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Introduction

These notes have been prepared for the graduate course tought at the Fields
Institute, Toronto, during the Thematic program on quantitative finance which
was held from January to June, 2010.

I would like to thank all participants to these lectures. It was a pleasure for
me to share my experience on this subject with the excellent audience that was
offered by this special research semester. In particular, their remarks and com-
ments helped to improve parts of this document, and to correct some mistakes.

My special thanks go to Bruno Bouchard, Mete Soner and Agnès Tourin
who accepted to act as guest lecturers within this course. These notes have
also benefitted from the discussions with them, and some parts are based on my
previous work with Bruno and Mete.

Finally, I would like to express all my thanks to Matheus Grasselli, Tom
Hurd, Tom Slisbury, and Sebastian Jaimungal for the warm hospitality at the
Fields Institute, and their regular attendance to my lectures.

These lectures present the modern approach to stochastic control problems
with a special emphasis on the application in financial mathematics. For ped-
agogical reason, we restrict the scope of the course to the control of diffusion
processes, thus ignoring the presence of jumps.

We first review the main tools from stochastic analysis: Brownian motion
and the corresponding stochastic integration theory. This already introduces
to the first connection with partial differential equations (PDE). Indeed, by
Itô’s formula, a linear PDE pops up as the infinitesimal counterpart of the
tower property. Conversely, given a nicely behaved smooth solution, the so-
called Feynman-Kac formula provides a stochastic representation in terms of a
conditional expectation.

We then introduce the class of standard stochastic control problems where
one wishes to maximize the expected value of some gain functional. The first
main task is to derive an original weak dynamic programming principle which
avoids the heavy measurable selection arguments in typical proofs of the dy-
namic programming principle when no a priori regularity of the value function
is known. The infinitesimal counterpart of the dynamic programming princi-
ple is now a nonlinear PDE which is called dynamic programming equation,
or Hamilton-Jacobi-Bellman equation. The hope is that the dynamic program-
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8 CHAPTER 0. INTRODUCTION

ming equation provides a complete characterization of the problem, once com-
plemented with appropriate boundary conditions. However, this requires strong
smoothness conditions, which can be seen to be violated in simple examples.

A parallel picture can be drawn for optimal stopping problems and, in fact,
for the more general control and stopping problems. In these notes we do not
treat such mixed control problem, and we rather analyze separately these two
classes of control problems. Here again, we derive the dynamic programming
principle, and the corresponding dynamic programming equation under strong
smoothness conditions. In the present case, the dynamic programming equation
takes the form of the obstacle problem in PDEs.

When the dynamic programming equation happens to have an explicit smooth
solution, the verification argument allows to verify whether this candidate in-
deed coincides with the value function of the control problem. The verification
argument provides as a by-product an access to the optimal control, i.e. the
solution of the problem. But of course, such lucky cases are rare, and one should
not count on solving any stochastic control problem by verification.

In the absence of any general a priori regularity of the value function, the
next development of the theory is based on viscosity solutions. This beautiful
notion was introduced by Crandal and Lions, and provides a weak notion of
solutions to second order degenerate elliptic PDEs. We review the main tools
from viscosity solutions which are needed in stochastic control. In particular,
we provide a difficulty-incremental presentation of the comparison result (i.e.
maximum principle) which implies uniqueness.

We next show that the weak dynamic programming equation implies that the
value function is a viscosity solution of the corresponding dynamic programming
equation in a wide generality. In particular, we do not assume that the controls
are bounded. We emphasize that in the present setting, there is no apriori
regularity of the value function needed to derive the dynamic programming
equation: we only need it to be locally bounded ! Given the general uniqueness
results, viscosity solutions provide a powerful tool for the characterization of
stochastic control and optimal stopping problems.

The remaining part of the lectures focus on the more recent literature on
stochastic control, namely stochastic target problems. These problems are moti-
vated by the superhedging problem in financial mathematics. Various extensions
have been studied in the literature. We focus on a particular setting where the
proofs are simplified while highlighting the main ideas.

The use of viscosity solution is crucial for the treatment of stochastic target
problems. Indeed, deriving any a priori regularity seems to be a very difficult
task. Moreover, by writing formally the corresponding dynamic programming
equation and guessing an explicit solution (in some lucky case), there is no
known direct verification argument as in standard stochastic control problems.
Our approach is then based on a dynamic programming principle suited to this
class of problems, and called geometric dynamic programming principle, due to
a further extension of stochastic target problems to front propagation problems
in differential geometry. The geometric programming principle allows to obtain
a dynamic programming equation in the sense of viscosity solutions. We provide
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some examples where the analysis of the dynamic programming equation leads
to a complete solution of the problem.

We also present an interesting extension to stochastic target problems with
controlled probability of success. A remarkable trick allows to reduce these
problems to standard stochastic target problems. By using this methodology,
we show how one can solve explicitly the problem of quantile hedging which
was previously solved by Föllmer and Leukert [?] by duality methods in the
standard linear case in financial mathematics.

A further extension of stochastic target problems consists in involving the
quadratic variation of the control process in the controlled state dynamics.
These problems are motivated by examples from financial mathematics related
to market illiquidity, and are called second order stochastic target problems. We
follow the same line of arguments by formulating a suitable geometric dynamic
programming principle, and deriving the corresponding dynamic programming
equation in the sense of viscosity solutions. The main new difficuly here is to
deal with the short time asymptotics of double stochastic integrals.

The final part of the lectures explores a special type of stochastic target
problems in the non-Markov framework. This leads to the theory of backward
stochastic differential equations (BSDE) which was introduced by Pardoux and
Peng [?]. Here, in contrast to stochastic target problems, we insist on the
existence of a solution to the stochastic target problem. We provide the main
existence, uniqueness, stability and comparison results. We also establish the
connection with stochastic control problems. We finally show the connection
with semilinear PDEs in the Markov case.

The extension of the theory of BSDEs to the case where the generator is
quadratic in the control variable is very important in view of the applications
to portfolio optimization problems. However, the existence and uniqueness can
not be addressed as simply as in the Lipschitz case. The first existence and
uniqueness results were established by Kobylanski [?] by adapting to the non-
Markov framework techniques developed in the PDE literature. Instead of this
hilghly technical argument, we report the beautiful argument recently developed
by Tevzadze [?], and provide applications in financial mathematics.

The final chapter is dedicated to numerical methods for nonlinear PDEs.
We provide a complete proof of convergence based on the Barles-Souganidis
motone scheme method. The latter is a beautiful and simple argument which
exploits the stability of viscosity solutions. Stronger results are provided in the
semilinear case by using techniques from BSDEs.

Finally, I should like to express

all my love to my family who accompanied me during this visit to Toronto,

all my thanks to them for their patience while I was preparing these notes,

and all my excuses for my absence even when I was physically present...
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Chapter 1

Conditional Expectation
and Linear Parabolic
PDEs

Throughout this chapter, (Ω,F ,F, P ) is a filtered probability space with filtra-
tion F = {Ft, t ≥ 0} satisfying the usual conditions. Let W = {Wt, t ≥ 0} be
a Brownian motion valued in Rd, defined on (Ω,F ,F, P ).

1.1 Stochastic differential equations with ran-
dom coefficients

In this section, we recall the basic tools from stochastic differential equations

dXt = bt(Xt)dt+ σt(Xt)dWt, t ∈ [0, T ], (1.1)

where T > 0 is a given maturity date. Here, b and σ are F⊗B(Rn)-progressively
measurable functions from [0, T ] × Ω × Rn to Rn and MR(n, d), respectively.
In particular, for every fixed x ∈ Rn, the processes {bt(x), σt(x), t ∈ [0, T ]} are
F−progressively measurable.

Definition 1.1. A strong solution of (1.1) is an F−progressively measurable

process X such that
∫ T

0
(|b(t,Xt)|+ |σ(t,Xt)|2)dt <∞, a.s. and

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ].

Let us mention that there is a notion of weak solutions which relaxes some
conditions from the above definition in order to allow for more general stochas-
tic differential equations. Weak solutions, as opposed to strong solutions, are
defined on some probabillistic structure (which becomes part of the solution),
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12 CHAPTER 1. CONDITIONAL EXPECTATION AND LINEAR PDEs

and not necessarilly on (Ω,F ,F,P,W ). Thus, for a weak solution we search for
a probability structure (Ω̃, F̃ , F̃, P̃, W̃ ) and a process X̃ such that the require-
ment of the above definition holds true. Obviously, any strong solution is a
weak solution, but the opposite claim is false.

The main existence and uniqueness result is the following.

Theorem 1.2. Let X0 ∈ L2 be a r.v. independent of W . Assume that the
processes b.(0) and σ.(0) are in H2 ([0, T ]), and that for some K > 0:

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| for all t ∈ [0, T ], x, y ∈ Rn.

Then, for all T > 0, there exists a unique strong solution of (1.1) in H2([0, T ]).
Moreover,

E
[
sup
t≤T
|Xt|2

]
≤ C

(
1 + E|X0|2

)
eCT , (1.2)

for some constant C = C(T,K) depending on T and K.

Proof. We first establish the existence and uniqueness result, then we prove the
estimate (1.2).
Step 1 For a constant c > 0, to be fixed later, we introduce the norm

‖φ‖H2
c

:= E

[∫ T

0

e−ct|φt|2dt

]1/2

for every φ ∈ H2.

Clearly , the norms ‖.‖H2 and ‖.‖H2
c

on the Hilbert space H2 are equivalent.
Consider the map U on H2 ([0, T ]× Ω) by:

U(X)t := X0 +

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs, 0 ≤ t ≤ T.

By the Lipschitz property of b and σ in the x−variable and the fact that
b.(0), σ.(0) ∈ H2([0, T ]), it follows that this map is well defined on H2. In
order to prove existence and uniqueness of a solution for (1.1), we shall prove
that U(X) ∈ H2 for all X ∈ H2 and that U is a contracting mapping with
respect to the norm ‖.‖H2

c
for a convenient choice of the constant c > 0.

1- We first prove that U(X) ∈ H2 for all X ∈ H2. To see this, we decompose:

‖U(X)‖2H2 ≤ 3T‖X0‖2L2 + 3E

[∫ T

0

∣∣∣∣∫ t

0

bs(Xs)ds

∣∣∣∣2 dt
]

+3E

[∫ T

0

∣∣∣∣∫ t

0

σs(Xs)dWs

∣∣∣∣2 dt
]

By the Lipschitz-continuity of b and σ in x, uniformly in t, we have |bt(x)|2 ≤
K(1 + |bt(0)|2 + |x|2) for some constant K. We then estimate the second term
by:

E

[∫ T

0

∣∣∣∣∫ t

0

bs(Xs)ds

∣∣∣∣2 dt
]
≤ KTE

[∫ T

0

(1 + |bt(0)|2 + |Xs|2)ds

]
<∞,
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since X ∈ H2, and b(., 0) ∈ L2([0, T ]).
As, for the third term, we use the Doob maximal inequality together with

the factt that |σt(x)|2 ≤ K(1 + |bt(0)|2 + |x|2), a consequence of the Lipschitz
property on σ:

E

[∫ T

0

∣∣∣∣∫ t

0

σs(Xs)dWs

∣∣∣∣2 dt
]
≤ TE

[
max
t≤T

∣∣∣∣∫ t

0

σs(Xs)dWs

∣∣∣∣2 dt
]

≤ 4TE

[∫ T

0

|σs(Xs)|2ds

]

≤ 4TKE

[∫ T

0

(1 + |σs(0)|2 + |Xs|2)ds

]
<∞.

2- To see that U is a contracting mapping for the norm ‖.‖H2
c
, for some convenient

choice of c > 0, we consider two process X,Y ∈ H2([0, T ]) with X0 = Y0 = 0,
and we estimate that:

E |U(X)t − U(Y )t|2

≤ 2E
∣∣∣∣∫ t

0

(bs(Xs)− bs(Ys)) ds
∣∣∣∣2 + 2E

∣∣∣∣∫ t

0

(σs(Xs)− σs(Ys)) dWs

∣∣∣∣2
= 2E

∣∣∣∣∫ t

0

(bs(Xs)− bs(Ys)) ds
∣∣∣∣2 + 2E

∫ t

0

|σs(Xs)− σs(Ys)|2 ds

= 2tE
∫ t

0

|bs(Xs)− bs(Ys)|2 ds+ 2E
∫ t

0

|σs(Xs)− σs(Ys)|2 ds

≤ 2(T + 1)K

∫ t

0

E |Xs − Ys|2 ds.

Hence, ‖U(X)− U(Y )‖c ≤
2K(T + 1)

c
‖X − Y ‖c, and therefore U is a contract-

ing mapping for sufficiently large c > 1.
Step 2 We next prove the estimate (1.2). We shall alleviate the notation writ-
ing bs := bs(Xs) and σs := σs(Xs). We directly estimate:

E
[
sup
u≤t
|Xu|2

]
= E

[
sup
u≤t

∣∣∣∣X0 +

∫ u

0

bsds+

∫ u

0

σsdWs

∣∣∣∣2
]

≤ 3

(
E|X0|2 + tE

[∫ t

0

|bs|2ds
]

+ E

[
sup
u≤t

∣∣∣∣∫ u

0

σsdWs

∣∣∣∣2
])

≤ 3

(
E|X0|2 + tE

[∫ t

0

|bs|2ds
]

+ 4E
[∫ t

0

|σs|2ds
])

where we used the Doob’s maximal inequality. Since b and σ are Lipschitz-
continuous in x, uniformly in t and ω, this provides:

E
[
sup
u≤t
|Xu|2

]
≤ C(K,T )

(
1 + E|X0|2 +

∫ t

0

E
[
sup
u≤s
|Xu|2

]
ds

)
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and we conclude by using the Gronwall lemma. ♦

The following exercise shows that the Lipschitz-continuity condition on the
coefficients b and σ can be relaxed. We observe that further relaxation of this
assumption is possible in the one-dimensional case, see e.g. Karatzas and Shreve
[?].

Exercise 1.3. In the context of this section, assume that the coefficients µ
and σ are locally Lipschitz and linearly growing in x, uniformly in (t, ω). By a
localization argument, prove that strong existence and uniqueness holds for the
stochastic differential equation (1.1).

In addition to the estimate (1.2) of Theorem 1.2, we have the following flow
continuity results of the solution of the SDE.

Theorem 1.4. Let the conditions of Theorem 1.2 hold true, and consider some
(t, x), (t′, x) ∈ S with t ≤ t′. Then, there is a constant C such that:

E
[

sup
t≤s≤t′

∣∣Xt,x
s −Xt,x′

s |2
∣∣] ≤ CeCt

′
|x− x′|2, (1.3)

E
[

sup
t≤s≤t′

∣∣Xt,x
s −Xt′,x

s |2
∣∣] ≤ CeCT (1 + |x|2)

√
t′ − t. (1.4)

Proof. To be completed. ♦

1.2 Markov solutions of SDEs

In this section, we restrict the coefficients b and σ to be deterministic functions
of (t, x). In this context, we write

bt(x) = b(t, x), σt(x) = σ(t, x) for t ∈ [0, T ], x ∈ Rn,

where b and σ are Lipschitz in x uniformly in t. Let Xt,x
. denote the solution

of the stochastic differential equation

Xt,x
s = x+

∫ s

t

b
(
u,Xt,x

u

)
du+

∫ s

t

σ
(
u,Xt,x

u

)
dWu s ≥ t

The two following properties are obvious:

• Clearly, Xt,x
s = F (t, x, s, (W. −Wt)t≤u≤s) for some deterministic function

F .

• For t ≤ u ≤ s: Xt,x
s = X

u,Xt,xu
s . This follows from the pathwise uniqueness,

and holds also when u is a stopping time.

With these observations, we have the following Markov property for the solutions
of stochastic differential equations.
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Proposition 1.5. (Markov property) For all 0 ≤ t ≤ s:

E [Φ (Xu, t ≤ u ≤ s) |Ft] = E [Φ (Xu, t ≤ u ≤ s) |Xt]

for all bounded function Φ : C([t, s]) −→ R.

1.3 Connection with linear partial differential
equations

1.3.1 Generator

Let {Xt,x
s , s ≥ t} be the unique strong solution of

Xt,x
s = x+

∫ s

t

µ(u,Xt,x
u )du+

∫ s

t

σ(u,Xt,x
u )dWu, s ≥ t,

where µ and σ satisfy the required condition for existence and uniqueness of a
strong solution.

For a function f : Rn −→ R, we define the function Af by

Af(t, x) = lim
h→0

E[f(Xt,x
t+h)]− f(x)

h
if the limit exists.

Clearly, Af is well-defined for all bounded C2− function with bounded deriva-
tives and

Af(t, x) = µ(t, x) · f(t, x) +
1

2
Tr

[
σσT(t, x)

∂2f

∂x∂xT

]
, (1.5)

(Exercise !). The linear differential operator A is called the generator of X. It
turns out that the process X can be completely characterized by its generator or,
more precisely, by the generator and the corresponding domain of definition...

As the following result shows, the generator provides an intimate connection
between conditional expectations and linear partial differential equations.

Proposition 1.6. Assume that the function (t, x) 7−→ v(t, x) := E
[
g(Xt,x

T

]
is

C1,2 ([0, T )× Rn). Then v solves the partial differential equation:

∂v

∂t
+Av = 0 and v(T, .) = g.

Proof. Given (t, x), let τ1 := T ∧ inf{s > t : |Xt,x
s − x| ≥ 1}. By the law of

iterated expectation, it follows that

V (t, x) = E
[
V
(
s ∧ τ1, Xt,x

s∧τ1
)]
.
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Since V ∈ C1,2([0, T ),Rn), we may apply Itô’s formula, and we obtain by taking
expectations:

0 = E
[∫ s∧τ1

t

(
∂v

∂t
+Av

)
(u,Xt,x

u )du

]
+E

[∫ s∧τ1

t

∂v

∂x
(u,Xt,x

s ) · σ(u,Xt,x
u )dWu

]
= E

[∫ s∧τ1

t

(
∂v

∂t
+Av

)
(u,Xt,x

u )du

]
,

where the last equality follows from the boundedness of (u,Xt,x
u ) on [t, s∧τ1]. We

now send s↘ t, and the required result follows from the dominated convergence
theorem. ♦

1.3.2 Cauchy problem and the Feynman-Kac representa-
tion

In this section, we consider the following linear partial differential equation

∂v
∂t +Av − k(t, x)v + f(t, x) = 0, (t, x) ∈ [0, T )× Rd
v(T, .) = g

(1.6)

where A is the generator (1.5), g is a given function from Rd to R, k and f are
functions from [0, T ] × Rd to R, b and σ are functions from [0, T ] × Rd to Rd
and and MR(d, d), respectively. This is the so-called Cauchy problem.

For example, when k = f ≡ 0, b ≡ 0, and σ is the identity matrix, the above
partial differential equation reduces to the heat equation.

Our objective is to provide a representation of this purely deterministic prob-
lem by means of stochastic differential equations. We then assume that µ and
σ satisfy the conditions of Theorem 1.2, namely that

µ, σ Lipschitz in x uniformly in t,

∫ T

0

(
|µ(t, 0)|2 + |σ(t, 0)|2

)
dt <∞.(1.7)

Theorem 1.7. Let the coefficients µ, σ be continuous and satisfy (1.7). Assume
further that the function k is uniformly bounded from below, and f has quadratic
growth in x uniformly in t. Let v be a C1,2

(
[0, T ),Rd

)
solution of (1.6) with

quadratic growth in x uniformly in t. Then

v(t, x) = E

[∫ T

t

βt,xs f(s,Xt,x
s )ds+ βt,xT g

(
Xt,x
T

)]
, t ≤ T, x ∈ Rd ,

where Xt,x
s := x+

∫ s
t
µ(u,Xt,x

u )du+
∫ s
t
σ(u,Xt,x

u )dWu and βt,xs := e−
∫ s
t
k(u,Xt,xu )du

for t ≤ s ≤ T .
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Proof. We first introduce the sequence of stopping times

τn := T ∧ inf
{
s > t :

∣∣Xt,x
s − x

∣∣ ≥ n} ,
and we oberve that τn −→ T P−a.s. Since v is smooth, it follows from Itô’s
formula that for t ≤ s < T :

d
(
βt,xs v

(
s,Xt,x

s

))
= βt,xs

(
−kv +

∂v

∂t
+Av

)(
s,Xt,x

s

)
ds

+βt,xs
∂v

∂x

(
s,Xt,x

s

)
· σ
(
s,Xt,x

s

)
dWs

= βt,xs

(
−f(s,Xt,x

s )ds+
∂v

∂x

(
s,Xt,x

s

)
· σ
(
s,Xt,x

s

)
dWs

)
,

by the PDE satisfied by v in (1.6). Then:

E
[
βt,xτn v

(
τn, X

t,x
τn

)]
− v(t, x)

= E
[∫ τn

t

βt,xs

(
−f(s,Xs)ds+

∂v

∂x

(
s,Xt,x

s

)
· dWs

)]
.

Now observe that the integrands in the stochastic integral is bounded by def-
inition of the stopping time τn, the smoothness of v, and the continuity of σ.
Then the stochastic integral has zero mean, and we deduce that

v(t, x) = E
[∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)]
. (1.8)

Since τn −→ T and the Brownian motion has continuous sample paths P−a.s.
it follows from the continuity of v that, P−a.s.∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)
n→∞−→

∫ T

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xT v

(
T,Xt,x

T

)
=

∫ T

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xT g

(
Xt,x
T

) (1.9)

by the terminal condition satisfied by v in (1.6). Moreover, since k is bounded
from below and the functions f and v have quadratic growth in x uniformly in
t, we have∣∣∣∣∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)∣∣∣∣ ≤ C

(
1 + max

t≤T
|Xt|2

)
.

By the estimate stated in the existence and uniqueness theorem 1.2, the latter
bound is integrable, and we deduce from the dominated convergence theorem
that the convergence in (1.9) holds in L1(P), proving the required result by
taking limits in (1.8). ♦
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The above Feynman-Kac representation formula has an important numerical
implication. Indeed it opens the door to the use of Monte Carlo methods in order
to obtain a numerical approximation of the solution of the partial differential
equation (1.6). For sake of simplicity, we provide the main idea in the case
f = k = 0. Let

(
X(1), . . . , X(k)

)
be an iid sample drawn in the distribution of

Xt,x
T , and compute the mean:

v̂k(t, x) :=
1

k

k∑
i=1

g
(
X(i)

)
.

