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REVIEW: THE SIMPLE TREATMENT

MODEL

Recall the basic treatment models under assumptions

• treatment moves infectives to a class T with
infectivity decreased by a factor δ and with a
recovery rate η

• treatment continues so long as an individual remains
infective.

• Treatment is beneficial,

η > δα.

Flow chart.

..
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Model is

S′ = −βS(I + δT ), S(0) = S0

I ′ = βS(I + δT ) − (α + γ)I, I(0) = I0

T ′ = γI − ηT, T (0) = 0.

Control reproduction number is

R(γ) =
βN

α + γ

[

1 +
δγ

η

]

representing the mean number of secondary infections
caused by a single infective introduced into a fully
susceptible population and is a decreasing function of γ
if η > δα.

Final size relation is

ln
S0

S∞
= R(γ)

[

1 −
S∞
N

]

.
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A TWO-STRAIN MODEL

Now introduce a two-strain epidemic model

• Two-strain epidemic model with treatment at a
proportional rate γ in each infective class

• Population of constant total size N .

• I1 is number of individuals with a drug-sensitive
infection. and I2 is number of individuals with a
drug-resistant infection.

• Drug resistance develops in treated individuals
infected with the drug-sensitive strain at a rate ϕ.

• Treatment of infectives with a drug-sensitive
infection decreases infectivity by a factor δ

• Treatment has no effect on drug-resistant infections.

• Recovery rates are α1 in I1, η in T1, and α2 in I2, T2.

• Treatment is beneficial,

α1δ ≤ η.
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Flow chart.

..

Model is

S′ = −S[β1Q1 + β2Q2]

I ′1 = Sβ1Q1 − (α1 + γ)I1

T ′
1 = γI1 − (η + ϕ)T1

I ′2 = Sβ2Q2 − (α2 + γ)I2

T ′
2 = γI2 − α2T2 + ϕT1,

where
Q1 = I1 + δT1, Q2 = I2 + T2.

Initial conditions are

S(0) = S0, I1(0) = I0, T1(0) = I2(0) = T2(0) = 0.
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A single individual with a drug-sensitive infection
introduced into a susceptible population generates

R1(γ) = β1N

[

1

α1 + γ
+ δ

γ

α1 + γ

1

η + ϕ

]

+
β2N

α2

γ

α1 + γ

ϕ

η + ϕ

secondary infections, with the first term representing
drug-sensitive infections and the second term
representing drug-resistant infections.

A single individual with a drug-resistant infection
introduced into a susceptible population generates

R2 =
β2N

α2

secondary infections, all drug-resistant.

The control reproduction number is

R(γ) = max(R1(γ),R2).

The standard next generation matrix argument does
not give the effect of secondary drug-resistant infections
caused by a drug-sensitive individual, and thus does not
determine R(γ) completely.
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Integration of the equations gives

N − S∞ = (α1 + γ)

∫ ∞

0
I1(s)ds

+(α2 + γ)

∫ ∞

0
I2(s)ds

ln
S0

S∞
= (α1 + γ)

R1(γ)

N

∫ ∞

0
I1(s)ds

+(α2 + γ)
R2

N

∫ ∞

0
I2(s)ds.

If R2 ≤ R1(γ), then

R2

[

1 −
S∞(γ)

N

]

≤ ln
S0

S∞(γ)
≤ R1(γ)

[

1 −
S∞(γ)

N

]

.

Solution S(R) of

ln
S0

S(R)
= R

[

1 −
S(R)

N

]

is a decreasing function of R, implying that S∞(γ) is
between S(R1(γ)) and S(R2). However, we have only
bounds for the epidemic final size rather than an
equation.
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Differentiation of expression for R1(γ) shows that if
R1(0) > R2, then R1(γ) is a decreasing function of γ.
If

(η + ϕ)β2 < δβ1α2,

R1(0) > R2 for all γ. If

(η + ϕ)β2 > δβ1α2,

there is a value

γc =
(η + ϕ)(β1α2 − β2α1

ηβ2 − δβ1α2

such that

R1(γ) > R2, 0 ≤ γ < γc

R1(γ) < R2, γ < γc.

