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> Iy, = finite field of g = p™ elements.

» Definition A polynomial f € F[x] is called a permutation
polynomial of F if the associated polynomial function
f:c— f(c) from Fq to Fy is a permutation of [Fy.

» Example

1 f(x) = ax+ b, a# 0 is a permutation polynomial.
2 f(x) = x"is a permutation polynomial of
<~ (ng—1)=1.

» Two Problems Counting permutation polynomials of F, and

Constructing permutation polynomials of [Fy.
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» By Lagrange's interpolation, every mapping f : Fq — Fg can
be expressed uniquely by a polynomial of degree < q — 1.

Zf (1—(x—c)9" 1)

celFy

> We assume each polynomial defined over I, has degree at
most (q — 1) because x9 = x for each x € F,.

> (Kayal, 2004) There exists a deterministic polynomial-time
algorithm that given a polynomial f(x) determines whether it
is a permutation polynomial or not.

» Permutation polynomials are rare.
q!

lim — =0
q—0o0 qq
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Analogy With Primes

» There is a deterministic polynomial time for primality testing.
» The density of the set of primes in the set of integers is zero.

» There are many open problems regarding primes of prescribed
shapes, such as Mersenne primes, Fermat primes, and twin
primes.

» Similarly it is not always easy to count and construct
permutation polynomials of a prescribed shape.
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Hermite Criterion

> (Hermite, 1863) f € Fq[x] is a permutation polynomial if
and only if
(i) f has exactly one root in Fy.
(ii) For each integer t with 1 <t < g—1, t # 0 (mod p), the
reduction of (f(x))* mod (x9 — x) has degree < g — 2.

» Corollary If d > 1 is a divisor of g — 1 then there is no
permutation polynomial of I, of degree d.



Counting Permutation Polynomials by Degree



Counting Permutation Polynomials by Degree

» Problem(Lidl-Mullen) Let Ny(q) denote the number of
permutation polynomials of [F, which have degree d.



Counting Permutation Polynomials by Degree

» Problem(Lidl-Mullen) Let Ny(g) denote the number of
permutation polynomials of [F, which have degree d.
We have the trivial boundary conditions:

(i) Ni(q) = q(q — 1).



Counting Permutation Polynomials by Degree

» Problem(Lidl-Mullen) Let Ny(g) denote the number of
permutation polynomials of [F, which have degree d.
We have the trivial boundary conditions:

(i) Mi(q) = q(q —1).
(ii) Ng(q) = 0 if d is a divisor of (g — 1) larger than 1.



Counting Permutation Polynomials by Degree

» Problem(Lidl-Mullen) Let Ny(g) denote the number of
permutation polynomials of [F, which have degree d.
We have the trivial boundary conditions:
(i) Mi(q) = q(q —1).
(ii) Ng(q) = 0 if d is a divisor of (g — 1) larger than 1.
(iii) >_ Ng(g) = q! where the sumisoverall1 <d <qg-—1
such that d is either 1 or it is not a divisor of (g — 1).



Counting Permutation Polynomials by Degree

» Problem(Lidl-Mullen) Let Ny(g) denote the number of
permutation polynomials of [F, which have degree d.
We have the trivial boundary conditions:
(i) Mi(q) = q(q —1).
(ii) Ng(q) = 0 if d is a divisor of (g — 1) larger than 1.
(iii) >_ Ng(g) = q! where the sumisoverall1 <d <qg-—1
such that d is either 1 or it is not a divisor of (g — 1).
Find Ny(q).
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Some Known Results

» Das (2002) N,—o(p) ~ (1 — %)p! as p — oo0.
» Almost all permutation polynomials of I, have degree p — 2.

» Konyagin and Pappalardi (2002)

¢(a)

Nq—2(Q) - q

q!‘S —q2.
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Terminology

> g(x) € Fg[x] is a monic polynomial of degree < g — 1 with
g(0) =0.

» r is the vanishing order of g(x) at zero.

> Let fi(x) := g(x)/x".

> Let s be the largest divisor of ¢ — 1 with the property that
there exists a polynomial 7(x) of degree deg(f;)/s such that
f(x) = f(x°).

» (= (qg—1)/s.

» We call £ the index of g.

» Any polynomial h(x) € Fq[x] of degree < g — 1 can be
written uniquely as

a(x"F(x(a=1/4)) + b,
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Example

In F17 we have

h(x) = 3x®+6x°+12x°+5
= 3x3(x?+2x° +4)+5

(17— 1,12,6) = 2.

h(x) = 3x3((x*)°+2(x*)*+4)+5
= 3x3f(x?) +5,

where f(x) = x® +2x3 + 4. So ¢ = 8 and

h(x) =3 x3f(x"5) +5.
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Rogers-Dickson Polynomials

» (Rogers-Dickson) er(Xqul)g is a permutation polynomial if
-1
and only if (r,g—1) =1, and f(x"7 ) has no non-zero root
in Fg.
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» Let £ > 2 be a divisor of g — 1. Let s := (g —1)/¢. Let m, r
be positive integers, and & = (ey,. .., en) be an m-tuple of
integers that satisfy the following conditions:
0<e<e--<ep,<l-—1,

(i) (e1,...,em,t) =1,
(iii) r+ ems < qg—1.
For a tuple 2:=(a1,...,am) € (IFZ)m, we let

gré,é(X) = X" (xS 4 apx® 15 o a, 1xSS 4 ap).