By the Law of Large Numbers, it follows that v̂k(t, x) −→ v(t, x) P−a.s. More-
over the error estimate is provided by the Central Limit Theorem:

√
k (v̂k(t, x)− v(t, x))

k→∞−→ N
(
0,Var

[
g
(
Xt,x
T

)])
in distribution,

and is remarkably independent of the dimension d of the variable X !

1.3.3 Representation of the Dirichlet problem

Let D be an open subset of Rd. The Dirichlet problem is to find a function u
solving:

Au− ku+ f = 0 on D and u = g on ∂D, (1.10)

where ∂D denotes the boundary of D, and A is the generator of the process
X0,X0 defined as the unique strong solution of the stochastic differential equation

X0,X0

t = X0 +

∫ t

0

µ(s,X0,X0
s )ds+

∫ t

0

σ(s,X0,X0
s )dWs, t ≥ 0.

Similarly to the the representation result of the Cauchy problem obtained in
Theorem 1.7, we have the following representation result for the Dirichlet prob-
lem.

Theorem 1.8. Let u be a C2−solution of the Dirichlet problem (1.10). Assume
that k is bounded from below, and

E[τxD] <∞, x ∈ Rd, where τxD := inf
{
t ≥ 0 : X0,x

t 6∈ D
}
.

Then, we have the representation:

u(x) = E
[
g
(
X0,x
τD

)
e−
∫ τD
0 k(Xs)ds +

∫ τD

0

f
(
X0,x
t

)
e−
∫ t
0
k(Xs)dsdt

]
.

Exercise 1.9. Provide a proof of Theorem 1.8 by imitating the arguments in
the proof of Theorem 1.7.
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1.4 The stochastic control approach to the Black-
Scholes model

1.4.1 The continuous-time financial market

Let T be a finite horizon, and (Ω,F ,P) be a complete probability space sup-
porting a Brownian motion W = {(W 1

t , . . . ,W
d
t ), 0 ≤ t ≤ T} with values in Rd.

We denote by F = FW = {Ft, 0 ≤ t ≤ T} the canonical augmented filtration of
W , i.e. the canonical filtration augmented by zero measure sets of FT .

We consider a financial market consisting of d+ 1 assets :
(i) The first asset S0 is non-risky, and is defined by

S0
t = exp

(∫ t

0

rudu

)
, 0 ≤ t ≤ T,

where {rt, t ∈ [0, T ]} is a non-negative adapted processes with
∫ T

0
rtdt <∞ a.s.,

and represents the instantaneous interest rate.
(ii) The d remaining assets Si, i = 1, . . . , d, are risky assets with price

processes defined by the dynamics

dSit
Sit

= µitdt+

d∑
j=1

σi,jt dW j
t , t ∈ [0, T ],

for 1 ≤ i ≤ d, where µ, σ are F−adapted processes with
∫ T

0
|µit|dt+

∫ T
0
|σi,j |2dt <

∞ for all i, j = 1, . . . , d. It is convenient to use the matrix notations to represent
the dynamics of the price vector S = (S1, . . . , Sd):

dSt = St ? (µtdt+ σtdWt) , t ∈ [0, T ],

where, for two vectors x, y ∈ Rd, we denote x ? y the vector of Rd with compo-
nents (x ? y)i = xiyi, i = 1, . . . , d, and µ, σ are the Rd−vector with components
µi’s, and the MR(d, d)−matrix with entries σi,j .

We assume that the MR(d, d)−matrix σt is invertible for every t ∈ [0, T ]
a.s., and we introduce the process

λt := σ−1
t (µt − rt1) , 0 ≤ t ≤ T,

called the risk premium process. Here 1 is the vector of ones in Rd. We shall
frequently make use of the discounted processes

S̃t :=
St
S0
t

= St exp

(
−
∫ t

0

rudu

)
,

Using the above matrix notations, the dynamics of the process S̃ are given by

dS̃t = St ?
(
(µt − rt1)dt+ σtdWt

)
= St ? σt (λtdt+ dWt) .
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1.4.2 Portfolio and wealth process

A portfolio strategy is an F−adapted process π = {πt, 0 ≤ t ≤ T} with values
in Rd. For 1 ≤ i ≤ n and 0 ≤ t ≤ T , πit is the amount (in Euros) invested in
the risky asset Si.

We next recall the self-financing condition in the present framework. Let Xπ
t

denote the portfolio value, or wealth, process at time t induced by the portfolio
strategy π. Then, the amount invested in the non-risky asset is Xπ

t −
∑n
i=1 π

i
t

= Xt − πt · 1.
Under the self-financing condition, the dynamics of the wealth process is

given by

dXπ
t =

n∑
i=1

πit
Sit

dSit +
Xt − πt · 1

S0
t

dS0
t .

Let X̃ be the discounted wealth process

X̃t := Xt exp

(
−
∫ t

0

r(u)du

)
, 0 ≤ t ≤ T.

Then, by an immediate application of Itô’s formula, we see that

dX̃t = π̃t · σt (λtdt+ dWt) , 0 ≤ t ≤ T. (1.11)

We still need to place further technical conditions on π, at least in order for the
above wealth process to be well-defined as a stochastic integral.

Before this, let us observe that, assuming that the risk premium process
satisfies the Novikov condition:

E
[
e

1
2

∫ T
0
|λt|2dt

]
< ∞,

it follows from the Girsanov theorem that the process

Bt := Wt +

∫ t

0

λudu , 0 ≤ t ≤ T , (1.12)

is a Brownian motion under the equivalent probability measure

Q := ZT · P on FT where ZT := exp

(
−
∫ T

0

λu · dWu −
1

2

∫ T

0

|λu|2du

)
.

In terms of the Q Brownian motion B, the discounted price process satisfies

dS̃t = S̃t ? σtdBt, t ∈ [0, T ],

and the discounted wealth process induced by an initial capital X0 and a port-
folio strategy θ can be written in

X̃π
t = X̃0 +

∫ t

0

π̃u · σudBu, for 0 ≤ t ≤ T. (1.13)
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Definition 1.10. An admissible portfolio process π = {θt, t ∈ [0, T ]} is an

F−progressively measurable process such that
∫ T

0
|σT
t πt|2dt < ∞, a.s. and the

corresponding discounted wealth process is bounded from below by a Q−martingale

X̃π
t ≥Mπ

t , 0 ≤ t ≤ T, for some Q−martingale Mπ > 0.

The collection of all admissible portfolio processes will be denoted by A.

The lower bound Mπ, which may depend on the portfolio π, has the interpre-
tation of a finite credit line imposed on the investor. This natural generalization
of the more usual constant credit line corresponds to the situation where the
total credit available to an investor is indexed by some financial holding, such as
the physical assets of the company or the personal home of the investor, used as
collateral. From the mathematical viewpoint, this condition is needed in order
to exclude any arbitrage opportunity, and will be justified in the subsequent
subsection.

1.4.3 Admissible portfolios and no-arbitrage

We first define precisely the notion of no-arbitrage.

Definition 1.11. We say that the financial market contains no arbitrage op-
portunities if for any admissible portfolio process θ ∈ A,

X0 = 0 and Xθ
T ≥ 0 P− a.s. implies Xθ

T = 0 P− a.s.

The purpose of this section is to show that the financial market described
above contains no arbitrage opportunities. Our first observation is that, by the
very definition of the probability measure Q, the discounted price process S̃
satisfies:

the process
{
S̃t, 0 ≤ t ≤ T

}
is a Q− local martingale. (1.14)

For this reason, Q is called a risk neutral measure, or an equivalent local mar-
tingale measure, for the price process S.

We also observe that the discounted wealth process satisfies:

X̃π is a Q−local martingale for every π ∈ A, (1.15)

as a stochastic integral with respect to the Q−Brownian motion B.

Theorem 1.12. The continuous-time financial market described above contains
no arbitrage opportunities, i.e. for every π ∈ A:

X0 = 0 and Xπ
T ≥ 0 P− a.s. =⇒ Xπ

T = 0 P− a.s.

Proof. For π ∈ A, the discounted wealth process X̃π is a Q−local martingale
bounded from below by a Q−martingale. Then X̃π is a Q−super-martingale.

In particular, EQ
[
X̃π
T

]
≤ X̃0 = X0. Recall that Q is equivalent to P and S0

is strictly positive. Then, this inequality shows that, whenever Xπ
0 = 0 and

Xπ
T ≥ 0 P−a.s. (or equivalently Q−a.s.), we have X̃π

T = 0 Q−a.s. and therefore
Xπ
T = 0 P−a.s. ♦
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1.4.4 Super-hedging and no-arbitrage bounds

Let G be an FT−measurable random variable representing the payoff of a deriva-
tive security with given maturity T > 0. The super-hedging problem consists in
finding the minimal initial cost so as to be able to face the payment G without
risk at the maturity of the contract T :

V (G) := inf {X0 ∈ R : Xπ
T ≥ G P− a.s. for some π ∈ A} .

Remark 1.13. Notice that V (G) depends on the reference measure P only by
means of the corresponding null sets. Therefore, the super-hedging problem is
not changed if P is replaced by any equivalent probability measure.

We now show that, under the no-arbitrage condition, the super-hedging
problem provides no-arbitrage bounds on the market price of the derivative se-
curity.

Assume that the buyer of the contingent claim G has the same access to
the financial market than the seller. Then V (G) is the maximal amount that
the buyer of the contingent claim contract is willing to pay. Indeed, if the seller
requires a premium of V (G) + 2ε, for some ε > 0, then the buyer would not
accept to pay this amount as he can obtain at least G be trading on the financial
market with initial capital V (G) + ε.

Now, since selling of the contingent claim G is the same as buying the con-
tingent claim −G, we deduce from the previous argument that

−V (−G) ≤ market price of G ≤ V (G). (1.16)

1.4.5 The no-arbitrage valuation formula

We denote by p(G) the market price of a derivative security G.

Theorem 1.14. Let G be an FT−measurabel random variable representing the
payoff of a derivative security at the maturity T > 0, and recall the notation

G̃ := G exp
(
−
∫ T

0
rtdt

)
. Assume that EQ[|G̃|] <∞. Then

p(G) = V (G) = EQ[G̃].

Moreover, there exists a portfolio π∗ ∈ A such that Xπ∗

0 = p(G) and Xπ∗

T = G,
a.s., that is π∗ is a perfect replication strategy.

Proof. 1- We first prove that V (G) ≥ EQ[G̃]. Let X0 and π ∈ A be such that
Xπ
T ≥ G, a.s. or, equivalently, X̃π

T ≥ G̃ a.s. Notice that X̃π is a Q−super-
martingale, as a Q−local martingale bounded from below by a Q−martingale.
Then X0 = X̃0 ≥ EQ[X̃π

T ] ≥ EQ[G̃].
2- We next prove that V (G) ≤ EQ[G̃]. Define the Q−martingale Yt := EQ[G|Ft]
and observe that FW = FB . Then, it follows from the martingale representation
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theorem ?? that Yt = Y0 +
∫ T

0
φt · dBt for some F−adapted process φ with∫ T

0
|φt|2dt <∞ a.s. Setting π∗ := (σT)−1φ, we see that

π∗ ∈ A and Y0 +

∫ T

0

π∗ · σtdBt = G P− a.s.

which implies that Y0 ≥ V (G) and π∗ is a perfect hedging stratgey for G,
starting from the initial capital Y0.
3- From the previous steps, we have V (G) = EQ[G̃]. Applying this result to −G,
we see that V (−G) = −V (G), so that the no-arbitrage bounds (1.16) imply that
the no-arbitrage market price of G is given by V (G). ♦

1.4.6 PDE characterization of the Black-Scholes price

In this subsection, we specialize further the model to the case where the risky
securities price processes are Markov diffucions defined by the stochastic differ-
ential equations:

dSt = St ?
(
r(t, St)dt+ σ(t, St)dBt

)
,

where r and σ are Lipschitz-continuous functions from R+ × [0,∞)d to Rd and
Sd, successively. We also consider a Vanilla derivative security defined by the
payoff

G = g(ST ),

where g : [0,∞)d → R is a measurable function bounded from below. From the
previous subsection, the no-arbitrage price at time t of this derivative security
is given by

V (t, St) = EQ
[
e−
∫ T
t
r(u,Su)dug(ST )|Ft

]
= EQ

[
e−
∫ T
t
r(u,Su)dug(ST )|St

]
,

where the last equality follows from the Markov property of the process S.
Assuming further that g has linear growth, it follows that V has linear growth
in s uniformly in t. Since V is defined by a conditional expectation, it is expected
to satisfy the linear PDE:

−∂tV − rs ? DV −
1

2
Tr
[
(s ? σ)2D2V

]
− rV = 0. (1.17)

More precisely, if V ∈ C1,2(R+,Rd), the V is a classical solution of (1.17) and
satisfies the final condition V (T, .) = g. Coversely, if the PDE (1.17) combined
with the final condition v(T, .) = g has a classical solution v with linear growth,
then v coincides with the derivatice security price V .
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Chapter 2

Stochastic Control
and Dynamic Programming

In this chapter, we assume that filtration F is the P−augmentation of the canon-
ical filtration of the Brownian motion W . This restriction is only needed in order
to simplify the presentation of the proof of the dynamic programming principle.
We will also denote by

S := [0, T )× Rn where T ∈ [0,∞].

The set S is called the parabolic interior of the state space. We will denote by
S̄ := cl(S) its closure, i.e. S̄ = [0, T ]× Rn for finite T , and S̄ = S for T =∞.

2.1 Stochastic control problems in standard form

Control processes. Given a subset U of Rk, we denote by U the set of all pro-
gressively measurable processes ν = {νt, t < T} valued in U . The elements of
U are called control processes.

Controlled Process. Let

b : (t, x, u) ∈ S× U −→ b(t, x, u) ∈ Rn

and

σ : (t, x, u) ∈ S× U −→ σ(t, x, u) ∈MR(n, d)

be two continuous functions satisfying the conditions

|b(t, x, u)− b(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ K |x− y|, (2.1)

|b(t, x, u)|+ |σ(t, x, u)| ≤ K (1 + |x|+ |u|). (2.2)

25
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for some constant K independent of (t, x, y, u). For each control process ν ∈ U ,
we consider the controlled stochastic differential equation :

dXt = b(t,Xt, νt)dt+ σ(t,Xt, νt)dWt. (2.3)

If the above equation has a unique solution X, for a given initial data, then
the process X is called the controlled process, as its dynamics is driven by the
action of the control process ν.

We shall be working with a subclass of control processes which satisfy the
additional requirement :

E
[∫ t

0

(
|b(s, x, νs)|+ |σ(s, x, νs)|2

)
ds

]
< ∞ for all (t, x) ∈ S̄. (2.4)

This condition guarantees the existence of a controlled process for each given
initial condition and control, under the above uniform Lipschitz condition on
the coefficients b and σ. The following result is an immediate consequence of
Theorem 1.2.

Theorem 2.1. Let Condition (2.1) hold, and let ν ∈ U be a process satisfying
(2.4). Then, for each F0 random variable ξ ∈ L2(P), there exists a unique
F−adapted process Xν satisfying (2.3) together with the initial condition Xν

0 =
ξ. Moreover for every T > 0, there is a constant C > 0 such that

E
[

sup
0≤s≤t

|Xν
s |2
]
< C(1 + E[|ξ|2])eCt for all t ∈ cl([0, T )). (2.5)

Cost functional. Let

f, k : [0, T )× Rn × U −→ R and g : Rn −→ R

be given functions. We assume that f, k are continuous and ‖k−‖∞ < ∞ (i.e.
max(−k, 0) is uniformly bounded). Moreover, we assume that f and g satisfy
the quadratic growth condition :

|f(t, x, u)|+ |g(x)| ≤ K(1 + |u|+ |x|2),

for some constant K independent of (t, x, u). We define the cost function J on
[0, T ]× Rn × U by :

J(t, x, ν) := E

[∫ T

t

βν(t, s)f(s,Xt,x,ν
s , νs)ds+ βν(t, T )g(Xt,x,ν

T )1T<∞

]
,

when this expression is meaningful, where

βν(t, s) := e−
∫ s
t
k(r,Xt,x,νr ,νr)dr,

and {Xt,x,ν
s , s ≥ t} is the solution of (2.3) with control process ν and initial

condition Xt,x,ν
t = x.
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Admissible control processes. In the finite horizon case T < ∞, the quadratic
growth condition on f and g together with the bound on k− ensure that J(t, x, ν)
is well-defined for all control process ν satisfying (2.4). We then define the set
of admissible controls in this case by:

U0 := {ν ∈ U : ν satisfies (2.4)} when T <∞. (2.6)

More attention is needed for the infinite horizon case. In particular, the discount
term k needs to play a role to ensure the finiteness of the integral. In this setting
the largest set of admissible control processes is given by

U0 :=

{
ν ∈ U : E

[∫ T

t

βν(t, s)|f(s,Xt,x,ν
s , νs)|ds

]
<∞ for all (t, x)

}
when T =∞.

The stochastic control problem. The purpose of this section is to study the min-
imization problem

V (t, x) := sup
ν∈U0

J(t, x, ν) for (t, x) ∈ S.

The main concern of this section is to describe the local behavior of the value
function V by means of the so-called dynamic programming equation, or Hamilton-
Jacobi-Bellman equation. We continue with some remarks.

Remark 2.2. (i) If V (t, x) = J(t, x, ν̂t,x), we call ν̂t,x an optimal control for
the problem V (t, x).

(ii) The following are some interesting subsets of controls :

- a process ν ∈ U0 which is adapted to the natural filtration FX of the
associated state process is called feedback control,

- a process ν ∈ U0 which can be written in the form νs = ũ(s,Xs) for some
measurable map ũ from [0, T ] × Rn into U , is called Markovian control;
notice that any Markovian control is a feedback control,

- the deterministic processes of U0 are called open loop controls.

(iii) Suppose that T < ∞, and let (Y,Z) be the controlled processes defined
by

dYs = Zsf(s,Xs, νs)ds and dZs = −Zsk(s,Xs, νs)ds ,

and define the augmented state process X̄ := (X,Y, Z). Then, the above
value function V can be written in the form :

V (t, x) = V̄ (t, x, 0, 1) ,

where x̄ = (x, y, z) is some initial data for the augmented state process X̄,

V̄ (t, x̄) := Et,x̄
[
ḡ(X̄T )

]
and ḡ(x, y, z) := y + g(x)z .

Hence the stochastic control problem V can be reduced without loss of
generality to the case where f = k ≡ 0. We shall appeal to this reduced
form whenever convenient for the exposition.
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(iv) For notational simplicity we consider the case T <∞ and f = k = 0. The
previous remark shows how to immediately adapt the following argument
so that the present remark holds true without the restriction f = k = 0.
The extension to the infinite horizon case is also immediate.

Consider the value function

Ṽ (t, x) := sup
ν∈Ut

E
[
g(Xt,x,ν

T )
]
, (2.7)

differing from V by the restriction of the control processes to

Ut := {ν ∈ U0 : ν independent of Ft} . (2.8)

Since Ut ⊂ U0, it is obvious that Ṽ ≤ V . We claim that

Ṽ = V, (2.9)

so that both problems are indeed equivalent. To see this, fix (t, x) ∈ S and
ν ∈ U0. Then, ν can be written as a measurable function of the canonical
process ν((ωs)0≤s≤t, (ωs−ωt)t≤s≤T ), where, for fixed (ωs)0≤s≤t, the map
ν(ωs)0≤s≤t : (ωs − ωt)t≤s≤T 7→ ν((ωs)0≤s≤t, (ωs − ωt)t≤s≤T ) can be viewed
as a control independent on Ft. Using the independence of the increments
of the Brownian motion, together with Fubini’s Lemma, it thus follows
that

J(t, x; ν) =

∫
E
[
g(X

t,x,ν(ωs)0≤s≤t
T )

]
dP((ωs)0≤s≤t)

≤
∫
Ṽ (t, x)dP((ωs)0≤s≤t) = Ṽ (t, x).

By arbitrariness of ν ∈ U0, this implies that Ṽ (t, x) ≥ V (t, x).

2.2 The dynamic programming principle

2.2.1 A weak dynamic programming principle

The dynamic programming principle is the main tool in the theory of stochastic
control. In these notes, we shall prove rigorously a weak version of the dy-
namic programming which will be sufficient for the derivation of the dynamic
programming equation. We denote:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′) and V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′),

for all (t, x) ∈ S̄. The following weak dynamic programming uses the subset of
controls Ut introduced in (2.8) above.
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Theorem 2.3. Assume that V is locally bounded. For (t, x) ∈ S, let {θν , ν ∈
Ut} be a family of finite stopping times independent of Ft, and such that Xν

t,x1[t,θν ]

is L∞−bounded for all ν ∈ Ut. Then,

V (t, x) ≥ inf
ν∈Ut

E

[∫ θν

t

βν(t, s)f(s,Xt,x,ν
s , νs)ds+ βν(t, θν)V∗(θ

ν , Xt,x,ν
θν )

]
,

V (t, x) ≤ inf
ν∈Ut

E

[∫ θν

t

βν(t, s)f(s,Xt,x,ν
s , νs)ds+ βν(t, θν)V ∗(θν , Xt,xν

θν )

]
.

We shall provide an intuitive justification of this result after the following
comments. A rigorous proof is reported in Section 2.2.2 below.

(i) If V is continuous, then V = V∗ = V ∗, and the above weak dynamic pro-
gramming principle resuces to the classical dynamic programming princi-
ple:

V (t, x) = sup
ν∈U

E

[∫ θ

t

β(t, s)f(s,Xs, νs)ds+ β(t, θ)V (θ,Xθ)

]
.(2.10)

(ii) In the discrete-time framework, the dynamic programming principle (2.10)
can be stated as follows :

V (t, x) = sup
u∈U

Et,x
[
f(t,Xt, u) + e−k(t+1,Xt+1,νt+1)V (t+ 1, Xt+1)

]
.

