I

Nm
r ,ē(`, q) =

1

``

∑
ā∈(F∗q )m

ā satisfies (i)

∑
σ∈S`
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g ā(α1)s , . . . , g ā(α`)s
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ā satisfies (i)

∑
σ∈S`

Pσ

(
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The Error Term

I

Error Term =
∑

(a1,··· ,am)∈(Fq)m

Ψ(t ϕ(a1, a2, · · · , am))) ,

where t ∈ Fq, Ψ(α) = ψ(αs) is a multiplicative character of
Fq, and ϕ(a1, a2, · · · , am) ∈ Fq[a1, · · · , am].
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Estimations of Character Sums

I It follows from Deligne’s work on the Weil conjectures for
algebraic varieties over finite field that if ϕ(a1, · · · , am)
satisfies GOOD conditions∑

(a1,··· ,am)∈(Fq)m

Ψ(t ϕ(a1, a2, · · · , am)) � q
m
2 .



Estimations of Character Sums

I It follows from Deligne’s work on the Weil conjectures for
algebraic varieties over finite field that if ϕ(a1, · · · , am)
satisfies GOOD conditions∑

(a1,··· ,am)∈(Fq)m

Ψ(t ϕ(a1, a2, · · · , am)) � q
m
2 .



Estimations of Character Sums

I (Katz, 2002) Let m ≥ 1 and let
ϕ = ϕ(a1, · · · , am) ∈ Fq[a1, · · · , am] be a polynomial of
degree d . We write ϕ = ϕd +ϕd−1 + +ϕ0 , where each ϕj is
homogeneous of degree j. Then if (d , q) = 1 and if ϕd = 0
defines a smooth, degree d hypersurface in Pm−1(Fq), ϕ = 0
is a smooth hypersurface in Am(Fq), and if Ψd is non-trivial
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Estimations of Character Sums

I (Weil, 1948) Let f (x) ∈ Fq[x ] be a monic polynomial of
positive degree that is not an `-th power of a polynomial. Let
d be the number of distinct roots of f (x) in its splitting field
over Fq. Then for every t ∈ Fq we have∣∣∣∣∣∣

∑
a∈Fq

Ψ(t f (a))

∣∣∣∣∣∣ ≤ (d − 1)q
1
2 .



Estimations of Character Sums

I

∑
am∈(Fq)

Ψ

(
t
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)ki

)
.



Estimations of Character Sums

I

∑
am∈(Fq)

Ψ

(
t
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)ki

)
.



I ∑
(a1,··· ,am)∈(Fq)m

Ψ(t ϕ(a1, a2, · · · , am)))

=
∑

(a1,··· ,am−1)∈(Fq)m−1

∑
a∈Fq

Ψ(t ϕ(a1, a2, · · · , am−1, a))

=
∑
Good

+
∑
Bad

� qm− 1
2 .

I ∣∣∣∣Nm
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