In addition,
lim

γ→∞
R

′
1(γ) = 0.
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To go further, we need to make an additional
assumption, namely that the ratio of new infections in
strain 2 to new infections in strain 1 is an increasing
function of γ. Thus we assume

(α2 + γ)

∫ ∞

0
I2(s)ds = λ(γ)(α1 + γ)

∫ ∞

0
I1(s)ds,

with λ′(γ) > 0. Increasing γ decreases the mean period
in I1 and since treatment decrease infectivity and mean
period, this decreases the number of infections starting
in I1. On the other hand, increasing γ does not change
the number of new infections or the mean period in I2
but does increase the number of new infections in T2
caused by development of drug resistance in T1. Thus
the number of new infections in I2 increases when γ
increases.
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Under this assumption,

N − S∞ = (1 + λ(γ))(α1 + γ)

∫ ∞

0
I1(s)ds

and

ln
S0

S∞
= (α1 + γ)Î1

R1(γ) + λ(γ)R2

N

=
R1(γ) + λ(γ)R2

1 + λ(γ)

[

1 −
S∞(γ)

N

]

= R(γ)

[

1 −
S∞(γ)

N

]

with

R(γ) =
R1(γ) + λ(γ)R2

1 + λ(γ)
.

Then S∞(γ) is an increasing function of γ, so that
increasing γ decreases the size of the epidemic if and
only if R(γ) is a decreasing function of γ. Now
R′(γ) < 0 if and only if

R
′
1(γ)(1 + λ(γ)) + λ(γ)(R2 −R1(γ)) < 0.
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There are two cases: If R1(0) > R2 and

(η + ϕ)β2 > δβ1α2,

there is a value γc with R1(γc) = R2. For large γ,
R′(γ) > 0 and treatment eventually becomes
counter-productive. For γ ≤ γc,R

′(γ) < 0 and
treatment decreases the size of the epidemic.

If R1(0) > R2 and

(η + ϕ)β2 < δβ1α2,

R′(γ) < 0 for all γ and treatment decreases the size of
the epidemic for all γ.

The first case describes a situation that has been
obtained by numerical simulations and gives a lower
bound for the critical treatment rate. It has been
suggested that in this case delaying the start of
treatment may decrease the size of the epidemic.

QUESTION: Is the assumption on the ratio of new
infections in the two strains reasonable, and if so, what
is a suitable expression for this ratio?.
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HETEROGENEOUS MIXING

Divide population into two groups with different
contact rates. Extension to n groups is straightforward.
Suppose mean infective period in group i is 1/αi.
Assume no disease deaths, so that the population sizes
N1, N2 of groups are constant. Suppose group i
members make ai contacts in unit time and that the
fraction of contacts made by a member of group i that
is with a member of group j is
pij, (i, j = 1, 2), p11 + p12 = p21 + p22 = 1.

Two-group SIR epidemic model is

S′
1 = −a1S1

[

p11
I1

N1
+ p12

I2

N2

]

I ′1 = a1S1

[

p11
I1

N1
+ p12

I2

N2

]

− α1I1

S′
2 = −a2S2

[

p21
I1

N1
+ p22

I2

N2

]

I ′2 = a2S2

[

p21a2
S2I1

N1
+ p22a2

S2I2

N2

]

− α2I2
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Prescribe initial values for S1(0), I1(0), S2(0), I2(0) with

S1(0) + I1(0) = N1, S2(0) + I2(0) = N2.

Then

S1 → S1(∞) > 0, S2 → S2(∞) > 0,

as t → ∞.

Calculate reproduction number by next generation
matrix approach as largest eigenvalue of the matrix
K = FV −1, where

F =

[

p11a1 p12a1
N1
N2

p21a2
N2
N1

p22a2

]

V =

[

α1 0
0 α2

]

.

Then

K = FV −1 =















p11a1

α1

p12a1

α2

N1
N2

p21a2

α1

N2
N1

p22a2

α2
.















The basic reproduction number R0 is the larger of the
two eigenvalues of K. It depends on the nature of the
mixing between the two groups, determined by the two
quantities p12, p21 (p11 = 1 − p12 and p2 = 1 − p21).
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FINAL SIZE RELATION

The final size relation is the pair of equations

ln
S1(0)

S1(∞)
= a1

[

p11

α1

(

1 −
S1(∞)

N1

)

+
p12

α2

(

1 −
S2(∞)

N2

)]

ln
S2(0)

S2(∞)
= a2

[

p21

α1

(

1 −
S1(∞)

N1

)

+
p22

α2

(

1 −
S2(∞)

N2

)]

Final size relation can be expressed using the matrix

R =















p11a1

α1

p12a1

α2

p21a2

α1

p22a2

α2















.

which is similar to the next generation matrix K since

T−1KT = R,

with T the diagonal matrix

T =

[

N1 0
0 N2.

]

The model and the final size relation generalize
naturally to models with n groups,
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