Observe that the infimum is now taken over the subset U of the finite
dimensional space Rk. Hence, the dynamic programming principle allows
to reduce the initial minimization problem, over the subset U of the in-
finite dimensional set of Rk−valued processes, into a finite dimensional
minimization problem. However, we are still facing an infinite dimen-
sional problem since the dynamic programming principle relates the value
function at time t to the value function at time t+ 1.

(iii) In the context of the above discrete-time framework with finite horizon
T <∞, notice that the dynamic programming principle suggests the fol-
lowing backward algorithm to compute V as well as the associated optimal
strategy (when it exists). Since V (T, ·) = g is known, the above dynamic
programming principle can be applied recursively in order to deduce the
value function V (t, x) for every t.

(iv) In the continuous time setting, there is no obvious counterpart to the
above backward algorithm. But, as the stopping time θ approaches t,
the above dynamic programming principle implies a special local behavior
for the value function V . When V is known to be smooth, this will be
obtained by means of Itô’s formula.
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(v) It is usually very difficult to determine a priori the regularity of V . The
situation is even worse since there are many counter-examples showing
that the value function V can not be expected to be smooth in general;
see Section 2.4. This problem is solved by appealing to the notion of
viscosity solutions, which provides a weak local characterization of the
value function V .

(vi) Once the local behavior of the value function is characterized, we are
faced to the important uniqueness issue, which implies that V is com-
pletely characterized by its local behavior together with some convenient
boundary condition.

Intuitive justification of (2.10). Let us assume that V is continuous. In
particular, V is measurable and V = V∗ = V ∗. Let Ṽ (t, x) denote the right
hand-side of (2.10).

By the tower Property of the conditional expectation operator, it is easily
checked that

J(t, x, ν) = Et,x

[∫ θ

t

β(t, s)f(s,Xs, νs)ds+ β(t, θ)J(θ,Xθ, ν)

]
.

Since J(θ,Xθ, ν) ≤ V (θ,Xθ), this proves that V ≥ Ṽ . To prove the reverse
inequality, let µ ∈ U and ε > 0 be fixed, and consider an ε−optimal control νε

for the problem V (θ,Xθ), i.e.

J(θ,Xθ, ν
ε) ≥ V (θ,Xθ)− ε.

Clearly, one can choose νε = µ on the stochastic interval [t, θ]. Then

V (t, x) ≥ J(t, x, νε) = Et,x

[∫ θ

t

β(t, s)f(s,Xs, µs)ds+ β(t, θ)J(θ,Xθ, ν
ε)

]

≥ Et,x

[∫ θ

t

β(t, s)f(s,Xs, µs)ds+ β(t, θ)V (θ,Xθ)

]
− ε Et,x[β(t, θ)] .

This provides the required inequality by the arbitrariness of µ ∈ U and ε > 0.
♦

Exercise. Where is the gap in the above sketch of the proof ?

2.2.2 Dynamic programming without measurable selec-
tion

In this section, we provide a rigorous proof of Theorem 2.3. Notice that, we
have no information on whether V is measurable or not. Because of this, the
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right-hand side of classical dynamic programming principle (2.10) is not even
known to be well-defined.

The formulation of Theorem 2.3 avoids this measurability problem since
V∗ and V ∗ are lower- and upper-semicontinuous, respectively, and therefore
measurable. In addition, it allows to avoid the typically heavy technicalities
related to measurable selection arguments needed for the proof of the classical
(2.10) after a convenient relaxation of the control problem, see e.g. El Karoui
and Jeanblanc [?].

Proof of Theorem 2.3 For simplicity, we consider the finite horizon case
T < ∞, so that, without loss of generality, we assume f = k = 0, See Remark
2.2 (iii). The extension to the infinite horizon framework is immediate.
1. Let ν ∈ Ut be arbitrary and set θ := θν . Then:

E
[
g
(
Xt,x,ν
T

)
|Fθ
]

(ω) = J(θ(ω), Xt,x,ν
θ (ω); ν̃ω),

where ν̃ω is obtained from ν by freezing its trajectory up to the stopping time
θ. Since, by definition, J(θ(ω), Xt,x,ν

θ (ω); ν̃ω) ≤ V ∗(θ(ω), Xt,x,ν
θ (ω)), it follows

from the tower property of conditional expectations that

E
[
g
(
Xt,x,ν
T

)]
= E

[
E
[
g
(
Xt,x,ν
T

)
|Fθ
]]
≤ E

[
V ∗
(
θ,Xt,x,ν

θ

)]
,

which provides the second inequality of Theorem 2.3 by the arbitrariness of
ν ∈ Ut.
2. Let ε > 0 be given, and consider an arbitrary function

ϕ : S −→ R such that ϕ upper-semicontinuous and V ≥ ϕ.

2.a. There is a family (ν(s,y),ε)(s,y)∈S ⊂ U0 such that:

ν(s,y),ε ∈ Us and J(s, y; ν(s,y),ε) ≥ V (s, y)− ε, for every (s, y) ∈ S.(2.11)

Since g is lower-semicontinuous and has quadratic growth, it follows from Theo-
rem 2.1 that the function (t′, x′) 7→ J(t′, x′; ν(s,y),ε) is lower-semicontinuous, for
fixed (s, y) ∈ S. Together with the upper-semicontinuity of ϕ, this implies that
we may find a family (r(s,y))(s,y)∈S of positive scalars so that, for any (s, y) ∈ S,

ϕ(s, y)− ϕ(t′, x′) ≥ −ε and J(s, y; ν(s,y),ε)− J(t′, x′; ν(s,y),ε) ≤ ε
for (t′, x′) ∈ B(s, y; r(s,y)),

(2.12)

where, for r > 0 and (s, y) ∈ S,

B(s, y; r) := {(t′, x′) ∈ S : t′ ∈ (s− r, s), |x′ − y| < r} .

Clearly, {B(s, y; r) : (s, y) ∈ S, 0 < r ≤ r(s,y)} forms an open covering of

[0, T ) × Rd. It then follows from the Lindelöf covering Theorem, see e.g. [?]
Theorem 6.3 Chap. VIII, that we can find a countable sequence (ti, xi, ri)i≥1

of elements of S × R, with 0 < ri ≤ r(ti,xi) for all i ≥ 1, such that S ⊂
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{T} × Rd ∪ (∪i≥1B(ti, xi; ri)). Set A0 := {T} × Rd, C−1 := ∅, and define the
sequence

Ai+1 := B(ti+1, xi+1; ri+1) \ Ci where Ci := Ci−1 ∪Ai, i ≥ 0.

With this construction, it follows from (2.11), (2.12), together with the fact that
V ≥ ϕ, that the countable family (Ai)i≥0 satisfies

(θ,Xt,x,ν
θ ) ∈ ∪i≥0Ai P− a.s., Ai ∩Aj = ∅ for i 6= j ∈ N,

and J(·; νi,ε) ≥ ϕ− 3ε on Ai for i ≥ 1,
(2.13)

where νi,ε := ν(ti,xi),ε for i ≥ 1.
2.b. We now prove the first inequality in Theorem 2.3. We fix ν ∈ Ut and
θ ∈ T t[t,T ]. Set An := ∪0≤i≤nAi, n ≥ 1. Given ν ∈ Ut, we define for s ∈ [t, T ]:

νε,ns := 1[t,θ](s)νs + 1(θ,T ](s)
(
νs1(An)c(θ,X

t,x,ν
θ ) +

n∑
i=1

1Ai(θ,X
t,x,ν
θ )νi,εs

)
.

Notice that {(θ,Xt,x,ν
θ ) ∈ Ai} ∈ F tθ. Then, it follows that νε,n ∈ Ut. Then, it

follows from (2.13) that:

E
[
g
(
Xt,x,νε,n

T

)
|Fθ
]

1An
(
θ,Xt,x,ν

θ

)
= V

(
T,Xt,x,νε,n

T

)
1A0

(
θ,Xt,x,ν

θ

)
+

n∑
i=1

J(θ,Xt,x,ν
θ , νi,ε)1Ai

(
θ,Xt,x,ν

θ

)
≥

n∑
i=0

(
ϕ(θ,Xt,x,ν

θ − 3ε
)
1Ai

(
θ,Xt,x,ν

θ

)
=

(
ϕ(θ,Xt,x,ν

θ )− 3ε
)
1An

(
θ,Xt,x,ν

θ

)
,

which, by definition of V and the tower property of conditional expectations,
implies

V (t, x) ≥ J(t, x, νε,n)

= E
[
E
[
g
(
Xt,x,νε,n

T

)
|Fθ
]]

≥ E
[(
ϕ
(
θ,Xt,x,ν

θ

)
− 3ε

)
1An

(
θ,Xt,x,ν

θ

)]
+E

[
g
(
Xt,x,ν
T

)
1(An)c

(
θ,Xt,x,ν

θ

)]
.

Since g
(
Xt,x,ν
T

)
∈ L1, it follows from the dominated convergence theorem that:

V (t, x) ≥ −3ε+ lim inf
n→∞

E
[
ϕ(θ,Xt,x,ν

θ )1An
(
θ,Xt,x,ν

θ

)]
= −3ε+ lim

n→∞
E
[
ϕ(θ,Xt,x,ν

θ )+1An
(
θ,Xt,x,ν

θ

)]
− lim
n→∞

E
[
ϕ(θ,Xt,x,ν

θ )−1An
(
θ,Xt,x,ν

θ

)]
= −3ε+ E

[
ϕ(θ,Xt,x,ν

θ )
]
,
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where the last equality follows from the left-hand side of (2.13) and from the
monotone convergence theorem, due to the fact that either E

[
ϕ(θ,Xt,x,ν

θ )+
]
<

∞ or E
[
ϕ(θ,Xt,x,ν

θ )−
]
< ∞. By the arbitrariness of ν ∈ Ut and ε > 0, this

shows that:

V (t, x) ≥ sup
ν∈Ut

E
[
ϕ(θ,Xt,x,ν

θ )
]
. (2.14)

3. It remains to deduce the first inequality of Theorem 2.3 from (2.14). Fix
r > 0. It follows from standard arguments, see e.g. Lemma 3.5 in [?], that
we can find a sequence of continuous functions (ϕn)n such that ϕn ≤ V∗ ≤ V
for all n ≥ 1 and such that ϕn converges pointwise to V∗ on [0, T ] × Br(0).
Set φN := minn≥N ϕn for N ≥ 1 and observe that the sequence (φN )N is non-
decreasing and converges pointwise to V∗ on [0, T ] × Br(0). By (2.14) and the
monotone convergence Theorem, we then obtain:

V (t, x) ≥ lim
N→∞

E
[
φN (θν , Xν

t,x(θν))
]

= E
[
V∗(θ

ν , Xν
t,x(θν))

]
.

♦

2.3 The dynamic programming equation

The dynamic programming equation is the infinitesimal counterpart of the dy-
namic programming principle. It is also widely called the Hamilton-Jacobi-
Bellman equation. In this section, we shall derive it under strong smoothness
assumptions on the value function. Let Sd be the set of all d × d symmetric
matrices with real coefficients, and define the map H : S× R× Rn × Sn by :

H(t, x, r, p, γ)

:= sup
u∈U

{
−k(t, x, u)r + b(t, x, u) · p+

1

2
Tr[σσT(t, x, u)γ] + f(t, x, u)

}
.

We also need to introduce the linear second order operator Lu associated to the
controlled process {β(0, t)Xu

t , t ≥ 0} controlled by the constant control process
u :

Luϕ(t, x) := −k(t, x, u)ϕ(t, x) + b(t, x, u) ·Dϕ(t, x)

+
1

2
Tr
[
σσT(t, x, u)D2ϕ(t, x)

]
,

where D and D2 denote the gradient and the Hessian operators with respect to
the x variable. With this notation, we have by Itô’s formula:

βν(0, s)ϕ(s,Xν
s )− βν(0, t)ϕ(t,Xν

t ) =

∫ s

t

βν(0, r) (∂t + Lνr )ϕ(r,Xν
r )dr

+

∫ s

t

βν(0, r)Dϕ(r,Xν
r ) · σ(r,Xν

r , νr)dWr

for every s ≥ t and smooth function ϕ ∈ C1,2([t, s],Rn) and each admissible
control process ν ∈ U0.
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Proposition 2.4. Assume the value function V ∈ C1,2([0, T ),Rn), and let the
coefficients k(·, ·, u) and f(·, ·, u) be continuous in (t, x) for all fixed u ∈ U .
Then, for all (t, x) ∈ S:

−∂tV (t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≥ 0. (2.15)

Proof. Let (t, x) ∈ S and u ∈ U be fixed and consider the constant control
process ν = u, together with the associated state process X with initial data
Xt = x. For all h > 0, Define the stopping time :

θh := inf {s > t : (s− t,Xs − x) 6∈ [0, h)× αB} ,

where α > 0 is some given constant, and B denotes the unit ball of Rn. Notice
that θh −→ t, P−a.s. when h↘ 0, and θh = h for h ≤ h̄(ω) sufficiently small.
1. From the first inequality of the dynamic programming principle, it follows
that :

0 ≤ Et,x

[
β(0, t)V (t, x)− β(0, θh)V (θh, Xθh)−

∫ θh

t

β(0, r)f(r,Xr, u)dr

]

= −Et,x

[∫ θh

t

β(0, r)(∂tV + L·V + f)(r,Xr, u)dr

]

−Et,x
[∫ s

t

β(0, r)DV (r,Xr) · σ(r,Xr, u)dWr

]
,

the last equality follows from Itô’s formula and uses the crucial smoothness
assumption on V .
2. Observe that β(0, r)DV (r,Xr) · σ(r,Xr, u) is bounded on the stochastic
interval [t, θh]. Therefore, the second expectation on the right hand-side of the
last inequality vanishes, and we obtain :

−Et,x

[
1

h

∫ θh

t

β(0, r)(∂tV + L·V + f)(r,Xr, u)dr

]
≥ 0

We now send h to zero. The a.s. convergence of the random value inside the
expectation is easily obtained by the mean value Theorem; recall that θh = h

for sufficiently small h > 0. Since the random variable h−1
∫ θh
t
β(0, r)(L·V +

f)(r,Xr, u)dr is essentially bounded, uniformly in h, on the stochastic interval
[t, θh], it follows from the dominated convergence theorem that :

−∂tV (t, x)− LuV (t, x)− f(t, x, u) ≥ 0.

By the arbitrariness of u ∈ U , this provides the required claim. ♦

We next wish to show that V satisfies the nonlinear partial differential equa-
tion (2.16) with equality. This is a more technical result which can be proved by
different methods. We shall report a proof, based on a contradiction argument,
which provides more intuition on this result, although it might be slightly longer
than the usual proof reported in standard textbooks.
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Proposition 2.5. Assume the value function V ∈ C1,2([0, T ),Rn), and let the
function H be continuous, and ‖k+‖∞ < ∞. Then, for all (t, x) ∈ S:

−∂tV (t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≤ 0. (2.16)

Proof. Let (t0, x0) ∈ [0, T )× Rn be fixed, assume to the contrary that

∂tV (t0, x0) +H
(
t0, x0, V (t0, x0), DV (t0, x0), D2V (t0, x0)

)
< 0, (2.17)

and let us work towards a contradiction.
1. For a given parameter ε > 0, define the smooth function ϕ ≥ V by

ϕ(t, x) := V (t, x) +
ε

2
|x− x0|2 .

Then

(V − ϕ)(t0, x0) = 0, (DV −Dϕ)(t0, x0) = 0, (∂tV − ∂tϕ)(t0, x0) = 0,

and (D2V −D2ϕ)(t0, x0) = −εIn,

where In is the n×n identity matrix. By continuity of H, it follows from (2.17)
that

h(t0, x0) := ∂tϕ(t0, x0) +H
(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)

)
< 0

for a sufficiently small ε > 0.
2. For η > 0, define the open neighborhood of (t0, x0) :

Nη := {(t, x) : (t− t0, x− x0) ∈ (−η, η)× ηB and h(t, x) < 0} ,

and observe that the parmeter γ defined by the following is positive:

−2γeη‖k
+‖∞ := max

∂Nη
(V − ϕ) = −ε

2
min
∂Nη

|x− x0|2 < 0. (2.18)

Next, let ν̃ be a γ−optimal control for the problem V (t0, x0), i.e.

J(t0, x0, ν̃) ≥ V (t0, x0)− γ. (2.19)

We shall denote by X̃ and β̃ the controlled process and the discount factor
defined by ν̃ and the initial data X̃t0 = x0.
3. Consider the stopping time

θ := inf
{
s > t : (s, X̃s) 6∈ Nη

}
,

and observe that, by continuity of the state process, (θ, X̃θ) ∈ ∂Nη, so that :

(V − ϕ)(θ, X̃θ) ≤ −2γeη‖k
+‖∞
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by (2.18). Recalling that β̃(t0, t0) = 1, we now compute that :

β̃(t0, θ)V (θ, X̃θ)− V (t0, x0) ≤
∫ θ

t0

d[β̃(t0, r)ϕ(r, X̃r)]− 2γeh‖k
+‖∞ β̃(t0, θ)

≤
∫ θ

t0

d[β̃(t0, r)ϕ(r, X̃r)]− 2γ.

By Itô’s formula, this provides :

V (t0, x0) ≥ Et0,x0

[
β̃(t0, θ)V (θ, X̃θ)−

∫ θ

t0

(∂tϕ+ Lν̃rϕ)(r, X̃r)dr

]
+ 2γ ,

where the ”dW” integral term has zero mean, as its integrand is bounded on
the stochastic interval [t0, θ]. Observe also that (ϕt+Lν̃rϕ)(r, X̃r)+f(r, X̃r, ν̃r)
≤ h(r, X̃r) ≤ 0 on the stochastic interval [t0, θ]. We therefore deduce that :

V (t0, x0) ≥ 2γ + Et0,x0

[∫ θ

t0

β̃(t0, r)f(r, X̃r, ν̃r) + β̃(t0, θ)V (θ, X̃θ)

]
≥ 2γ + J(t0, x0, ν̃)

≥ V (t0, x0) + γ,

where the last inequality follows by (2.19). This completes the proof. ♦

As a consequence of Propositions 2.4 and 2.5, we have the main result of
this section :

Theorem 2.6. Let the conditions of Propositions 2.5 and 2.4 hold. Then, the
value function V solves the Hamilton-Jacobi-Bellman equation

−∂tV −H
(
., V,DV,D2V

)
= 0 on S. (2.20)

2.4 On the regularity of the value function

The purpose of this paragraph is to show that the value function should not be
expected to be smooth in general. We start by proving the continuity of the
value function under strong conditions; in particular, we require the set U in
which the controls take values to be bounded. We then give a simple example
in the deterministic framework where the value function is not smooth. Since
it is well known that stochastic problems are “more regular” than deterministic
ones, we also give an example of stochastic control problem whose value function
is not smooth.
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2.4.1 Continuity of the value function for bounded con-
trols

For notational simplicity, we reduce the stochastic control problem to the case
f = k ≡ 0, see Remark 2.2 (iii). Our main concern, in this section, is to show the
standard argument for proving the continuity of the value function. Therefore,
the following results assume strong conditions on the coefficients of the model
in order to simplify the proofs. We first start by examining the value function
V (t, ·) for fixed t ∈ [0, T ].

Proposition 2.7. Let f = k ≡ 0, T < ∞, and assume that g is Lipschitz
continuous. Then:
(i) V is Lipschitz in x, uniformly in t.
(ii) Assume further that U is bounded. Then V is 1

2−Hölder-continuous in t,
and there is a constant C > 0 such that:∣∣V (t, x)− V (t′, x)

∣∣ ≤ C(1 + |x|)
√
|t− t′|; t, t′ ∈ [0, T ], x ∈ Rn.

Proof. (i) For x, x′ ∈ Rn and t ∈ [0, T ), we first estimate that:

|V (t, x)− V (t, x′)| ≤ sup
ν∈U0

E
∣∣∣g (Xt,x,ν

T

)
− g

(
Xt,x′,ν
T

)∣∣∣
≤ Const sup

ν∈U0

E
∣∣∣Xt,x,ν

T −Xt,x′,ν
T

∣∣∣
≤ Const |x− x′|,

where we used the Lipschitz-continuity of g together with the flow estimates
of Theorem 1.4, and the fact that the coefficients b and σ are Lipschitz in x
uniformly in (t, u). This compltes the proof of the Lipschitz property of the
value function V .
(ii) To prove the H”older continuity in t, we shall use the dynamic programming
principle.

(ii-1) We first make the following important observation. A careful review
of the proof of Theorem 2.3 reveals that, whenever the stopping times θν are
constant (i.e. deterministic), the dynamic programming principle holds true
with the semicontinuous envelopes taken only with respect to the x−variable.
Since V was shown to be contious in the first part of this proof, we deduce that:

V (t, x) = sup
ν∈U0

E
[
V
(
t′, Xt,x,ν

t′

)]
(2.21)

for all x ∈ Rn, t < t′ ∈ [0, T ].
(ii-2) Fix x ∈ Rn, t < t′ ∈ [0, T ]. By the dynamic programming principle

(2.21), we have :

|V (t, x)− V (t′, x)| =

∣∣∣∣ sup
ν∈U0

E
[
V
(
t′, Xt,x,ν

t′

)]
− V (t′, x)

∣∣∣∣
≤ sup

ν∈U0

E
∣∣V (t′, Xt,x,ν

t′

)
− V (t′, x)

∣∣ .
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By the Lipschitz-continuity of V (s, ·) established in the first part of this proof,
we see that :

|V (t, x)− V (t′, x)| ≤ Const sup
ν∈U0

E
∣∣Xt,x,ν

t′ − x
∣∣ . (2.22)

We shall now prove that

sup
ν∈U

E
∣∣Xt,x,ν

t′ − x
∣∣ ≤ Const (1 + |x|)|t− t′|1/2, (2.23)

which provides the required (1/2)−Hölder continuity in view of (2.22). By
definition of the process X, and assuming t < t′, we have

E
∣∣Xt,x,ν

t′ − x
∣∣2 = E

∣∣∣∣∣
∫ t′

t

b(r,Xr, νr)dr +

∫ s

t

σ(r,Xr, νr)dWr

∣∣∣∣∣
2

≤ Const E

[∫ t′

t

|h(r,Xr, νr)|2 dr

]
where h := [b2 + σ2]1/2. Since h is Lipschitz-continuous in (t, x, u) and has
quadratic growth in x and u, this provides:

E
∣∣Xt,x,ν

t′ − x
∣∣2 ≤ Const

(∫ t′

t

(1 + |x|2 + |νr|2)dr +

∫ t′

t

E
∣∣Xt,x,ν

r − x
∣∣2 dr) .