> If g;fé(x) is a permutation polynomial then (r,s) = 1.
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The Main Result

» For admissible m, r, &, £, and q, define

Nrrt]é(ga q)
the number of all monic permutation (m + 1)-nomial

gr:jé(X) = X" (X® 4 apx®1S o a, 1x® 4 ap,).

» A., Ghioca, and Wang (2008)

£ _1
NTe(t,q) = 5™ | < - l1g™ 2.
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Existence of Permutation Polynomials

» Carlitz-Wells (1966) (i) Let £ > 1. Then for g sufficiently
large, there exists a € Fq such that the polynomial
x(x(@=/% 4 3) is a permutation polynomial of Fy.
(ii) Let £ > 1, (r,q — 1) =1, and k be a positive integer.
Then for g sufficiently large, there exists a € IF; such that the
polynomial x"(x(9=1/¢ 1 2)k is a permutation polynomial of
Fy.

» Laigle-Chapuy (2007) The first assertion of Carlitz-Wells’

. 2
theorem is true for g > ¢2¢+2 (1 + ﬁ—é)

» Masuda and Zieve (2007) For more general binomials of the
form x'(x€1(@=1/¢ 4 3) The first assertion of Carlitz-Wells’
theorem is true for g > (212
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Application

» The Main Result

m 4 m m—1
Nra(l ) = za™| < - g™ 2.

» Corollary For any admissible q, r, €, m, £, and q > 2442
there exists an 3 € (IF;)™ such that the (m + 1)-nomial

&r é(X) = x" (Xems + a1x®m1% 4 g, xS 4 am)

)

is a permutation polynomial of Fg.

> For g > 7 we have (*2 < g as long as £ < 58—
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Wan-Lidl Criterion

> pp:= The set of all {-th roots of unity in Fy.

» s=(qg—1)/¢, (r,s)=1.

» Wan-Lidl (1991) g(x) = x"f(x*) permutes [, if and only if
x"f(x)° permutes f.
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Notations

» ( := an {-th root of unity in C

i1 [0 C#1
LHCH g 1_{5 it (=1

> «:= A generator of Fg.

» ¢:= A multiplicative character of order ¢ of py.
» w:= A primitive ¢-th root of unity in C.

» Define ¢)(a®) = w, and extend it with ¢(0) = 0.
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Detecting Permutations of i,

» For any permutation o € Sy, and any (1, -+, B¢ € g, we
define

i=1

¢ -1 .
Py(B1,...,0¢) = H ( < (aS)U(i)>J) '

> {f1,...,08e} = pe if and only if

there exists a unique o € Sy such that P,(f31,...,05) = ("
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A Formula for the Number of Permutation Polynomials

> g7(x) = x (xS 4 agx®m—15 4 ... 4 ap 1x®S +ay).

» The polynomial g2 permutes Fq if and only if the following
two conditions are satisfied:
(i) a'ms + aja®m=15 4 ... 4 ap 1045 + a,, # 0, for each
i=1,...,¢
(i) g2(a’)® # g(ad)*, for 1 < i< j < V.

Ns(4, q) = zlg Z Z ( ...,gé(a£)5> .
ac(F;)™  o€S
3 satisfies (i)
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The Main Term

> Y P (g
ac(F;)" o€S,
3 satisfies (i)

0!
Main Term = —q".

gé
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The Error Term

Error Term = Z V(t ¢(ar, a2, ,am))),
(alv"”am)E(Fq)m

where t € Fy, V(a) = ¢(a®) is a multiplicative character of
Fq, and p(a1, a2, -+ ,am) € Fglar, -, am].
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P/B:O[s

>

l
Z W <tH (/Bemi + alﬁemfli I am—lﬁeli + am)ki>
)m

(a1, ,am)€(Fq i=1
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» It follows from Deligne's work on the Weil conjectures for
algebraic varieties over finite field that if (a1, -+ ,am)
satisfies GOOD conditions

Z W (t p(ar, a0, ,am)) < q°2.
(a1, ,am)€E(Fq)™



Estimations of Character Sums

> (Katz, 2002) Let m > 1 and let
o =wp(a1, - ,am) € Fglar,--- , am] be a polynomial of
degree d. We write ¢ = ¢4 + ¢q-1+ + o , where each ¢; is
homogeneous of degree j. Then if (d,q) =1 and if o4 =0
defines a smooth, degree d hypersurface in P™1(F,), ¢ = 0

is a smooth hypersurface in A™(F,), and if W9 is non-trivial
then

(a1, ,am)E€(Fq)™
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> v <tH (B + arom v - a1 B + am)ki>
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Estimations of Character Sums

> (Weil, 1948) Let f(x) € Fq[x] be a monic polynomial of
positive degree that is not an /-th power of a polynomial. Let
d be the number of distinct roots of f(x) in its splitting field
over Fgq. Then for every t € Fg we have

ST (t f(a)| < (d — 1)g2.

ackq
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£
Z U (tn(ﬁemi+alﬁem_li+"'+amlﬁeli"—am)ki) )

am€(Fq) i=1
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(at,+,am)€(Fq)™

= Z Z V(t ¢(ar,a2,- -+ ,am-1,a))

(a1, am—1)€(Fq)m—1 2€Fq

IR

Good Bad

/!
‘an:lé(gv q) = q"| <t g™,