Since the control process ν is uniformly bounded, we obtain by the Gronwall
lemma the estimate:

E
∣∣Xt,x,ν

t′ − x
∣∣2 ≤ Const (1 + |x|)|t′ − t|, (2.24)

where the constant does not depend on the control ν. ♦

Remark 2.8. When f and/or k are non-zero, the conditions required on f and
k in order to obtain the (1/2)−Hölder continuity of the value function can be
deduced from the reduction of Remark 2.2 (iii).

Remark 2.9. Further regularity results can be proved for the value function
under convenient conditions. Typically, one can prove that LuV exists in the
generalized sense, for all u ∈ U . This implies immediately that the result of
Proposition 2.5 holds in the generalized sense. More technicalities are needed in
order to derive the result of Proposition 2.4 in the generalized sense. We refer
to [?], §IV.10, for a discussion of this issue.

2.4.2 A deterministic control problem with non-smooth
value function

Let σ ≡ 0, b(x, u) = u, U = [−1, 1], and n = 1. The controlled state is then the
one-dimensional deterministic process defined by :

Xs = Xt +

∫ s

t

νtdt for 0 ≤ t ≤ s ≤ T .
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Consider the deterministic control problem

V (t, x) := sup
ν∈U

(XT )2.

The value function of this problem is easily seen to be given by :

V (t, x) =

{
(x+ T − t)2 for x ≥ 0 with optimal control û = 1 ,
(x− T + t)2 for x ≤ 0 with optimal control û = −1 .

This function is continuous. However, a direct computation shows that it is not
differentiable at x = 0.

2.4.3 A stochastic control problem with non-smooth value
function

Let U = R, and the controlled process X be the scalar process defined by the
dynamics:

dXt = νtdWt,

where W is a scalar Brownian motion. Let g be a nonnegative lower semicon-
tinuous mapping on R, and consider the stochastic control problem

V (t, x) := sup
ν∈U

Et,x [g(Xν
T )] .

Let us assume that V is smooth, and work towards a contradiction.

1. If V is C1,2([0, T ),R), then it follows from Proposition 2.4 that V satisfies

−∂tV −
1

2
u2D2V ≥ 0 for all u ∈ R,

and all (t, x) ∈ [0, T )× R. Taking u = 0, we see that

V (·, x) is non-increasing for all x ∈ R. (2.25)

On the other hand, by sending u to infinity, it follows that

V (t, ·) is concave for all t ∈ [0, T ). (2.26)

2. Since g is nonnegative, it follows from Fatou’s lemma, the lower semiconti-
nuity of g, and the continuity of XT in its initial condition, that:

V (T−, x) := lim
t↗T

V (t, x) ≥ g(x) for all x ∈ R. (2.27)

Now, it follows from (2.25) and (2.27) that :

V (t, x) ≥ V (T−, x) ≥ g(x) for all (t, x) ∈ [0, T ]× R.
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In view of (2.26), this proves that

V (t, x) ≥ gconc(y) for all (t, y, z) ∈ [0, T ]× R2, (2.28)

where gconc is the concave envelope of g, i.e. the smallest concave majorant of
g.

3. Using the inequality g ≤ gconc together with Jensen’s inequality and the
martingale property of X, it follows that

V (t, x) := sup
ν∈U0

Et,x [g(Xν
T )] ≤ sup

ν∈U0

Et,x [gconc(Xν
T )] .

Now, observe that Xν is a local martingale for every ν ∈ U0. Since gconc is
concave, the process gconc(Xν) is a local supermartingale. Moreover gconc ≥
g ≥ 0, which implies by Fatou’s lemma that gconc(Xν) is a supermartingale. In
particular, Et,x [gconc(Xν

T )] ≤ gconc(x), and

V (t, x) ≤ gconc(x).

In view of (2.28), we have then proved that

V ∈ C1,2([0, T ),R)
=⇒ V (t, x) = gconc(x) for all (t, x) ∈ [0, T )× R.

Now recall that this implication holds for any arbitrary non-negative lower semi-
continuous function g. We then obtain a contradiction whenever the function
gconc is not C2(R). Hence

gconc 6∈ C2(R) =⇒ V 6∈ C1,2([0, T ),R2).



Chapter 3

Optimal Stopping and
Dynamic Programming

As in the previous chapter, we assume here that the filtration F is defined as the
P−augmentation of the canonical filtration of the Brownian motion W defined
on the probability space (Ω,F ,P).

Our objective is to derive similar results, as those obtained in the previous
chapter for standard stochastic control problems, in the context of optimal stop-
ping problems. We will then first start by the formulation of optimal stopping
problems, then the corresponding dynamic programming principle, and dynamic
programming equation.

3.1 Optimal stopping problems

For 0 ≤ t ≤ T ≤ ∞, we denote by T[t,T ] the collection of all F−stopping
times with values in [t, T ]. We also recall the notation S := [0, T )× Rn for the
parabolic state space of the underlying state process X defined by the stochastic
differential equation:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (3.1)

where µ and σ are defined on S̄ and take values in Rn and Sn, respectively. We
assume that µ and σ satisfies the usual Lipschitz and linear growth conditions
so that the above SDE has a unique strong solution satisfying the integrability
proved in Theorem 1.2.

The infinitesimal generator of the Markov diffusion process X is denoted by

Aϕ := µ ·Dϕ+
1

2
Tr
[
σσTD2ϕ

]
.

Let g be a measurable function from Rn to R, and assume that:

E
[

sup
0≤t<T

|g(Xt)|
]

< ∞. (3.2)

41
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For instance, if g has polynomial growth, the latter integrability condition is
automatically satisfied. Under this condition, the following criterion:

J(t, x, τ) := E
[
g
(
Xt,x
τ

)
1τ<∞

]
(3.3)

is well-defined for all (t, x) ∈ S and τ ∈ T[t,T ]. Here, Xt,x denotes the unique

strong solution of (3.1) with initial condition Xt,x
t = x.

The optimal stopping problem is now defined by:

V (t, x) := sup
τ∈T[t,T ]

J(t, x, τ) for all (t, x) ∈ S. (3.4)

A stopping time τ̂ ∈ T[t,T ] is called an optimal stopping rule if V (t, x) =
J(t, x, τ̂).

The set

S := {(t, x) : V (t, x) = g(x)} (3.5)

is called the stopping region and is of particular interest: whenever the state is
in this region, it is optimal to stop immediately. Its complement Sc is called
the continuation region.

Remark 3.1. As in the previous chapter, we could have considered an appear-
ently more general criterion

V (t, x) := sup
τ∈T[t,T ]

E
[∫ τ

t

β(t, s)f(s,Xs)ds+ β(t, τ)g
(
Xt,x
τ

)
1τ<∞

]
,

with

β(t, s) := e−
∫ s
t
k(s,Xs)ds for 0 ≤ t ≤ s < T.

However by introducing the additional state

Yt := Y0 +

∫ t

0

βsf(s,Xs)ds,

Zt := Z0 +

∫ t

0

Zsk(s,Xs)ds,

we see immediately that we may reduce this problem to the context of (3.4).

Remark 3.2. Consider the subset of stopping rules:

T t[t,T ] :=
{
τ ∈ T[t,T ] : τ independent of Ft

}
. (3.6)

By a similar argument as in Remark 2.2 (iv), we can see that the maximization
in the optimal stopping problem (3.4) can be restricted to this subset, i.e.

V (t, x) := sup
τ∈T t

[t,T ]

J(t, x, τ) for all (t, x) ∈ S. (3.7)
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3.2 The dynamic programming principle

In the context of optimal stopping problems, the proof of the dynamic pro-
gramming principle is easier than in the context of stochastic control problems
of the previous chapter. The reader may consult the excellent exposition in the
book of Karatzas and Shreve [?], Appendix D, where the following dynamic
programming principle is proved:

V (t, x) = sup
τ∈T t

[t,T ]

E
[
1{τ<θ}g(Xt,x

τ ) + 1{τ≥θ}V (θ,Xt,x
θ )
]
, (3.8)

for all (t, x) ∈ S and τ ∈ T[t,T ]. In particular, the proof in the latter reference
does not require any heavy measurable selection, and is essentially based on the
supermartingale nature of the so-called Snell envelope process. Moreover, we
observe that it does not require any Markov property of the underlying state
process.

We report here a different proof in the sprit of the weak dynamic program-
ming principle for stochastic control problems proved in the previous chapter.
The subsequent argument is specific to our Markovian framework and, in this
sense, is weaker than the classical dynamic programming principle. However,
the combination of the arguments of this chapter with those of the previous
chapter allow to derive a dynamic programming principle for mixed stochastic
control and stopping problem.

The following claim will be making using of the subset T t[t,T ], introduced

in (3.6), of all stopping times in T[t,T ] which are independent of Ft, and the
notations:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′) and V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′)

for all (t, x) ∈ S̄. We recall that V∗ and V ∗ are the lower and upper semicon-
tinuous envelopes of V , and that V∗ = V ∗ = V whenever V is continuous.

Theorem 3.3. Assume that V is locally bounded. For (t, x) ∈ S, let θ ∈ T̄ t[t,T ]

be a stopping time such that Xt,x
θ is bounded. Then:

V (t, x) ≤ sup
τ∈T t

[t,T ]

E
[
1{τ<θ}g(Xt,x

τ ) + 1{τ≥θ}V
∗(θ,Xt,x

θ )
]
, (3.9)

V (t, x) ≥ sup
τ∈T t

[t,T ]

E
[
1{τ<θ}g(Xt,x

τ ) + 1{τ≥θ}V∗(θ,X
t,x
θ ))

]
. (3.10)

Proof. Inequality (3.9) follows immediately from the tower property and the
fact that J ≤ V ∗.

We next prove inequality (3.10) with V∗ replaced by an arbitrary function

ϕ : S −→ R such ϕ is upper-semicontinuous and V ≥ ϕ,

which implies (3.10) by the same argument as in Step 3 of the proof of Theorem
2.3.
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Arguying as in Step 2 of the proof of Theorem 2.3, we first observe that, for
every ε > 0, we can find a countable family Āi ⊂ (ti − ri, ti]×Ai ⊂ S, together
with a sequence of stopping times τ i,ε in T ti[ti,T ], i ≥ 1, satisfying Ā0 = {T}×Rd
and

∪i≥0Āi = S, Āi ∩ Āj = ∅ for i 6= j ∈ N, J̄(·; τ i,ε) ≥ ϕ− 3ε on Āi for i ≥ 1.
(3.11)

Set Ān := ∪i≤nĀi, n ≥ 1. Given two stopping times θ, τ ∈ T t[t,T ], it is clear that

τn,ε := τ1{τ<θ} + 1{τ≥θ}

(
T1(Ān)c

(
θ,Xt,x

θ

)
+

n∑
i=1

τ i,ε1Āi
(
θ,Xt,x

θ

))

defines a stopping time in T t[t,T ]. We then deduce from the tower property and

(3.11) that

V̄ (t, x) ≥ J̄(t, x; τn,ε)

≥ E
[
g
(
Xt,x
τ

)
1{τ<θ} + 1{τ≥θ}

(
ϕ(θ,Xt,x

θ )− 3ε
)
1Ān(θ,Xt,x

θ )
]

+E
[
1{τ≥θ}g(Xt,x

T )1(Ān)c(θ,X
t,x
θ )
]
.

By sending n→∞ and arguing as in the end of Step 2 of the proof of Theorem
2.3, we deduce that

V̄ (t, x) ≥ E
[
g
(
Xt,x
τ

)
1{τ<θ} + 1{τ≥θ}ϕ(θ,Xt,x

θ )
]
− 3ε,

and the result follows from the arbitrariness of ε > 0 and τ ∈ T t[t,T ]. ♦

3.3 The dynamic programming equation

In this section, we explore the infinitesimal counterpart of the dynamic program-
ming principle of Theorem 3.3, when the value function V is a priori known to
be smooth. The smoothness that will be required in this chapter must be so
that we can apply Itô’s formula to V . In particular, V is continuous, and the
dynamic programming principle of Theorem 3.3 reduces to the classical dynamic
programming principle (3.8).

Loosely speaking, the following dynamic programming equation says the
following:

• In the stopping region S defined in (3.5), continuation is sub-optimal, and
therefore the linear PDE must hold with inequality in such a way that the
value function is a submartingale.

• In the continuation region Sc, it is optimal to delay the stopping decision
after some small moment, and therefore the value function must solve a
linear PDE as in Chapter 1.
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Theorem 3.4. Assume that V ∈ C1,2 ([0, T ),Rn), and let g : Rn −→ R be
continuous. Then V solves the obstacle problem:

min {−(∂t +A)V , V − g} = 0 on S. (3.12)

Proof. We organize the proof into two steps.
1. We first show that:

min {−(∂t +A)V , V − g} ≥ 0 on S. (3.13)

The inequality V − g ≥ 0 is obvious as the constant stopping rule τ = t ∈ T[t,T ]

is admissible. Next, for (t0, x0) ∈ S, consider the stopping times

θh := inf
{
t > t0 : (t,Xt0,x0

t ) 6∈ [t0, t0 + h]×B
}
, h > 0,

where B is the unit ball of Rn centered at x0. Then θh ∈ T t[t,T ] for sufficiently

small h, and it follows from (3.10)that:

V (t0, x0) ≥ E [V (θh, Xθh)] .

We next apply Itô’s formula, and observe that the expected value of the diffusion
term vanishes because (t,Xt) lies in the compact subset [t0, t0 + h] × B for
t ∈ [t0, θh]. Then:

E

[
−1

h

∫ θh

t0

(∂t +A)V (t,Xt0,x0

t )dt

]
≥ 0.

Clearly, there exists ĥω > 0, depending on ω, θh = h for h ≤ ĥω. Then, it
follows from the mean value theorem that the expression inside the expectation
converges P−a.s. to −(∂t +A)V (t0, x0), and we conclude by dominated conver-
gence that −(∂t +A)V (t0, x0) ≥ 0.
2. In order to complete the proof, we use a contradiction argument, assuming
that

V (t0, x0) > 0 and − (∂t +A)V (t0, x0) > 0 at some (t0, x0) ∈ S (3.14)

and we work towards a contradiction of (3.9). Introduce the function

ϕ(t, x) := V (t, x) +
ε

2
|x− x0|2 for (t, x) ∈ S.

Then, it follows from (3.14) that for a sufficiently small ε > 0, we may find
h > 0 and δ > 0 such that

V ≥ g + δ and − (∂t +A)ϕ ≥ 0 on Nh := [t0, t0 + h]× hB. (3.15)

Moreover:

−γ := max
∂Nh

(V − ϕ) < 0. (3.16)
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Next, let

θ := inf
{
t > t0 :

(
t,Xt0,x0

t

)
6∈ Nh

}
.

For an arbitrary stopping rule τ ∈ T t[t,T ], we compute by Itô’s formula that:

E [V (τ ∧ θ,Xτ∧θ)− V (t0, x0)] = E [(V − ϕ) (τ ∧ θ,Xτ∧θ)]

+E [ϕ (τ ∧ θ,Xτ∧θ)− ϕ(t0, x0)]

= E [(V − ϕ) (τ ∧ θ,Xτ∧θ)]

+E

[∫ τ∧θ

t0

(∂t +A)ϕ(t,Xt0,x0

t )dt

]
,

where the diffusion term has zero expectation because the process (t,Xt0,x0

t ) is
confined to the compact subset Nh on the stochastic interval [t0, τ ∧ θ]. Since
−Lϕ ≥ 0 on Nh by (3.15), this provides:

E [V (τ ∧ θ,Xτ∧θ)− V (t0, x0)] ≤ E [(V − ϕ) (τ ∧ θ,Xτ∧θ)]

≤ −γP[τ ≥ θ],

by (3.16). Then, since V ≥ g + δ on Nh by (3.15):

V (t0, x0) ≥ γP[τ ≥ θ] + E
[(
g(Xt0,x0

τ ) + δ
)
1{τ<θ} + V

(
θ,Xt0,x0

θ

)
1{τ≥θ}

]
≥ (γ ∧ δ) + E

[
g(Xt0,x0

τ )1{τ<θ} + V
(
θ,Xt0,x0

θ

)
1{τ≥θ}

]
.

By the arbitrariness of τ ∈ T t[t,T ], this provides the desired contradiction of (3.9).
♦

3.4 Regularity of the value function

3.4.1 Finite horizon optimal stopping

In this subsection, we consider the case T <∞. Similar to the continuity result
of Proposition 2.7 for the stochastic control framework, the following continuity
result is obtained as a consequence of the flow continuiy of Theorem 1.4 together
with the dynamic programming principle.

Proposition 3.5. Assume g is Lipschitz-continuous, and let T < ∞. Then,
there is a constant C such that:∣∣V (t, x)− V (t′, x′)

∣∣ ≤ C
(
|x− x′|+

√
|t− t′|

)
for all (t, x), (t′, x′) ∈ S.

Proof. (i) For t ∈ [0, T ] and x, x′ ∈ Rn, it follows from the Lipschitz property
of g that:

|V (t, x)− V (t, x′)| ≤ Const sup
τ∈T[t,T ]

E
∣∣∣Xt,x

τ −Xt,x′

τ

∣∣∣
≤ Const E sup

t≤s≤T

∣∣∣Xt,x
τ −Xt,x′

τ

∣∣∣
≤ Const |x− x′|
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by the flow continuity result of Theorem 1.4.
ii) To rpove the H”older continuity result in t, we argue as in the proof of
Proposition 2.7 using the dynamic programming principle of Theorem 3.3.

(ii-1) We first observe that, whenever the stopping time θ = t′ > t is
constant (i.e. deterministic), the dynamic programming principle (3.9)-(3.10)
holds true if the semicontinuous envelopes are taken with respect to the variable
x, with fixed time variable. Since V is continuous in x by the first part of this
proof, we deduce that

V (t, x) = sup
τ∈T t

[t,T ]

E
[
1{τ<t′}g

(
Xt,x
τ

)
+ 1{τ≥t′}V

(
t′, Xt,x

t′

)]
(3.17)

(ii) We then estimate that

0 ≤ V (t, x)− E
[
V
(
t′, Xt,x

t′

)]
≤ sup

τ∈T t
[t,T ]

E
[
1{τ<t′}

(
g
(
Xt,x
τ

)
− V

(
t′, Xt,x

t′

))]
≤ sup

τ∈T t
[t,T ]

E
[
1{τ<t′}

(
g
(
Xt,x
τ

)
− g

(
Xt,x
t′

))]
,

where the last inequality follows from the fact that V ≥ g. Using the Lipschitz
property of g, this provides:

0 ≤ V (t, x)− E
[
V
(
t′, Xt,x

t′

)]
≤ Const E

[
sup
t≤s≤t′

∣∣Xt,x
s −X

t,x
t′

∣∣]
≤ Const (1 + |x|)

√
t′ − t

by the flow continuity result of Theorem 1.4. Using this estimate together with
the Lipschitz property proved in (i) above, this provides:

|V (t, x)− V (t′, x)| ≤
∣∣V (t, x)− E

[
V
(
t′, Xt,x

t′

)]∣∣+
∣∣E [V (t′, Xt,x

t′

)]
− V (t′, x)

∣∣
≤ Const

(
(1 + |x|)

√
t′ − t+ E

∣∣Xt,x
t′ − x

∣∣ )
≤ Const (1 + |x|)

√
t′ − t,

by using again Theorem 1.4. ♦

3.4.2 Infinite horizon optimal stopping

In this section, the state process X is defined by a homogeneous scalar diffusion:

dXt = µ(Xt)dt+ σ(Xt)dWt. (3.18)

We introduce the hitting times:

Hx
b := inf

{
t > 0 : X0,x = b

}
,

and we assume that the process X is regular, i.e.

P [Hx
b <∞] > 0 for all x, b ∈ R, (3.19)
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which means that there is no subinterval of R from which the process X can
not exit.

We consider the infinite horizon optimal stopping problem:

V (x) := sup
τ∈T

E
[
e−βτg

(
X0,x
τ

)
1{τ<∞}

]
, (3.20)

where T := T[0,∞], and β > 0 is the discount rate parameter.
According to Theorem 3.3, the dynamic programming equation correspond-

ing to this optimal stopping problem is the obstacle problem:

min {βv −Av, v − g} = 0,

where the differential operator in the present homogeneous context is given by
the generator of the diffusion:

Av := µv′ +
1

2
σ2v′′. (3.21)

The ordinary differential equation

Av − βv = 0 (3.22)

has two positive linearly independent solutions

ψ, φ ≥ 0 such that ψ strictly increasing, φ strictly decreasing. (3.23)

Clearly ψ and φ are uniquely determined up to a positive constant, and all other
solution of (3.22) can be expressed as a linear combination of ψ and φ.

The following result follows from an immediate application of Itô’s formula.

Lemma 3.6. For any b1 < b2, we have:

E
[
e−βH

x
b1 1{Hxb1≤H

x
b2
}

]
=

ψ(x)φ(b2)− ψ(b2)φ(x)

ψ(b1)φ(b2)− ψ(b2)φ(b1)
,

E
[
e−βH

x
b2 1{Hxb1≥H

x
b2
}

]
=

ψ(b1)φ(x)− ψ(x)φ(b1)

ψ(b1)φ(b2)− ψ(b2)φ(b1)
.

We now show that the value function V is concave up to some change of vari-
able, and provides conditions under which V is C1 across the exercise boundary,
i.e. the boundary between the exercise and the continuation regions. For the
next result, we observe that the fnction (ψ/φ) is continuous and strictly increas-
ing by (3.23), and therefore invertible.

Theorem 3.7. (i) The function (V/φ) ◦ (ψ/φ)−1 is concave. In particular, V
is continuous on R.
(ii) Let x0 be such that V (x0) = g(x0), and assume that g, ψ and φ are differ-
entiable at x0. Then V is differentiable at x0, and V ′(x0) = g′(x0).
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Proof. For (i), it is sufficient to prove that:

V
φ (x)− V

φ (b1)

F (x)− F (b1)
≤

V
φ (b2)− V

φ (x)

F (b2)− F (x)
for all b1 < x < b2. (3.24)

For ε > 0, consider the ε−optimal stopping rules τ1, τ2 ∈ T for the problems
V (b1) and V (b2):

E
[
e−βτig

(
X0,x
τi

)]
≥ V (bi)− ε for i = 1, 2.

We next define the stopping time

τε :=
(
Hx
b1 + τ1 ◦ θHxb1

)
1{Hxb1<H

x
b2
} +

(
Hx
b2 + τ2 ◦ θHxb2

)
1{Hxb2<H

x
b1
},

where θ denotes the shift operator on the canonical space. In words, the stopping
rule τε uses the ε−optimal stopping rule τ1 if the level b1 is reached before the
level b2, and the ε−optimal stopping rule τ2 otherwise. Then, it follows from
the strong Markov property that

V (x) ≥ E
[
e−βτ

ε

g
(
X0,x
τε

)]
= E

[
e−βH

x
b1E

[
e−βτ1g

(
X0,b1
τ1

)]
1{Hxb1<H

x
b2
}

]
+E

[
e−βH

x
b21E

[
e−βτ2g

(
X0,b2
τ2

)]
1{Hxb2<H

x
b1
}

]
≥ (V (b1)− ε)E

[
e−βH

x
b1 1{Hxb1<H

x
b2
}

]
+ (V (b2)− ε)E

[
e−βH

x
b2 1{Hxb2<H

x
b1
}

]
.

Sending ε↘ 0, this provides

V (x) ≥ V (b1)E
[
e−βH

x
b1 1{Hxb1<H

x
b2
}

]
+ V (b2)E

[
e−βH

x
b2 1{Hxb2<H

x
b1
}

]
.

By using the explicit expressions of Lemma 3.6 above, this provides:

V (x)

φ(x)
≥ V (b1)

φ(b1)

ψ
φ (b2)− ψ

φ (x)
ψ
φ (b2)− ψ

φ (b1)
+

V (b2)

φ(b2)

ψ
φ (x)− ψ

φ (b1)
ψ
φ (b2)− ψ

φ (b1)
,

which implies (3.24).
(ii) We next prove the smoothfit result. Let x0 be such that V (x0) = g(x0).

Then, since V ≥ g, ψ is strictly increasing, φ ≥ 0 is strictly decreasing, it follows
from (3.24) that:

g
φ (x0 + ε)− g

φ (x0)
ψ
φ (x0 + ε)− ψ

φ (x0)
≤

V
φ (x0 + ε)− V

φ (x0)
ψ
φ (x0 + ε)− ψ

φ (x0)
(3.25)

≤
V
φ (x0 − δ)− V

φ (x0)
ψ
φ (x0 − δ)− ψ

φ (x0)
≤

g
φ (x0 − δ)− g

φ (x0)
ψ
φ (x0 − δ)− ψ

φ (x0)
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for all ε > 0, δ > 0. Multiplying by ((ψ/φ)(x0 + ε)− (ψ/φ)(x0))/ε, this implies
that:

g
φ (x0 + ε)− g

φ (x0)

ε
≤

V
φ (x0 + ε)− V

φ (x0)

ε
≤ ∆+(ε)

∆−(δ)

g
φ (x0 − δ)− g

φ (x0)

δ
,

(3.26)
where

∆+(ε) :=

ψ
φ (x0 + ε)− ψ

φ (x0)

ε
and ∆−(δ) :=

ψ
φ (x0 − δ)− ψ

φ (x0)

δ
.

We next consider two cases:

• If (ψ/φ)′(x0) 6= 0, then we may take ε = δ and send ε ↘ 0 in (3.26) to
obtain:

d+(Vφ )

dx
(x0) =

(
g

φ

)′
(x0). (3.27)

• If (ψ/φ)′(x0) = 0, then, we use the fact that for every sequence εn ↘ 0,
there is a subsequence εnk ↘ 0 and δk ↘ 0 such that ∆+(εnk) = ∆−(δk).
Then (3.26) reduces to:

g
φ (x0 + εnk)− g

φ (x0)

εnk
≤

V
φ (x0 + εnk)− V

φ (x0)

εnk
≤

g
φ (x0 − δk)− g

φ (x0)

δk
,

and therefore

V
φ (x0 + εnk)− V

φ (x0)

εnk
−→

(
g

φ

)′
(x0).

By the arbitrariness of the sequence (εn)n, this provides (3.27).

Similarly, multiplying (3.25) by ((ψ/φ)(x0)− (ψ/φ)(x0− δ))/δ, and arguying as
above, we obtain:

d−(Vφ )

dx
(x0) =

(
g

φ

)′
(x0),

thus completing the proof. ♦

3.4.3 An optimal stopping problem with nonsmooth value

We consider the example

Xt,x
s := x+ (Wt −Ws) for s ≥ t.
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Let g : R −→ R+ be a measurable nonnegative function with lim infx→∞ g(x) =
0, and consider the infinite horizon optimal stopping problem:

V (t, x) := sup
τ∈T[t,∞]

E
[
g
(
Xt,x
τ

)
1{τ<∞}

]
= sup

τ∈T[t,∞)

E
[
g
(
Xt,x
τ

)]
.

Let us assume that V ∈ C1,2(S), and work towards a contradiction. We first
observe by the homogeneity of the problem that V (t, x) = V (x) is independent
of t. Moreover, it follows from Theorem 3.4 that V is concave in x and V ≥ g.
Then

V ≥ gconc, (3.28)

where gconc is the concave envelope of g. If gconc = ∞, then V = ∞. We then
continue in the more inetersting case where gconc <∞.

By the jensen inequality and the non-negativity of g, the process {g (Xt,x
s ) , s ≥ t}

is a supermartingale, and:

V (t, x) ≤ sup
τ∈T[t,T ]

E
[
gconc

(
Xt,x
τ

)]
≤ gconc(x).

Hence, V = gconc, and we obtain the required contradiction whenever gconc is
not differentiable at some point of R.
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Chapter 4

Solving Control Problems
by Verification

In this chapter, we present a general argument, based on Itô’s formula, which
allows to show that some ”guess” of the value function is indeed equal to the
unknown value function. Namely, given a smooth solution v of the dynamic
programming equation, we give sufficient conditions which allow to conclude
that v coincides with the value function V . This is the so-called verification
argument. The statement of this result is heavy, but its proof is simple and relies
essentially on Itô’s formula. However, depending on the problem in hand, the
verification of the conditions which must be satisfied by the candidate solution
can be difficult.

The verification argument will be provided in the contexts of stochastic con-
trol and optimal stopping problems. We conclude the chapter by some examples
of application of the verification theorem.

4.1 The verification argument for stochastic con-
trol problems

We recall the stochastic control problem formulation of Section 2.1. The set of
admissible control processes U0 ⊂ U is the collection of all progressively measur-
able processes with values in the subset U ⊂ Rk. For every admissible control
process ν ∈ U0, the controlled process is defined by the stochastic differential
equation:

dXν
t = b(t,Xν

t , νt)dt+ σ(t,Xν
t , νt)dWt.

The gain criterion is given by

J(t, x, ν) := E

[∫ T

t

βν(t, s)f(s,Xt,x,ν
s , νs)ds+ βν(t, T )g(Xt,x,ν

T )

]
,

53
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with

βν(t, s) := e−
∫ s
t
k(r,Xt,x,νr ,νr)dr.

The stochastic control problem is defined by the value function:

V (t, x) := sup
ν∈U0

J(t, x, ν), for (t, x) ∈ S.

We follow the notations of Section 2.3. We recall the Hamiltonian H : S×R×
Rd × Sd defined by :

H(t, x, r, p, γ)

:= sup
u∈U

{
−k(t, x, u)r + b(t, x, u) · p+

1

2
Tr[σσT(t, x, u)γ] + f(t, x, u)

}
,

where b and σ satisfy the conditions (2.1)-(2.2), and the coefficients f and k are
measurable. The linear second order operator

Luϕ(t, x) := −k(t, x, u)ϕ(t, x) + b(t, x, u) ·Dϕ(t, x)

+
1

2
Tr
[
σσT(t, x, u)D2ϕ(t, x)

]
,

corresponds to the controlled process {βν(0, t)Xu
t , t ≥ 0} controlled by the

constant control process u. By Itô’s formula:

βν(0, s)ϕ(s,Xν
s )− βν(0, t)ϕ(t,Xν

t ) =

∫ s

t

βν(0, r) (∂t + Lνr )ϕ(r,Xν
r )dr

+

∫ s

t

βν(0, r)Dϕ(r,Xν
r ) · σ(r,Xν

r , νr)dWr

for every t ≤ s and smooth function ϕ ∈ C1,2([t, s],Rd) and each admissible
control process ν ∈ U0.

Theorem 4.1. Let T <∞, and v ∈ C1,2([0, T ),Rd) ∩ C([0, T ]× Rd). Assume
that ‖k−‖∞ <∞ and v and f have quadratic growth, i.e. there is a constant C
such that

|f(t, x, u)|+ |v(t, x)| ≤ C(1 + |x|2) for all (t, x, u) ∈ [0, T )× Rd × U.

(i) Suppose that v(T, ·) ≥ g and

−∂tv(t, x)−H
(
t, x, v(t, x), Dv(t, x), D2v(t, x)

)
≥ 0

on [0, T )× Rd. Then v ≥ V on [0, T ]× Rd.
(ii) Assume further that v(T, ·) = g, and there exists a minimizer û(t, x) of u
7−→ Luv(t, x) + f(t, x, u) such that

• 0 = ∂tv(t, x) + Lû(t,x)v(t, x) + f(t, x, u),
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• the stochastic differential equation

dXs = b (s,Xs, û(s,Xs)) ds+ σ (s,Xs, û(s,Xs)) dWs

defines a unique solution X for each given initial date Xt = x,

• the process ν̂s := û(s,Xs) is a well-defined control process in U0.

Then v = V , and ν̂ is an optimal Markov control process.

Proof. Let ν ∈ U0 be an arbitrary control process, X the associated state process
with initial date Xt = x, and define the stopping time

θn := T ∧ inf {s > t : |Xs − x| ≥ n} .

By Itô’s formula, we have

v(t, x) = β(t, θn)v (θn, Xθn)−
∫ θn

t

β(t, r)(∂t + Lν(r))v(r,Xr)dr

−
∫ θn

t

β(t, r)Dv(r,Xr) · σ(r,Xr, νr)dWr

Observe that (∂t + Lν(r))v + f(·, ·, u) ≤ ∂tv +H(·, ·, v,Dv,D2v) ≤ 0, and that
the integrand in the stochastic integral is bounded on [t, θn], a consequence of
the continuity of Dv, σ and the condition ‖k−‖∞ < ∞. Then :

v(t, x) ≥ E

[
β(t, θn)v (θn, Xθn) +

∫ θn

t

β(t, r)f(r,Xr, νr)dr

]
. (4.1)

We now take the limit as n increases to infinity. Since θn −→ T a.s. and∣∣∣∣∣β(t, θn)v (θn, Xθn) +

∫ θn

t

β(t, r)f(r,Xr, νr)dr

∣∣∣∣∣
≤ CeT‖k

−‖∞(1 + |Xθn |2 + T +
∫ T
t
|Xs|2ds)

≤ CeT‖k
−‖∞(1 + T )(1 + supt≤s≤T |Xs|2) ∈ L1,

by the estimate (2.5) of Theorem 2.1, it follows from the dominated convergence
that

v(t, x) ≥ E

[
β(t, T )v(T,XT ) +

∫ T

t

β(t, r)f(r,Xr, νr)dr

]

≥ E

[
β(t, T )g(XT ) +

∫ T

t

β(t, r)f(r,Xr, νr)dr

]
,

where the last inequality uses the condition v(T, ·) ≥ g. Since the control ν ∈ U0

is arbitrary, this completes the proof of (i).
Statement (ii) is proved by repeating the above argument and observing that

the control ν̂ achieves equality at the crucial step (4.1). ♦
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Remark 4.2. When U is reduced to a singleton, the optimization problem V is
degenerate. In this case, the DPE is linear, and the verification theorem reduces
to the so-called Feynman-Kac formula.

Notice that the verification theorem assumes the existence of such a solution,
and is by no means an existence result. However, it provides uniqueness in the
class of function with quadratic growth.

We now state without proof an existence result for the DPE together with
the terminal condition V (T, ·) = g (see [?] for the detailed proof). The main
assumption is the so-called uniform parabolicity condition :

there is a constant c > 0 such that
ξ′ σσ′(t, x, u) ξ ≥ c|ξ|2 for all (t, x, u) ∈ [0, T ]× Rn × U .

(4.2)

In the following statement, we denote by Ckb (Rn) the space of bounded functions
whose partial derivatives of orders ≤ k exist and are bounded continuous. We
similarly denote by Cp,kb ([0, T ],Rn) the space of bounded functions whose partial
derivatives with respect to t, of orders ≤ p, and with respect to x, of order ≤
k, exist and are bounded continuous.

Theorem 4.3. Let Condition 4.2 hold, and assume further that :

• U is compact;

• b, σ and f are in C1,2
b ([0, T ],Rn);

• g ∈ C3
b (Rn).

Then the DPE (2.20) with the terminal data V (T, ·) = g has a unique solution
V ∈ C1,2

b ([0, T ]× Rn).

4.2 Examples of control problems with explicit
solution

4.2.1 Otimal portfolio allocation

We now apply the verification theorem to a classical example in finance, which
was introduced by Merton [?], and generated a huge literature since then.

Consider a financial market consisting of a non-risky asset S0 and a risky
one S. The dynamics of the price processes are given by

dS0
t = S0

t rdt and dSt = St[µdt+ σdWt] .

Here, r, µ and σ are some given positive constants, and W is a one-dimensional
Brownian motion.

The investment policy is defined by an F−adapted process π = {πt, t ∈
[0, T ]}, where πt represents the amount invested in the risky asset at time t;
The remaining wealth (Xt − πt) is invested in the risky asset. Therefore, the
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wealth process satisfies

dXπ
t = πt

dSt
St

+ (Xπ
t − πt)

dS0
t

S0
t

= (rXt + (µ− r)πt) dt+ σπtdWt. (4.3)

Such a process π is said to be admissible if

E

[∫ T

0

|πt|2dt

]
< ∞ .

We denote by U0 the set of all admissible portfolios. Observe that, in view of
the particular form of our controlled process X, this definition agrees with (2.4).

Let γ be an arbitrary parameter in (0, 1) and define the power utility func-
tion :

U(x) := xγ for x ≥ 0 .

The parameter γ is called the relative risk aversion coefficient.
The objective of the investor is to choose an allocation of his wealth so as to

maximize the expected utility of his terminal wealth, i.e.

V (t, x) := sup
π∈U

E
[
U(Xt,x

T )
]
,

where Xt,x is the solution of (4.3) with initial condition Xt,x
t = x.

The dynamic programming equation corresponding to this problem is :

∂w

∂t
(t, x) + sup

u∈R
Auw(t, x) = 0, (4.4)

where Au is the second order linear operator :

Auw(t, x) := (rx+ (µ− r)u)
∂w

∂x
(t, x) +

1

2
σ2u2 ∂

2w

∂x2
(t, x).

We next search for a solution of the dynamic programming equation of the form
v(t, x) = xγh(t). Plugging this form of solution into the PDE (4.4), we get the
following ordinary differential equation on h :

0 = h′ + γh sup
u∈R

{
r + (µ− r)u

x
+

1

2
(γ − 1)σ2u

2

x2

}
(4.5)

= h′ + γh sup
δ∈R

{
r + (µ− r)δ +

1

2
(γ − 1)σ2δ2

}
(4.6)

= h′ + γh

[
r +

1

2

(µ− r)2

(1− γ)σ2

]
, (4.7)

where the maximizer is :

û :=
µ− r

(1− γ)σ2
x.
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Since V (T, ·) = U(x), we seek for a function h satisfying the above ordinary
differential equation together with the boundary condition h(T ) = 1. This
induces the unique candidate:

h(t) := ea(T−t) with a := γ

[
r +

1

2

(µ− r)2

(1− γ)σ2

]
.

Hence, the function (t, x) 7−→ xγh(t) is a classical solution of the HJB equation
(4.4). It is easily checked that the conditions of Theorem 4.1 are all satisfied in
this context. Then V (t, x) = xγh(t), and the optimal portfolio allocation policy
is given by the linear control process:

π̂t =
µ− r

(1− γ)σ2
X π̂
t .

4.2.2 Law of iterated logarithm for double stochastic in-
tegrals

The main object of this paragraph is Theorem 4.5 below, reported from [?],
which describes the local behavior of double stochastic integrals near the starting
point zero. This result will be needed in the problem of hedging under gamma
constraints which will be discussed later in these notes. An interesting feature
of the proof of Theorem 4.5 is that it relies on a verification argument. However,
the problem does not fit exactly in the setting of Theorem 4.1. Therefore, this
is an iteresting exercise on the verification concept.

Given a bounded predictable process b, we define the processes

Y bt := Y0 +

∫ t

0

brdWr and Zbt := Z0 +

∫ t

0

Y br dWr , t ≥ 0 ,

where Y0 and Z0 are some given initial data in R.

Lemma 4.4. Let λ and T be two positive parameters with 2λT < 1. Then :

E
[
e2λZbT

]
≤ E

[
e2λZ1

T

]
for each predictable process b with ‖b‖∞ ≤ 1 .

Proof. We split the argument into three steps.
1. We first directly compute that

E
[
e2λZ1

T

∣∣∣Ft] = v(t, Y 1
t , Z

1
t ) ,

where, for t ∈ [0, T ], and y, z ∈ R, the function v is given by :

v(t, y, z) := E

[
exp

(
2λ

{
z +

∫ T

t

(y +Wu −Wt) dWu

})]
= e2λzE

[
exp

(
λ{2yWT−t +W 2

T−t − (T − t)}
)]

= µ exp
[
2λz − λ(T − t) + 2µ2λ2(T − t)y2

]
,
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where µ := [1− 2λ(T − t)]−1/2. Observe that

the function v is strictly convex in y, (4.8)

and

yD2
yzv(t, y, z) = 8µ2λ3(T − t) v(t, y, z) y2 ≥ 0 . (4.9)

2. For an arbitrary real parameter β, we denote by Lβ the Dynkin operator
associated to the process

(
Y b, Zb

)
:

Lβ := Dt +
1

2
β2D2

yy +
1

2
y2D2

zz + βyD2
yz .

In this step, we intend to prove that for all t ∈ [0, T ] and y, z ∈ R :

max
|β|≤1

Lβv(t, y, z) = L1v(t, y, z) = 0 . (4.10)

The second equality follows from the fact that {v(t, Y 1
t , Z

1
t ), t ≤ T} is a martin-

gale . As for the first equality, we see from (4.8) and (4.9) that 1 is a maximizer
of both functions β 7−→ β2D2

yyv(t, y, z) and β 7−→ βyD2
yzv(t, y, z) on [−1, 1].

3. Let b be some given predictable process valued in [−1, 1], and define the
sequence of stopping times

τk := T ∧ inf
{
t ≥ 0 : (|Y bt |+ |Zbt | ≥ k

}
, k ∈ N .

By Itô’s lemma and (4.10), it follows that :

v(0, Y0, Z0) = v
(
τk, Y

b
τk
, Zbτk

)
−
∫ τk

0

[bDyv + yDzv]
(
t, Y bt , Z

b
t

)
dWt

−
∫ τk

0

Lbtv
(
t, Y bt , Z

b
t

)
dt

≥ v
(
τk, Y

b
τk
, Zbτk

)
−
∫ τk

0

[bDyv + yDzv]
(
t, Y bt , Z

b
t

)
dWt .

Taking expected values and sending k to infinity, we get by Fatou’s lemma :

v(0, Y0, Z0) ≥ lim inf
k→∞

E
[
v
(
τk, Y

b
τk
, Zbτk

)]
≥ E

[
v
(
T, Y bT , Z

b
T

)]
= E

[
e2λZbT

]
,

which proves the lemma. ♦

We are now able to prove the law of the iterated logarithm for double stochas-
tic integrals by a direct adaptation of the case of the Brownian motion. Set

h(t) := 2t log log
1

t
for t > 0 .
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Theorem 4.5. Let b be a predictable process valued in a bounded interval [β0, β1]

for some real parameters 0 ≤ β0 < β1, and Xb
t :=

∫ t
0

∫ u
0
bvdWvdWu. Then :

β0 ≤ lim sup
t↘0

2Xb
t

h(t)
≤ β1 a.s.

Proof. We first show that the first inequality is an easy consequence of the
second one. Set β̄ := (β0 + β1)/2 ≥ 0, and set δ := (β1 − β0)/2. By the law of
the iterated logarithm for the Brownian motion, we have

β̄ = lim sup
t↘0

2X β̄
t

h(t)
≤ δ lim sup

t↘0

2X b̃
t

h(t)
+ lim sup

t↘0

2Xb
t

h(t)
,

where b̃ := δ−1(β̄ − b) is valued in [−1, 1]. It then follows from the second
inequality that :

lim sup
t↘0

2Xb
t

h(t)
≥ β̄ − δ = β0 .

We now prove the second inequality. Clearly, we can assume with no loss of
generality that ‖b‖∞ ≤ 1. Let T > 0 and λ > 0 be such that 2λT < 1. It
follows from Doob’s maximal inequality for submartingales that for all α ≥ 0,

P

[
max

0≤t≤T
2Xb

t ≥ α

]
= P

[
max

0≤t≤T
exp(2λXb

t ) ≥ exp(λα)

]
≤ e−λαE

[
e2λXbT

]
.

In view of Lemma 4.4, this provides :

P

[
max

0≤t≤T
2Xb

t ≥ α

]
≤ e−λαE

[
e2λX1

T

]
= e−λ(α+T )(1− 2λT )−

1
2 . (4.11)

We have then reduced the problem to the case of the Brownian motion, and
the rest of this proof is identical to the first half of the proof of the law of the
iterated logarithm for the Brownian motion. Take θ, η ∈ (0, 1), and set for all
k ∈ N,

αk := (1 + η)2h(θk) and λk := [2θk(1 + η)]−1 .

Applying (4.11), we see that for all k ∈ N,

P

[
max

0≤t≤θk
2Xb

t ≥ (1 + η)2h(θk)

]
≤ e−1/2(1+η)

(
1 + η−1

) 1
2 (−k log θ)−(1+η) .

Since
∑
k≥0 k

−(1+η) < ∞, it follows from the Borel-Cantelli lemma that, for

almost all ω ∈ Ω, there exists a natural number Kθ,η(ω) such that for all
k ≥ Kθ,η(ω),

max
0≤t≤θk

2Xb
t (ω) < (1 + η)2h(θk) .
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In particular, for all t ∈ (θk+1, θk],

2Xb
t (ω) < (1 + η)2h(θk) ≤ (1 + η)2h(t)

θ
.

Hence,

lim sup
t↘0

2Xb
t

h(t)
<

(1 + η)2

θ
a.s.

and the required result follows by letting θ tend to 1 and η to 0 along the
rationals. ♦

4.3 The verification argument for optimal stop-
ping problems

4.4 Examples of optimal stopping problems with
explicit solution
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Chapter 5

Introduction to Viscosity
Solutions

5.1 Intuition behind viscosity solutions

We consider a non-linear second order partial differential equation

(E) F
(
x, u(x), Du(x), D2u(x)

)
= 0 for x ∈ O

where O is an open subset of Rd and F is a continuous map from O×R×Rd×Sd
−→ R. A crucial condition on F is the so-called ellipticity condition :

F (x, r, p, A) ≤ F (x, r, p,B) whenever A ≥ B ,

for all (x, r, p) ∈ O×R×Rd. The full importance of this condition will be made
clear by Proposition 5.2 below.

The first step towards the definition of a notion of weak solution to (E) is
the introduction of sub and supersolutions.

Definition 5.1. A function u : O −→ R is a classical supersolution (resp.
subsolution) of (E) if u ∈ C2(O) and

F
(
x, u(x), Du(x), D2u(x)

)
≥ (resp. ≤) 0 for x ∈ O .

The theory of viscosity solutions is motivated by the following result, whose
simple proof is left to the reader.

Proposition 5.2. Let u be a C2(O) function. Then the following claims are
equivalent.
(i) u is a classical supersolution (resp. subsolution) of (E)
(ii) for all pairs (x0, ϕ) ∈ O × C2(O) such that x0 is a minimizer (resp. maxi-
mizer) of the difference u− ϕ) on O, we have

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≥ (resp. ≤) 0 .

63
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5.2 Definition of viscosity solutions

Before going any further, we need to introduce a new notation. For a locally
bounded function u : O −→ R, we denote by u∗ and u∗ the lower and upper
semicontinuous envelopes of u. We recall that u∗ is the largest lower semicon-
tinuous minorant of u, u∗ is the smallest upper semicontinuous majorant of u,
and

u∗(x) = lim inf
x′→x

u(x′) , u∗(x) = lim sup
x′→x

u(x′) .

We are now ready for the definition of viscosity solutions. Observe that Claim
(ii) in the above proposition does not involve the regularity of u. It therefore
suggests the following weak notion of solution to (E).

Definition 5.3. Let F be elliptic, and u : O −→ R be a locally bounded function.
(i) We say that u is a (discontinuous) viscosity supersolution of (E) if

F
(
x0, u∗(x0), Dϕ(x0), D2ϕ(x0)

)
≥ 0

for all pair (x0, ϕ) ∈ O × C2(O) such that x0 is a minimizer of the difference
(u∗ − ϕ) on O.
(ii) We say that u is a (discontinuous) viscosity subsolution of (E) if

F
(
x0, u

∗(x0), Dϕ(x0), D2ϕ(x0)
)
≤ 0

for all pair (x0, ϕ) ∈ O × C2(O) such that x0 is a maximizer of the difference
(u∗ − ϕ) on O.
(iii) We say that u is a (discontinuous) viscosity solution of (E) if it is both a
viscosity supersolution and subsolution of (E).

Remark 5.4. An immediate consequence of Proposition 5.2 is that any classical
solution of (E) is also a viscosity solution of (E).

Remark 5.5. Clearly, the above definition is not changed if the minimum or
maximum are local and/or strict. Also, by a density argument, the test function
can be chosen in C∞(O).

Remark 5.6. Consider the equation (E+): |u′(x)| − 1 = 0 on R. Then

• The function f(x) := |x| is not a viscosity supersolution of (E+). Indeed
the test function ϕ ≡ 0 satisfies (f −ϕ)(0) = 0 ≤ (f −ϕ)(x) for all x ∈ R.
But |ϕ′(0)| = 0 6≥ 1.

• The function g(x) := −|x| is a viscosity solution of (E+). To see this, we
concentrate on the origin which is the only critical point. The supersolu-
tion property is obviously satisfied as there is no smooth function which
satisfies the minimum condition. As for the subsolution property, we ob-
serve that whenever ϕ ∈ C1(R) satisfies (g − ϕ)(0) = max(g − ϕ), then
|ϕ′(0)| ≥ 1, which is exactly the viscosity subsolution property of g.
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• Similarly, the function f is a viscosity solution of the equation (E−):
−|u′(x)|+ 1 = 0 on R.

In Section 6.1, we will show that the value function V is a viscosity solution
of the DPE (2.20) under the conditions of Theorem 2.6 (except the smoothness
assumption on V ). We also want to emphasize that proving that the value
function is a viscosity solution is almost as easy as proving that it is a classical
solution when V is known to be smooth.

5.3 First properties

We now turn to two important properties of viscosity solutions : the change of
variable formula and the stability result.

Proposition 5.7. Let u be a locally bounded (discontinuous) viscosity super-
solution of (E). If f is a C1(R) function with Df 6= 0 on R, then the function
v := f−1 ◦ u is a (discontinuous)

- viscosity super-solution, when Df > 0,
- viscosity subsolution, when Df < 0,

of the equation

K(x, v(x), Dv(x), D2v(x)) = 0 for x ∈ O ,

where

K(x, r, p, A) := F
(
x, f(r), Df(r)p,D2f(r)pp′ +Df(r)A

)
We leave the easy proof of this proposition to the reader. The next result

shows how limit operations with viscosity solutions can be performed very easily.

Theorem 5.8. Let uε be a lower semicontinuous viscosity super-solution of the
equation

Fε
(
x, uε(x), Duε(x), D2uε(x)

)
= 0 for x ∈ O ,

where (Fε)ε is a sequence of continuous functions satisfying the ellipticity con-
dition. Suppose that (ε, x) 7−→ uε(x) and (ε, z) 7−→ Fε(z) are locally bounded,
and define

u∗(x) := lim inf
(ε,x′)→(0,x)

uε(x
′) and F ∗(z) := lim sup

(ε,z′)→(0,z)

Fε(z
′) .

Then, u∗ is a lower semicontinuous viscosity supersolution of the equation

F ∗
(
x, u∗, Du∗(x), D2u∗(x)

)
= 0 for x ∈ O .

A similar statement holds for subsolutions.



66 CHAPTER 5. VISCOSITY SOLUTIONS

Proof. The fact that u∗ is a lower semicontinuous function is left as an exercise
for the reader. Let ϕ ∈ C2(O) and x̄, be a strict minimizer of the difference
u∗ − ϕ. By definition of u∗, there is a sequence (εn, xn) ∈ (0, 1]×O such that

(εn, xn) −→ (0, x̄) and uεn(xn) −→ u∗(x̄) .

Consider some r > 0 together with the closed ball B̄ with radius r, centered at
x̄. Of course, we may choose |xn − x̄| < r for all n ≥ 0. Let x̄n be a minimizer
of uεn − ϕ on B̄. We claim that

x̄n −→ x̄ and uεn(x̄n) −→ u∗(x̄) as n→∞. (5.1)

Before verifying this, let us complete the proof. We first deduce that x̄n is an
interior point of B̄ for large n, so that x̄n is a local minimizer of the difference
uεn − ϕ. Then :

Fεn
(
x̄n, uεn(x̄n), Dϕ(x̄n), D2ϕ(x̄n)

)
≥ 0 ,

and the required result follows by taking limits and using the definition of F ∗.
It remains to prove Claim (5.1). Recall that (xn)n is valued in the compact

set B̄. Then, there is a subsequence, still named (xn)n, which converges to some
x̃ ∈ B̄. We now prove that x̃ = x̄ and obtain the second claim in (5.1) as a
by-product. Using the fact that x̄n is a minimizer of uεn − ϕ on B̄, together
with the definition of u∗, we see that

0 = (u∗ − ϕ)(x̄) = lim
n→∞

(uεn − ϕ) (xn)

≥ lim sup
n→∞

(uεn − ϕ) (x̄n)

≥ lim inf
n→∞

(uεn − ϕ) (x̄n)

≥ (u∗ − ϕ)(x̃) .

We now obtain (5.1) from the fact that x̄ is a strict minimizer of the difference
(u∗ − ϕ). ♦

Observe that the passage to the limit in partial differential equations written
in the classical or the generalized sense usually appeals to much more techni-
calities, as one has to ensure convergence of all the partial derivatives involved
in the equation. The above stability result provides a general method to pass
to the limit when the equation is written in the viscosity sense, and its proof
turns out to be remarkably simple.

A possible application of the stability result is to establish the convergence of
numerical schemes. In view of the simplicity of the above statement, the notion
of viscosity solutions provides a nice framework for such a numerical issue. This
issue will be studied later in Chapter 11.

The main difficulty in the theory of viscosity solutions is the interpretation
of the equation in the viscosity sense. First, by weakening the notion of solution
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to the second order nonlinear PDE (E), we are enlarging the set of solutions,
and one has to guarantee that uniqueness still holds (in some convenient class
of functions). This issue will be discussed in the subsequent Section 5.4. We
conclude this section by the following result whose proof is trivial in the classical
case, but needs some technicalities when stated in the viscosity sense.

Proposition 5.9. Let A ⊂ Rd1 and B ⊂ Rd2 be two open subsets, and let u : A×
B −→ R be a lower semicontinuous viscosity supersolution of the equation :

F
(
x, y, u(x, y), Dyu(x, y), D2

yu(x, y)
)
≥ 0 on A×B ,

where F is a continuous elliptic operator. Assume further that

r 7−→ F (x, y, r, p, A) is non-increasing. (5.2)

Then, for all fixed x0 ∈ A, the function v(y) := u(x0, y) is a viscosity superso-
lution of the equation :

F
(
x0, y, v(y), Dv(y), D2v(y)

)
≥ 0 on B .

If u is continuous, the above statement holds without Condition (5.2).
A similar statement holds for the subsolution property.

Proof. Fix x0 ∈ A, set v(y) := u(x0, y), and let y0 ∈ B and f ∈ C2(B) be such
that

(v − f)(y0) < (v − f)(y) for all y ∈ J \ {y0} , (5.3)

where J is an arbitrary compact subset of B containing y0 in its interior. For
each integer n, define

ϕn(x, y) := f(y)− n|x− x0|2 for (x, y) ∈ A×B ,

and let (xn, yn) be defined by

(u− ϕn)(xn, yn) = min
I×J

(u− ϕn) ,

where I is a compact subset of A containing x0 in its interior. We claim that

(xn, yn) −→ (x0, y0) as n −→∞ . (5.4)

Before proving this, let us complete the proof. Since (x0, y0) is an interior point
of A×B, it follows from the viscosity property of u that

0 ≤ F
(
xn, yn, u(xn, yn), Dyϕn(xn, yn), D2

yϕn(xn, yn)
)

= F
(
xn, yn, u(xn, yn), Df(yn), D2f(yn)

)
,

and the required result follows by sending n to infinity.
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We now turn to the proof of (5.4). Since the sequence (xn, yn)n is valued in
the compact subset A × B, we have (xn, yn) −→ (x̄, ȳ) ∈ A × B, after passing
to a subsequence. Observe that

u(xn, yn)− f(yn) ≤ u(xn, yn)− f(yn) + n|xn − x0|2

= (u− ϕn)(xn, yn)

≤ (u− ϕn)(x0, y0) = u(x0, y0)− f(y0) .

Taking the limits, it follows from the lower semicontinuity of u that

u(x̄, ȳ)− f(ȳ) ≤ u(x̄, ȳ)− f(ȳ) + lim inf
n→∞

n|xn − x0|2 ≤ u(x0, y0)− f(y0) .

Then, we must have x̄ = x0, and

(v − f)(ȳ) = u(x0, ȳ)− f(ȳ) ≤ (v − f)(y0) ,

which concludes the proof of (5.4) in view of (5.3). ♦

5.4 Comparison result and uniqueness

In this section, we show that the notion of viscosity solutions is consistent with
the maximum principle for a wide class of equations. We recall that the maxi-
mum principle is a stronger statement than uniqueness. Once we will have such
a result, the reader must be convinced that the notion of viscosity solutions is
a good weakening of the notion of classical solution.

In the viscosity solutions literature, the maximum principle is rather called
comparison principle.

5.4.1 Comparison of classical solutions in a bounded do-
main

Let us first review the maxium principle in the simplest classical sense.

Proposition 5.10. Assume that O is an open bounded subset of Rd, and the
nonlinearity F (x, r, p, A) is elliptic and strictly increasing in r. Let u, v ∈
C2
(
cl(O)

)
be classical subsolution and supersolution of (E), respectively, with

u ≤ v on ∂O. Then u ≤ v on cl(O).

Proof. Our objective is to prove that

M := sup
cl(O)

(u− v) ≤ 0.

Assume to the contrary that M > 0. Then since cl(O) is a compact subset of
Rd, and u− v ≤ 0 on ∂O, it follows that

M = (u− v)(x0) for some x0 ∈ O with D(u− v)(x0) = 0, D2(u− v)(x0) ≤ 0.
(5.5)



5.4. Comparison results 69

Then, it follows from the viscosity properties of u and v that:

F
(
x0, u(x0), Du(x0), D2u(x0)

)
≤ 0 ≤ F

(
x0, v(x0), Dv(x0), D2v(x0)

)
≤ F

(
x0, u(x0)−M,Du(x0), D2u(x0)

)
,

where the last inequality follows crucially from the ellipticity of F . This provides
the desired contradiction, under our condition that F is strictly increasing in r.

♦
The objective of this section is to mimic the latter proof in the sense of

viscosity solutions.

5.4.2 Semijets definition of viscosity solutions

We first need to develop a convenient alternative definition of visocity solutions.
For v ∈ LSC(O), let (x0, ϕ) ∈ O×C2(O) be such that x0 is a local minimizer

of the difference (v − ϕ) in O. Then, defining p := Dϕ(x0) and A := D2ϕ(x0),
it follows from a second order Taylor expansion that:

v(x) ≥ v(x0) + p · (x− x0) +
1

2
A(x− x0) · (x− x0) + ◦

(
|x− x0|2

)
. (5.6)

Motivated by this observation, we introduce the subjet J−Ov(x0) by

J−Ov(x0) :=
{

(p,A) ∈ Rd × Sd : (x0, p, A) satisfies (5.6)
}
. (5.7)

Similarly, we define the superjet J+
Ou(x0) of a function u ∈ USC(O) at the point

x0 ∈ O by

J+
Ou(x0) :=

{
(p,A) ∈ Rd × Sd : u(x) ≤ u(x0) + p · (x− x0) (5.8)

+
1

2
A(x− x0) · (x− x0) + ◦

(
|x− x0|2

)}
Then, it one can prove that a function v ∈ LSC(O) is a viscosity supersolution
of the equation (E) is and only if

F (x, v(x), p, A) ≥ 0 for all (p,A) ∈ J+
Ov(x).

The nontrivial implication of the latter statement requires to constract, for every
(p,A) ∈ J+

Ov(x0), a smooth test function ϕ such that the difference (v−ϕ) has
a local minimum at x0. We refer to Fleming and Soner [?], Lemma V.4.1 p211.

A symmetric statement holds for viscosity subsolutions. By continuity con-
siderations, we can even enlarge the semijets J±Ow(x0) to the folowing closure

J̄±Ow(x) :=
{

(p,A) ∈ Rd × Sd : (xn, w(xn), pn, An) −→ (x,w(x), p, A)

for some sequence (xn, pn, An)n ⊂ Graph(J±Ow)
}
,

where (xn, pn, An) ∈ Graph(J±Ow) means that (pn, An) ∈ J±Ow(xn). The follow-
ing result is obvious, and provides an equivalent definition of viscosity solutions.
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Proposition 5.11. Consider an elliptic nonlinearity F , and let u ∈ USC(O),
v ∈ LSC(O).
(i) Assume that F is lower-semicontinuous. Then, u is a viscosity subsolution
of (E) if and only if:

F (x, u(x), p, A) ≤ 0 for all (p,A) ∈ J̄+
Ou(x),

(ii) Assume that F is upper-semicontinuous. Then, v is a viscosity supersolu-
tion of (E) if and only if:

F (x, v(x), p, A) ≥ 0 for all (p,A) ∈ J̄−Ov(x).

5.4.3 The Crandal-Ishii’s lemma

The major difficulty in mimicking the proof of Proposition 5.10 is to derive an
analogous statement to (5.5) without involving the smoothness of u and v, as
these functions are only known to be upper- and lower-semicontinuous in the
context of viscosity solutions.

This is provided by the follwing result due to M. Crandal and I. Ishii. For a
symmetric matrix, we denote by |A| := sup{(Aξ) · ξ : |ξ| ≤ 1}.

Lemma 5.12. Let O be an open locally compact subset of Rd. Given u ∈
USC(O) and v ∈ LSC(O), we assume for some (x0, y0) ∈ O2, ϕ ∈ C2

(
cl(O)2

)
that:

(u− v − ϕ)(x0, y0) = max
O2

(u− v − ϕ). (5.9)

Then, for each ε > 0, there exist A,B ∈ Sn such that

(Dxϕ(x0, y0), A) ∈ J̄2,+
O u(x0), (−Dyϕ(x0, y0), B) ∈ J̄2,−

O v(y0),

and the following inequality holds in the sense of symmetric matrices in S2n:

−
(
ε−1 +

∣∣D2ϕ(x0, y0)
∣∣) I2n ≤ ( A 0

0 −B

)
≤ D2ϕ(x0, y0) + εD2ϕ(x0, y0)2.

Proof. See Appendix. ♦

We will be applying Lemma 5.12 in the particular case

ϕ(x, y) :=
α

2
|x− y|2 for x, y ∈ O. (5.10)

Intuitively, sending α to ∞, we expect that the maximization of (u(x)− v(y)−
ϕ(x, y) on O2 reduces to the maximization of (u − v) on O as in (5.5). Then,
taking ε−1 = α, we directly compute that the conclusions of Lemma 5.12 reduce
to

(α(x0 − y0), A) ∈ J̄2,+
O u(x0), (α(x0 − y0), B) ∈ J̄2,−

O v(y0), (5.11)
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and

−3α

(
Id 0
0 Id

)
≤

(
A 0
0 −B

)
≤ 3α

(
Id −Id
−Id Id

)
. (5.12)

Remark 5.13. If u and v were C2 functions in Lemma 5.12, the first and second
order condition for the maximization problem (5.9) with the test function (5.10)
is Du(x0) = α(x0 − y0), Dv(x0) = α(x0 − y0), and(

D2u(x0) 0
0 −D2v(y0)

)
≤ α

(
Id −Id
−Id Id

)
.

Hence, the right-hand side inequality in (5.12) is worsening the latter second
order condition by replacing the coefficient α by 3α. ♦

Remark 5.14. The right-hand side inequality of (5.12) implies that

A ≤ B. (5.13)

To see this, take an arbitrary ξ ∈ Rd, and denote by ξT its transpose. From
right-hand side inequality of (5.12), it follows that

0 ≥ (ξT, ξT)

(
A 0
0 −B

)(
ξ
ξ

)
= (Aξ) · ξ − (Bξ) · ξ.

♦

5.4.4 Comparison of viscosity solutions in a bounded do-
main

We now prove a comparison result for viscosity sub- and supersolutions by
using Lemma 5.12 to mimic the proof of Proposition 5.10. The statement will
be proved under the following conditions on the nonlinearity F which will be
used at the final Step 3 of the subsequent proof.

Assumption 5.15. (i) There exists γ > 0 such that

F (x, r, p, A)− F (x, r′, p, A) ≥ γ(r − r′) for all r ≥ r′, (x, p,A) ∈ O × Rd × Sd.

(ii) There is a function $ : R+ −→ R+ with $(0+) = 0, such that

F (y, r, α(x− y), B)− F (x, r, α(x− y), A) ≤ $
(
α|x− y|2 + |x− y|

)
for all x, y ∈ O, r ∈ R and A,B satisfying (5.12).

Remark 5.16. Assumption 5.15 (ii) implies that the nonlinearity F is elliptic.
To see this, notice that for A ≤ B, ξ, η ∈ Rn, and ε > 0, we have

Aξ · ξ − (B + εId)η · η ≤ Bξ · ξ − (B + εId)η · η
= 2η ·B(ξ − η) +B(ξ − η) · (ξ − η)− ε|η|2

≤ ε−1|B(ξ − η)|2 +B(ξ − η) · (ξ − η)

≤ |B|2
(
1 + ε−1|B|

)
|ξ − η|2.
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For 3α ≥ (1 + ε−1|B|)|B|, the latter inequality implies the right-hand side of
(5.12) holds true with (A,B + εId). For ε sufficiently small, the left-hand side
of (5.12) is also true with (A,B + εId) if in addition α > |A| ∨ |B|. Then

F (x− α−1p, r, p,B + εI)− F (x, r, p, A) ≤ $
(
α−1(|p|2 + |p|)

)
,

which provides the ellipticity of F by sending α→∞ and ε→ 0. ♦

Theorem 5.17. Let O be an open bounded subset of Rd and let F be an elliptic
operator satisfying Assumption 5.15. Let u ∈ USC(O) and v ∈ LSC(O) be
viscosity subsolution and supersolution of the equation (E), respectively. Then

u ≤ v on ∂O =⇒ u ≤ v on Ō.

Proof. As in the proof of Proposition 5.10, we assume to the contrary that

δ := (u− v)(z) > 0 for some z ∈ O. (5.14)

Step 1: For every α > 0, it follows from the upper-semicontinuity of the differ-
ence (u− v) and the compactness of Ō that

Mα := sup
O×O

{
u(x)− v(y)− α

2
|x− y|2

}
= u(xα)− v(yα)− α

2
|xα − yα|2 (5.15)

for some (xα, yα) ∈ Ō × Ō. Since Ō is compact, there is a subsequence
(xn, yn) := (xαn , yαn), n ≥ 1, which converges to some (x̂, ŷ) ∈ Ō. We shall
prove in Step 4 below that

x̂ = ŷ, αn|xn − yn|2 −→ 0, and Mαn −→ (u− v)(x̂) = sup
O×O

(u− v). (5.16)

Then, since u ≤ v on ∂O and

δ ≤Mαn = u(xn)− v(yn)− αn
2
|xn − yn|2 (5.17)

by (5.14), it follows from the first claim in (5.16) that (xn, yn) ∈ O ×O.
Step 2: Since the maximizer (xn, yn) of Mαn defined in (5.15) is an interior point
to O ×O, it follows from Lemma 5.12 that there exist two symmetric matrices
An, Bn ∈ Sn satisfying (5.12) such that (xn, αn(xn − yn), An) ∈ J̄2,+

O u(xn) and

(yn, αn(xn − yn), Bn) ∈ J̄2,−
O v(yn). Then, since u and v are viscosity subsolu-

tion and supersolution, respectively, it follows from the alternative definition of
viscosity solutions in Proposition 5.11 that:

F (xn, u(xn), αn(xn − yn), An) ≤ 0 ≤ F (yn, v(xn), αn(xn − yn), Bn) . (5.18)

Step 3: We first use the strict monotonicity Assumption 5.15 (i) to obtain:

γδ ≤ γ
(
u(xn)− v(xn)

)
≥ F (xn, u(xn), αn(xn − yn), An)

−F (xn, v(xn), αn(xn − yn), An) .
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By (5.18), this provides:

γδ ≤ F (yn, v(xn), αn(xn − yn), Bn)− F (xn, v(xn), αn(xn − yn), An) .

Finally, in view of Assumption 5.15 (ii) this implies that:

γδ ≤ $
(
αn|xn − yn|2 + |xn − yn|

)
,

which is the desired contradiction.

Step 4: It remains to prove the claims (5.16). After possibly passing to a
subsequence, we may assume without loss of generality that

¯̀ := lim sup
n→∞

1

αn
|xn − yn|2 = lim

n→∞

1

αn
|xn − yn|2.

By the upper-semicontinuity of the difference (u − v) and the compactness of
O, there exists a maximizer x∗ of the difference (u− v). Then

(u− v)(x∗) ≤Mαn = u(xαn)− v(yαn)− 1

αn
|xn − yn|2.

Sending n→∞, this provides

¯̀ ≤ lim sup
n→∞

u(xαn)− v(yαn)− (u− v)(x∗)

≤ u(x̂)− v(ŷ)− (u− v)(x∗);

in particular, ¯̀<∞ implying that x̂ = ŷ. Moreover, by the definition of x∗ as
a maximizer of (u− v), we see that:

0 ≤ ¯̀ ≤ (u− v)(x̂)− (u− v)(x∗) ≤ 0.

Then x̂ is a maximizer of the difference (u− v) and Mαn −→ supO(u− v). ♦

We list below two interesting examples of operators F which satisfy the
conditions of the above theorem:

Example 5.18. Assumption 5.15 is satisfied by the nonlinearity

F (x, r, p, A) = γr +H(p)

for any continuous function H : Rd −→ R, and γ > 0.

In this example, the condition γ > 0 is not needed when H is a convex and
H(Dϕ(x)) ≤ α < 0 for some ϕ ∈ C1(O). This result can be found in [?].

Example 5.19. Assumption 5.15 is satisfied by

F (x, r, p, A) = −Tr (σσ′(x)A) + γr,
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where σ : Rd −→ Sd is a Lipschitz function, and γ > 0. Condition (i) of
Assumption 5.15 is obvious. To see that Condition (ii) is satisfied, we consider
(M,N,α) ∈ Sd × Sd × R∗+ satisfying (5.12). We claim that

Tr[AA′M −BB′N ] ≤ 3α|A−B|2 =

d∑
i,j=1

(A−B)2
ij .

To see this, observe that the matrix

C :=

(
BB′ BA′

AB′ AA′

)
is a non-negative matrix in Sd. From the right hand-side inequality of (5.12),
this implies that

Tr[AA′M −BB′N ] = Tr

[
C

(
M 0
0 −N

)]
≤ 3αTr

[
C

(
Id −Id
−Id Id

)]
= 3αTr [(A−B)(A′ −B′)] = 3α|A−B|2 .

5.5 Comparison in unbounded domains

When the domain O is unbounded, a growth condition on the functions u and
v is needed. Then, by using the growth at infinity, we can build on the proof
of Theorem 5.17 to obtain a comparison principle. The following result shows
how to handle this question in the case of a quadratic growth. We emphasize
that the present argument can be adapted to alternative growth conditions.

Theorem 5.20. Let F be a uniformly continuous elliptic operator satisfying
Assumption 5.15. Let u ∈ USC(O) and v ∈ LSC(O) be viscosity subsolution
and supersolution of the equation (E), respectively, with |u(x)|+ |v(x)| = ◦(|x|2)
as |x| → ∞. Then

u ≤ v on ∂O =⇒ u ≤ v on cl(O).

Proof. We assume to the contrary that

δ := (u− v)(z) > 0 for some z ∈ Rd, (5.19)

and we work towards a contradiction. Let

Mα := sup
x,y∈Rd

u(x)− v(y)− φ(x, y),

where

φ(x, y) :=
1

2

(
α|x− y|2 + ε|x|2 + ε|y|2

)
.
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1. Since u(x) = ◦(|x|2) and v(y) = ◦(|y|2) at infinity, there is a maximizer
(xα, yα) for the previous problem:

Mα = u(xα)− v(yα)− φ(xα, yα).

Moreover, there is a sequence αn →∞ such that

(xn, yn) := (xαn , yαn) −→ (x̂, ŷ),

and, similar to Step 4 of the proof of Theorem 5.17, we can prove that x̂ = ŷ,

αn|xn − yn|2 −→ 0, and Mαn −→M∞ := sup
x∈Rn

(u− v)(x)− ε|x|2. (5.20)

Notice that

lim sup
n→∞

{u(xn)− v(yn)− φ(xn, yn)} ≤ lim sup
n→∞

{u(xn)− v(yn))}

≤ lim sup
n→∞

u(xn)− lim inf
n→∞

v(yn)

≤ (u− v)(x̂).

Since u ≤ v on ∂O, and

Mαn ≥ δ − ε|z|2 > 0,

by (5.19), we deduce that (xn, yn) is a local maximizer of u− v − φ.
2. By the Crandal-Ishii lemma, there exist An, Bn ∈ Sn, such that

(Dxφ(xn, yn), An) ∈ J̄ 2,+
O u(tn, xn),

(−Dyφ(xn, yn), Bn) ∈ J̄ 2,−
O v(tn, yn),

(5.21)

and

−(α+ |D2φ(x0, y0)|)I2d ≤
(
An 0
0 −Bn

)
≤ D2φ(xn, yn) +

1

α
D2φ(xn, yn)2.

(5.22)
In the present situation, we immediately calculate that

Dxφ(xn, yn) = α(xn − yn) + εxn, −Dyφ(xn, yn) = α(xn − yn)− εyn

and

D2φ(xn, yn) = α

(
Id −Id
−Id Id

)
+ ε I2d,

which reduces the right hand-side of (5.22) to(
An 0
0 −Bn

)
≤ (3α+ 2ε)

(
Id −Id
−Id Id

)
+

(
ε+

ε2

α

)
I2d, (5.23)
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while the left land-side of (5.22) implies:

−3αI2d ≤
(
An 0
0 −Bn

)
(5.24)

3. By (5.21) and the viscosity properties of u and v, we have

F (xn, u(xn), αn(xn − yn) + εxn, An) ≤ 0,

F (yn, v(yn), αn(xn − yn)− εyn, Bn) ≥ 0.

Using Assumption 5.15 (i) together with the uniform continuity of H, this im-
plies that:

γ
(
u(xn)− v(xn)

)
≤ F

(
yn, u(xn), αn(xn − yn), B̃n

)
−F
(
xn, u(xn), αn(xn − yn), Ãn

)
+ c(ε)

where c(.) is a modulus of continuity of F , and Ãn := An − 2εIn, B̃n :=
Bn + 2εIn. By (5.23), we have

−4αI2d ≤
(
Ãn 0

0 −B̃n

)
≤ 4α

(
In −In
−In In

)
,

for small ε. Then, it follows from Assumption 5.15 (ii) that

γ
(
u(xn)− v(xn)

)
≤ $

(
αn|xn − yn|2 + |xn − yn|

)
+ c(ε).

By sending n to infinity, it follows from (5.20) that:

c(ε) ≥ γ
(
M∞ + |x̂|2

)
≥ γM∞ ≥ γ

(
u(z)− v(z)− ε|z|2

)
,

and we get a contradiction of (5.19) by sending ε to zero. ♦

5.6 Useful applications

We conclude this section by two consequences of the above comparison results,
which are trivial properties in the classical case.

Lemma 5.21. Let O be an open interval of R, and U : O −→ R be a lower
semicontinuous supersolution of the equation DU ≥ 0 on O. Then U is nonde-
creasing on O.

Proof. For each ε > 0, define W (x) := U(x) + εx; x ∈ O. Then W satisfies in
the viscosity sense DW ≥ ε in O, i.e. for all (x0, ϕ) ∈ O × C1(O) such that

(W − ϕ)(x0) = min
x∈O

(W − ϕ)(x), (5.25)

we have Dϕ(x0) ≥ ε. This proves that ϕ is strictly increasing in a neighborhood
V of x0. Let (x1, x2) ⊂ V be an open interval containing x0. We intend to prove
that

W (x1) < W (x2) , (5.26)
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which provides the required result from the arbitrariness of x0 ∈ O.
To prove (5.26), suppose to the contrary that W (x1) ≥ W (x2), and the

consider the function v(x) = W (x2) which solves the equation

Dv = 0 on (x1, x2) .

together with the boundary conditions v(x1) = v(x2) = W (x2). Observe that
W is a lower semicontinuous viscosity supersolution of the above equation. From
the comparison theorem of Remark ??, this implies that

sup
[x1,x2]

(v −W ) = max {(v −W )(x1), (v −W )(x2)} ≤ 0 .

Hence W (x) ≥ v(x) = W (x2) for all x ∈ [x1, x2]. Applying this inequality at x0

∈ (x1, x2), and recalling that the test function ϕ is strictly increasing on [x1, x2],
we get :

(W − ϕ)(x0) > (W − ϕ)(x2),

contradicting (5.25). ♦

Lemma 5.22. Let O be an open interval of R, and U : O −→ R be a lower
semicontinuous supersolution of the equation −D2U ≥ 0 on O. Then U is
concave on O.

Proof. Let a < b be two arbitrary elements in O, and consider some ε > 0
together with the function

v(s) :=
U(a)[e

√
ε(b−s)−1]+U(b)[e

√
ε(s−a)−1]

e
√
ε(b−a)−1

for a ≤ s ≤ b .

Clearly, v solves the equation

(εv −D2v)(t, s) = 0 on (a, b) .

Since U is lower semicontinuous it is bounded from below on the interval [a, b].
Therefore, by possibly adding a constant to U , we can assume that U ≥ 0, so
that U is a lower semicontinuous viscosity supersolution of the above equation.
It then follows from the comparison theorem 6.6 that :

sup
[a,b]

(v − U) = max {(v − U)(a), (v − U)(b)} ≤ 0 .

Hence,

U(s) ≥ v(s) =
U(a)

[
e
√
ε(b−s) − 1

]
+ U(b)

[
e
√
ε(s−a) − 1

]
e
√
ε(b−a) − 1

,

and by sending ε to zero, we see that

U(s) ≥ [U(b)− U(a)]
s− a
b− a

+ U(a)
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for all s ∈ [a, b]. Let λ be an arbitrary element of the interval [0,1], and set s
:= λa+ (1− λ)b. The last inequality takes the form :

U(λa+ (1− λ)b) ≥ λU(a) + (1− λ)U(b) ,

proving the concavity of U . ♦

5.7 Appendix: proof of the Crandal-Ishii’s lemma



Chapter 6

Dynamic Programming
Equation in Viscosity
Sense

6.1 DPE for stochastic control problems

We now turn to the stochastic control problem introduced in Section 2.1. The
chief goal of this paragraph is to use the notion of viscosity solutions in order
to relax the smoothness condition on the value function V in the statement of
Propositions 2.5 and 2.4. Notice that the following proofs are obtained by slight
modification of the corresponding proofs in the smooth case.

Remark 6.1. Recall that the general theory of viscosity applies for nonlinear
partial differential equations on an open domain O. This indeed ensures that
the optimizer in the definition of viscosity solutions is an interior point. In the
setting of control problems with finite horizon, the time variable moves forward
so that the zero boundary is not relevant. We shall then write the DPE on the
domain [0, T ) × Rn. Although this is not an open domain, the general theory
of viscosity solutions is still valid.

Proposition 6.2. Assume that V is locally bounded on [0, T ) × Rn, and let
the coefficients k(·, ·, u) and f(·, ·, u) be continuous in (t, x) for all fixed u ∈ U .
Then, the value function V is a (discontinuous) viscosity supersolution of the
equation

−∂tV (t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≥ 0 (6.1)

on [0, T )× Rn.

Proof. Let (t, x) ∈ Q := [0, T )× Rn and ϕ ∈ C2(Q) be such that

0 = (V∗ − ϕ)(t, x) = max
Q

(V∗ − ϕ). (6.2)

79
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Let (tn, xn)n be a sequence in Q such that

(tn, xn) −→ (t, x) and V (tn, xn) −→ V∗(t, x).

Since ϕ is smooth, notice that

ηn := V (tn, xn)− ϕ(tn, xn) −→ 0.

Next, let u ∈ U be fixed, and consider the constant control process ν = u. We
shall denote by Xn := Xtn,xn,u the associated state process with initial data
Xn
tn = xn. Finally, for all n > 0, we define the stopping time :

θn := inf {s > tn : (s− tn, Xn
s − xn) 6∈ [0, hn)× αB} ,

where α > 0 is some given constant, B denotes the unit ball of Rn, and

hn :=
√
ηn1{ηn 6=0} + n−11{ηn=0}.

Notice that θn −→ t as n −→∞.
1. From the dynamic programming principle, it follows that:

0 ≤ E

[
V (tn, xn)− β(tn, θn)V∗(θn, X

n
θn)−

∫ θn

tn

β(tn, r)f(r,Xn
r , νr)dr

]
.

Now, in contrast with the proof of Proposition 2.4, the value function is not
known to be smooth, and therefore we can not apply Itô’s lemma to V . The
main trick of this proof is to use the inequality V ∗ ≤ ϕ on Q, implied by (6.2),
so that we can apply Itô’s formula to the smooth test function ϕ:

0 ≤ ηn + E

[
ϕ(tn, xn)− β(tn, θn)ϕ(θnh , X

n
θn)−

∫ θn

tn

β(tn, r)f(r,Xn
r , νr)dr

]

= ηn − E

[∫ θn

tn

β(tn, r)(∂tϕ+ L·ϕ− f)(r,Xn
r , u)dr

]

− E

[∫ θn

tn

β(tn, r)Dϕ(r,Xn
r )σ(r,Xn

r , u)dWr

]
,

where ∂tϕ denotes the partial derivative with respect to t.
2. We now continue exactly along the lines of the proof of Proposition 2.5.
Observe that β(tn, r)Dϕ(r,Xn

r )σ(r,Xn
r , u) is bounded on the stochastic interval

[tn, θn]. Therefore, the second expectation on the right hand-side of the last
inequality vanishes, and :

ηn
hn
− E

[
1

hn

∫ θn

tn

β(tn, r)(∂tϕ+ L·ϕ− f)(r,Xr, u)dr

]
≥ 0.

We now send n to infinity. The a.s. convergence of the random value in-
side the expectation is easily obtained by the mean value Theorem; recall
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that for n ≥ N(ω) sufficiently large, θn(ω) = hn. Since the random vari-

able h−1
n

∫ θn
t
β(tn, r)(L·ϕ − f)(r,Xn

r , u)dr is essentially bounded, uniformly in
n, on the stochastic interval [tn, θn], it follows from the dominated convergence
theorem that :

−∂tϕ(t, x)− Luϕ(t, x)− f(t, x, u) ≥ 0,

which is the required result, since u ∈ U is arbitrary. ♦

We next wish to show that V satisfies the nonlinear partial differential equa-
tion (6.1) with equality, in the viscosity sense. This is also obtained by a slight
modification of the proof of Proposition 2.5.

Proposition 6.3. Assume that the value function V is locally bounded on
[0, T ) × Rn. Let the function H be continuous, and ‖k+‖∞ < ∞. Then, V
is a (discontinuous) viscosity subsolution of the equation

−∂tV (t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≤ 0 (6.3)

on [0, T )× Rn.

Proof. Let (t0, x0) ∈ Q := [0, T )× Rn and ϕ ∈ C2(Q) be such that

0 = (V∗ − ϕ)(t0, x0) < (V∗ − ϕ)(t, x) for (t, x) ∈ Q \ {(t0, x0)}. (6.4)

In order to prove the required result, we assume to the contrary that

h(t0, x0) := ∂tϕ(t0, x0) +H
(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)

)
> 0,

and work towards a contradiction.
1. Since H is continuous, there exists an open neighborhood of (t0, x0) :

Nη := {(t, x) : (t− t0, x− x0) ∈ (−η, η)× ηB and h(t, x) > 0} ,

for some η > 0. From (6.4), it follows that

3γeη‖k
+‖∞ := min

∂Nη
(V − ϕ) > 0 . (6.5)

Next, let (tn, xn)n be a sequence in Nh such that

(tn, xn) −→ (t0, x0) and V (tn, xn) −→ V∗(t0, x0) .

Since (V − ϕ)(tn, xn) −→ 0, we can assume that the sequence (tn, xn) also
satisfies :

|(V − ϕ)(tn, xn)| ≤ γ for all n ≥ 1 . (6.6)

Finally, we introduce a γ−optimal control ν̃n for the problem V (tn, xn), i.e.

J(tn, xn, ν̃
n) ≤ V (tn, xn) + γ . (6.7)
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We shall denote by X̃n and β̃n the controlled process and the discount factor
defined by the control ν̃n and the initial data X̃n

tn = xn.
3. Consider the stopping time

θn := inf
{
s > tn : (s, X̃n

s ) 6∈ Nη
}
,

and observe that, by continuity of the state process, (θn, X̃
n
θn

) ∈ ∂Nη, so that :

(V − ϕ)(θn, X̃
n
θn) ≥ (V∗ − ϕ)(θn, X̃

n
θn) ≥ 3γe−η‖k

+‖∞ (6.8)

by (6.5). We now use the inequality V ≥ V∗, together with (6.8) and (6.6) to
see that :

β̃n(tn, θn)V (θn, X̃
n
θn

)− V (tn, xn)

≥
∫ θn

tn

d[β̃n(tn, r)ϕ(r, X̃n
r )] + 3γeη‖k

+‖∞ β̃n(tn, θn)− γ

≥
∫ θn

tn

d[β̃n(tn, r)ϕ(r, X̃n
r )] + 2γ .

By Itô’s lemma, this provides :

V (tn, xn) ≤ Etn,xn

[
β̃n(tn, θn)V (θn, X̃

n
θn)−

∫ θn

tn

(∂tϕ+ Lν̃
n
r ϕ)(r, X̃n

r )dr

]
− 2γ ,

where the stochastic term has zero mean, as its integrand is bounded on the
stochastic interval [tn, θn]. Observe also that (∂tϕ+Lν̃rϕ)(r, X̃n

r )+f(r, X̃n
r , ν̃

n
r )

≥ h(r, X̃n
r ) ≥ 0 on the stochastic interval [tn, θn]. We therefore deduce that :

V (tn, xn) ≤ −2γ + Etn,xn

[∫ θn

tn

β̃n(tn, r)f(r, X̃r, ν̃r) + β̃n(tn, θn)V (θn, X̃
n
θn)

]
≤ −2γ + J(tn, xn, ν̃)

≤ V (tn, xn)− γ ,

where the last inequality follows by (6.7). This completes the proof. ♦

As a consequence of Propositions 6.3 and 6.2, we have the main result of
this section :

Theorem 6.4. Let the conditions of Propositions 6.3 and 6.2 hold. Then, the
value function V is a (discontinuous) viscosity solution of the Hamilton-Jacobi-
Bellman equation

−∂tV (t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
= 0 (6.9)

on [0, T )× Rn.



6.1. DPE for stochastic control 83

The partial differential equation (6.9) has a very simple and specific depen-
dence in the time-derivative term. Because of this, it is usually referred to as a
parabolic equation.

In order to a obtain a characterization of the value function by means of
the dynamic programming equation, the latter viscosity property needs to be
complemented by a uniqueness result. This is usually obtained as a consequence
of a comparison result.

In the present situation, one may verify the conditions of Theorem 5.20. For
completeness, we report a comparison result which is adapted for the class of
equations corresponding to stochastic control problems.

Consider the parabolic equation:

∂tu+G
(
t, x,Du(t, x), D2u(t, x)

)
= 0 on Q := [0, T )× Rn , (6.10)

where G is elliptic and continuous. For γ > 0, set

G+γ(t, x, p, A) := sup {G(s, y, p, A) : (s, y) ∈ BQ(t, x; γ)} ,
G−γ(t, x, p, A) := inf {G(s, y, p, A) : (s, y) ∈ BQ(t, x; γ)} ,

whereBQ(t, x; γ) is the collection of elements (s, y) inQ such that |t−s|2+|x−y|2
≤ γ2. We report, without proof, the following result from [?] (Theorem V.8.1
and Remark V.8.1).

Assumption 6.5. The above operators satisfy:

lim supε↘0 {G+γε(tε, xε, pε, Aε)−G−γε(sε, yε, pε, Bε)}
≤ Const (|t0 − s0|+ |x0 − y0|) [1 + |p0|+ α (|t0 − s0|+ |x0 − y0|)]

(6.11)

for all sequences (tε, xε), (sε, yε) ∈ [0, T )× Rn, pε ∈ Rn, and γε ≥ 0 with :

((tε, xε), (sε, yε), pε, γε) −→ ((t0, x0), (s0, y0), p0, 0) as ε ↘ 0,

and symmetric matrices (Aε, Bε) with

−KI2n ≤
(
Aε 0
0 −Bε

)
≤ 2α

(
In −In
−In In

)
for some α independent of ε.

Theorem 6.6. Let Assumption 6.5 hold true, and let u ∈ USC([0, T ]×Rn), v ∈
LSC([0, T ]×Rn) be viscosity subsolution and supersolution of (6.10), respectively.
Then

sup
Q̄

(u− v) = sup
Rn

(u− v)(T, ·).

A sufficient condition for (6.11) to hold is that f(·, ·, u), k(·, ·, u), b(·, ·, u),
and σ(·, ·, u) ∈ C1(Q̄) with

‖bt‖∞ + ‖bx‖∞ + ‖σt‖∞ + ‖σx‖∞ < ∞
|b(t, x, u)|+ |σ(t, x, u)| ≤ Const(1 + |x|+ |u|) ;

see [?], Lemma V.8.1.
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6.2 DPE for optimal stopping problems

We first recall the optimal stopping problem considered in Section 3.1. For
0 ≤ t ≤ T ≤ ∞, the set T[t,T ] denotes the collection of all F−stopping times
with values in [t, T ]. The state process X is defined by the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (6.12)

where µ and σ are defined on S̄ := [0, T ) × Rn, take values in Rn and Sn,
respectively, and satisfy the usual Lipschitz and linear growth conditions so
that the above SDE has a unique strong solution satisfying the integrability of
Theorem 1.2.

For a measurable function g : Rn −→ R, satisfying E
[
sup0≤t<T |g(Xt)|

]
<

∞, the gain criterion is given by:

J(t, x, τ) := E
[
g
(
Xt,x
τ

)
1τ<∞

]
for all (t, x) ∈ S, τ ∈ T[t,T ]. (6.13)

Here, Xt,x denotes the unique strong solution of (3.1) with initial condition
Xt,x
t = x. Then, the optimal stopping problem is defined by:

V (t, x) := sup
τ∈T[t,T ]

J(t, x, τ) for all (t, x) ∈ S. (6.14)

The next result derives the dynamic programming equation for the latter opti-
mal stopping problem in the sense of viscosity solution, thus relaxing the C1,2

regularity condition in the statement of Theorem 3.4.

Theorem 6.7. Assume that V is locally bounded, and let g : Rn −→ R be
continuous. Then V is a viscosity solution of the obstacle problem:

min {−(∂t +A)V , V − g} = 0 on S. (6.15)

Proof. (i) We first show that V∗ is a viscosity supersolution. As in the proof of
Theorem 3.13, the inequality V − g ≥ 0 is obvious, and implies that V∗ ≥ g.
Let (t0, x0) ∈ S and ϕ ∈ C2(S) be such that

0 = (V∗ − ϕ)(t0, x0) = min
S

(V∗ − ϕ).

To prove that −(∂t + A)ϕ(t0, x0) ≥ 0, we consider a sequence (tn, xn)n≥1 ⊂
[t0 − h, t0 + h]×B, for some small h > 0, such that

(tn, xn) −→ (t0, x0) and V (tn, xn) −→ V∗(t0, x0).

Let (hn)n be a sequence of positive scalars converging to zero, to be fixed later,
and introduce the stopping times

θnhn := inf
{
t > tn : (t,Xtn,xn

t ) 6∈ [t0 − hn, t0 + hn]×B
}
.

Then θhn ∈ T t[t,T ] for sufficiently small h, and it follows from (3.10)that:

V (tn, xn) ≥ E
[
V∗
(
θnh , Xθnh

)]
.
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Since V∗ ≥ ϕ, and denoting ηn := (V − ϕ)(tn, xn), this provides

ηn + ϕ(tn, xn) ≥ E
[
ϕ
(
θnh , Xθnh

)]
where ηn −→ 0.

We continue by fixing

hn :=
√
ηn1{ηn 6=0} + n−11{ηn=0},

as in the proof of Proposition 6.2. Then, the rest of the proof follows exactly the
line of argument of the proof of Theorem 3.4 combined with that of Proposition
6.2.
(ii) We next prove that V ∗ is a viscosity subsolution of of the equation (6.15).
Let (t0, x0) ∈ S and ϕ ∈ C2(S) be such that

0 = (V ∗ − ϕ)(t0, x0) = strict max
S

(V ∗ − ϕ),

assume to the contrary that

(V ∗ − g)(t0, x0) > 0 and −(∂t +A)ϕ(t0, x0) > 0,

and let us work towards a contradiction of the weak dynamic programming
principle.

Since g is continuous, and V ∗(t0, x0) = $(t0, x0), we may finds constants
h > 0 and δ > 0 so that

ϕ ≥ g + δ and − (∂t +A)ϕ ≥ 0 on Nh := [t0, t0 + h]× hB, (6.16)

where B is the unit ball centered at x0. Moreover, since (t0, x0) is a strict
maximizer of the difference V ∗ − ϕ:

−γ := max
∂Nh

(V ∗ − ϕ) < 0. (6.17)

let (tn, xn) be a sequence in S such that

(tn, xn) −→ (t0, x0) and V (tn, xn) −→ V ∗(t0, x0).

We next define the stopping times:

θn := inf
{
t > tn :

(
t,Xtn,xn

t

)
6∈ Nh

}
,

and we continue as in Step 2 of the proof of Theorem 3.4. We denote ηn :=
V (tn, xn) − ϕ(tn, xn), and we compute by Itô’s formula that for an arbitrary
stopping rule τ ∈ T t[t,T ]:

V (tn, xn) = ηn + ϕ(tn, xn)

= ηn + E

[
ϕ (τ ∧ θn, Xτ∧θn)−

∫ τ∧θn

tn

(∂t +A)ϕ(t,Xt)dt

]
,
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where diffusion term has zero expectation because the process (t,Xtn,xn
t ) is

confined to the compact subset Nh on the stochastic interval [tn, τ ∧ θn]. Since
−(∂t +A)ϕ ≥ 0 on Nh by (6.16), this provides:

V (tn, xn) ≥ ηn + E
[
ϕ (τ,Xτ ) 1{τ<θn} + ϕ (θn, Xθn) 1τ≥{θn}+

]
≥ E

[
(g (Xτ ) + δ) 1{τ<θn} + (V ∗ (θn, Xθn) + γ) 1{θn≥τ}

]
≥ γ ∧ δ + E

[
g (Xτ ) 1{τ<θn} + V ∗ (θn, Xθn) 1{θn≥τ}

]
,

where we used the fact that ϕ ≥ g + δ on Nh by (6.16), and ϕ ≥ V ∗ + γ on
∂Nh by (6.17). Since ηn := (V − ϕ)(tn, xn) −→ 0 as n → ∞, and τ ∈ T t[t,T ] is

arbitrary, this provides the desired contradiction of (3.9). ♦

6.3 A comparison result for obstacle problems



Chapter 7

Stochastic Target
Problems

7.1 Stochastic target problems

In this section, we study a special class of stochastic target problems which
avoids to face some technical difficulties, but reflects in a transparent way the
main ideas and arguments to handle this new class of stochastic control prob-
lems.

All of the applications that we will be presenting fall into the framework of
this section. The interested readers may consult the references at the end of
this chapter for the most general classes of stochastic target problems, and their
geometric formulation.

7.1.1 Formulation

Let T > 0 be the finite time horizon and W = {Wt, 0 ≤ t ≤ T} be a d-
dimensional Brownian motion defined on a complete probability space (Ω,F , P ).
We denote by F = {Ft, 0 ≤ t ≤ T} the P -augmentation of the filtration
generated by W .

We assume that the control set U is a convex compact subset of Rd with
non-empty interior, and we denote by U the set of all progressively measurable
processes ν = {νt, 0 ≤ t ≤ T} with values in U .

The state process is defined as follow: given the initial data z = (x, y) ∈
Rd×R, an initial time t ∈ [0, T ], and a control process ν ∈ U , let the controlled
process Zt,z,ν = (Xt,x,ν , Y t,z,ν) be the solution of the stochastic differential
equation :

dXt,x,ν
u = µ

(
u,Xt,x,ν

u , νu
)
du+ σ

(
u,Xt,x,ν

u , νu
)
dWu,

dY t,z,νu = b
(
u, Zt,z,νu , νu

)
du+ νu · dW (u), u ∈ (t, T ) ,

87
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with initial data

Xt,x,ν
t = x, and Y t,x,y,νt = y.

Here, µ : S×U −→ Rd, σ : S×U −→ Sd, and b : S×R×U −→ R are continuous
functions, Lipschitz in (x, y) uniformly in (t, u). Then, all above processes are
well defined for every admissible control process ν ∈ U0 defined by

U0 :=

{
ν ∈ U : E

[∫ t

0

(
|µ0(s, νs)|+ |b0(s, νs)|+ |σ0(s, νs)|2 + |νs|2

)
ds

]}
.

Throughout this section, we assume that the the function

u 7−→ σ(t, x, u)p

has a unique fixed point for every (t, x) ∈ S̄× R defined by: be its inverse, i.e.

σ(t, x, u)p = u ⇐⇒ u = ψ(t, x, p). (7.1)

For a measurable function g : Rd −→ R, we define the stochastic target problem
by:

V (t, x) := inf
{
y ∈ R : Y t,x,y,νT ≥ g

(
Xt,x,ν
T

)
, P− a.s. for some ν ∈ U0

}
.

(7.2)

Remark 7.1. By introducing the subset of control processes:

A(t, x, y) :=
{
ν ∈ U0 : Y t,x,y,νT ≥ g

(
Xt,x,ν
T

)
, P− a.s.

}
,

we may re-write the value function of the stochastic target problem into:

V (t, x) = inf Y(t, x), where Y(t, x) := {y ∈ R : A(t, x, y) 6= ∅} .

The set Y(t, x) satisfies the following important property :

for all y ∈ R, y ∈ Y(t, x) =⇒ [y,∞) ⊂ Y(t, x).

This follows from the fact that the state process Xt,x,ν is independent of y and
Y t,x,y,νT is nondecreasing in y.

7.1.2 Geometric dynamic programming principle

Similar to the standard class of stochastic control and optimal stopping prob-
lems studied in the previous chapters, the main tool for the characterization of
the value function and the solution of stochastic target problems is the dynamic
programming principle. Although the present problem does not fall into the
class of problems studied in the previous chapters, the idea of dynamic pro-
gramming is the same: allow the time origin to move, and deduce a relation
between the value function at different points in time.

In these notes, we shall only use the easy direction of a more general geo-
metric dynamic programming principle.
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Theorem 7.2. Let (t, x) ∈ [0, T ] × Rd and y ∈ R such that A(t, x, y) 6= ∅.
Then, for any control process ν ∈ A(t, x, y) and stopping time τ ∈ T[t,T ],

Y t,x,y,ντ ≥ V
(
τ,Xt,x,ν

τ

)
, P − a.s. (7.3)

Proof. Let z = (x, y) and ν ∈ A(t, z), and denote Zt,z,ν := (Xt,x,ν , Y t,z,ν).
Then Y t,z,νT ≥ g

(
Xt,x,ν
T

)
P−a.s. Notice that

Zt,z,νT = Z
τ,Zt,z,ντ ,ν
T .

Then, by the definition of the set A, it follows that ν ∈ A (τ, Zt,z,ντ ), and
therefore V (τ,Xt,x,ν

τ ) ≤ Y t,z,ντ , P−a.s. ♦

In the next subsection, we will prove that the value function V is a viscosity
supersolution of the corresponding dynamic programming equation which will
be obtained as the infinitesimal counterpart of (7.3). The following remark
comments on the full geometric dynamic programming principle in the context
of stochastic target problems.

Remark 7.3. The statement (7.3) in Theorem 7.2 can be strengthened to the
following geometric dynamic programming principle:

V (t, x) = inf
{
y ∈ R : Y t,x,y,ν ≥ V

(
τ,Xt,x,ν

τ

)
, P− a.s. for some ν ∈ U0

}
.

(7.4)
Let us provide an intuitive justification of this. Denote ŷ := V (t, x). In view of
(7.3), it is easily seen that (7.4) is implied by

P
[
Y t,x,ŷ−η,ντ > V

(
τ,Xt,x,ν

τ

)]
< 1 for all ν ∈ U0 and η > 0.

In words, there is no control process ν which allows to reach the value function
V (τ,Xt,x,ν

τ ) at time τ , with full probability, starting from an initial data stricly
below the value function V (t, x). To see this, suppose to the contrary that there
exist ν ∈ U0, η > 0, and τ ∈ T[t,T ] such that:

Y t,x,ŷ−η,ντ > V
(
τ,Xt,x,ν

τ

)
, P − a.s.

In view of Remark 7.1, this implies that Y t,x,ŷ−η,ντ ∈ Y (τ,Xt,x,ν
τ ), and therefore,

there exists a control ν̂ ∈ U0 such that

Y
τ,Zt,x,ŷ−η,ντ ,ν̂
T ≥ g

(
X
τ,Xt,x,ντ ,ν̂
T

)
, P− a.s.

Since the process
(
Xτ,Xt,x,ντ ,ν̂ , Y τ,Z

t,x,y∗−η,ν
τ ,ν̂

)
depends on ν̂ only through its

realizations in the stochastic interval [t, θ], we may chose ν̂ so as ν̂ = ν on

[t, τ ] (this is the difficult part of this proof). Then Z
τ,Zt,x,ŷ−η,ντ ,ν̂
T = Zt,x,ŷ−η,ν̂T

and therefore ŷ − η ∈ Y(t, x), hence ŷ − η ≤ V (t, x). Recall that by definition
ŷ = V (t, x) and η > 0. ♦
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7.1.3 The dynamic programming equation

In order to have a simpler statement and proof of the main result, we assume
in this section that

U is a closed convex subset of Rd, int(U) 6= ∅ and 0 ∈ U. (7.5)

The formulation of the dynamic programming equation involves the notion of
support function from convex analysis.

a- Dual characterization of closed convex sets We first introduce the
support function of the set U :

δU (ξ) := sup
x∈U

x · ξ, for all ξ ∈ Rd.

By definition δU is a convex function Rd. Its effective domain

Ũ := dom(δU ) = {ξ ∈ Rd : δU (ξ) <∞}

is a closed convex cone of Rd. Since U is closed and convex by (7.5), we have
the following dual characterization:

x ∈ U if and only if δU (ξ)− x · ξ ≥ 0 for all ξ ∈ Ũ , (7.6)

see e.g. Rockafellar [?]. Morover, since Ũ is a cone, we may normalize the dual
variables ξ on the right hand-side:

x ∈ U if and only if δU (ξ)− x · ξ ≥ 0 for all ξ ∈ Ũ1 := {ξ ∈ Ũ : |ξ| = 1}.(7.7)

This normalization will be needed in our analysis in order to obtain a dual
characterization of int(U). Indeed, since U has nonempty interior by (7.5), we
have:

x ∈ int(U) if and only if inf
ξ∈Ũ1

δU (ξ)− x · ξ > 0. (7.8)

b- Formal derivation of the DPE We start with a formal derivation of the
dynamic programming equation which provides the main intuitions.

To simplify the presentation, we suppose that the value function V is smooth
and that existence holds, i.e. for all (t, x) ∈ S, there is a control process ν̂ ∈ U0

such that, with z = (x, V (t, x)), we have Y t,z,ν̂T ≥ g(Xt,x,ν̂
T ), P−a.s. Then it

follows from the geometric dynamic programming of Theorem 7.2 that, P−a.s.

Y t,z,νt+h = v(t, x) +

∫ t+h

t

b
(
s, Zt,z,ν̂s , ν̂s

)
ds+

∫ t+h

t

ν̂s · dWs ≥ V
(
t+ h,Xt,x,ν̂

t+h

)
.

By Itô’s formula, this implies that

0 ≤
∫ t+h

t

(
−∂tV (s,Xt,x,ν̂

s ) +H
(
s, Zt,z,ν̂s , DV (s,Xt,x,ν̂

s ), D2V (s,Xt,x,ν̂
s ), ν̂s

))
ds

+

∫ t+h

t

Nνs
(
s,Xt,x,ν̂

s , DV (s,Xt,x,ν̂
s )

)
· dWs, (7.9)
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where we introduced the functions:

H(t, x, y, p, A, u) := b(t, x, y, u)− µ(t, x, u) · p− 1

2
Tr
[
σ(t, x, u)2A

]
,(7.10)

Nu(t, x, p) := u− σ(t, x, u)p. (7.11)

We continue our intuitive derivation of the dynamic programming equation by
assuming that all terms inside the integrals are bounded (we know that this
can be achieved by localization). Then the first integral behaves like Ch, while
the second integral can be viewed as a time changed Brownian motion. By the
properties of the Brownian motion, it follows that the integrand of the stochastic
integral term must be zero at the origin:

Nνt
t (t, x,DV (t, x)) = 0 or, equivaently νt = ψ

(
t, x,DV (t, x)

)
, (7.12)

where ψ was introduced in (7.1). In particular, this implies that ψ(t, x,DV (t, x)) ∈
U . By (7.7), this is equivalent to:

δU (ξ)− ξ · ψ(t, x,DV (t, x)) ≥ 0 for all ξ ∈ Ũ1. (7.13)

By taking expected values in (7.9), normalizing by h, and sending h to zero, we
see that:

−∂tV (t, x) +H
(
t, x, V (t, x), DV (t, x), D2V (t, x), ψ(t, x,DV (t, x))

)
≥ 0.(7.14)

Putting (7.13) and (7.14) together, we obtain

min

{
−∂tV +H

(
., V,DV,D2V, ψ(., DV )

)
, inf
ξ∈Ũ1

(
δU (ξ)− ξ · ψ(., DV )

)}
≥ 0.

By using the second part of the geometric dynamic programming principle,
see Remark 7.3, we expect to prove that equality holds in the latter dynamic
programming equation.

c- The dynamic programming equation We next turn to a rigorous deriva-
tion of the dynamic programmin equation.

Theorem 7.4. Assume that V is locally bounded, and let the maps H and ψ
be continuous. Then V is a viscosity supersolution of the dynamic programming
equation on S:

min

{
−∂tV +H

(
., V,DV,D2V, ψ(., DV )

)
, inf
ξ∈Ũ1

(
δU (ξ)− ξ · ψ(., DV )

)}
= 0

Assume further that ψ is locally Lipschitz-continuous, and U has non-empty
interior. Then V is a viscosity solution of the above DPE on S.

Proof. As usual, we prove separately the supersolution and the subsolution
properties.
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1. Supersolution: Let (t0, x0) ∈ S and ϕ ∈ C2(S) be such that

(strict) min
S

(V∗ − ϕ) = (V∗ − ϕ)(t0, x0) = 0,

and assume to the contrary that

−2η :=
(
−∂tV +H

(
., V,DV,D2V, ψ(., DV )

))
(t0, x0) < 0. (7.15)

(1-i) By the continuity of H and ψ, we may find ε > 0 such that

−∂tV (t, x) +H
(
t, x, y,DV (t, x), D2V (t, x), u

)
≤ −η (7.16)

for (t, x) ∈ Bε(t0, x0), |y − ϕ(t, x)| ≤ ε, and u ∈ U s.t. |Nu(t, x, p)| ≤ ε.

Notice that (7.16) is obviously true if {u ∈ U : |Nu(t, x, p)| ≤ ε} = ∅, so that
the subsequent argument holds in this case as well.

Since (t0, x0) is a strict minimizer of the difference V∗ − ϕ, we have

γ := min
∂Bε(t0,x0)

(V∗ − ϕ) > 0. (7.17)

(1-ii) Let (tn, xn)n ⊂ Bε(t0, x0) be a sequence such that

(tn, xn) −→ (t0, x0) and V (tn, xn) −→ V∗(t0, x0), (7.18)

and set yn := xn + n−1 and zn := (xn, yn). By the definition of the problem
V (tn, xn), there exists a control process ν̂n ∈ U0 such that the process Zn :=
Ztn,zn,ν̂

n

satisfies Y nT ≥ g(Xn
T ), P−a.s. Consider the stopping times

θ0
n := inf {t > tn : (t,Xn

t ) 6∈ Bε(t0, x0)} ,
θn := θ0

n ∧ inf {t > tn : |Y nt − ϕ(t,Xn
t )| ≥ ε}

Then, it follows from the geometric dynamic programming principle that

Y nt∧θn ≥ V
(
t ∧ θn, Xn

t∧θn
)
.

Since V ≥ V∗ ≥ ϕ, and using (7.17) and the definition of θn, this implies that

Y nt∧θn ≥ ϕ
(
t ∧ θn, Xn

t∧θn
)

+ 1{t=θn}
(
γ1{θn=θ0

n} + ε1{θn<θ0
n}
)

≥ ϕ
(
t ∧ θn, Xn

t∧θn
)

+ (γ ∧ ε)1{t=θn}. (7.19)

(1-iii) Denoting cn := V (tn, xn)− ϕ(tn, xn)− n−1, we write the process Y n as

Y nt = cn + ϕ(tn, xn) +

∫ t

tn

b(s, Zns , ν̂
n
s )ds+

∫ t

tn

ν̂ns · dWs.

Plugging this into (7.19) and applying Itô’s formula, we then see that:

(ε ∧ γ)1{t=θn} ≤ cn +

∫ t∧θn

tn

δns ds+

∫ t∧θn

tn

N ν̂ns (s,Xn
s , Dϕ(s,Xn

s )) · dWs

≤ Mn := cn +

∫ t∧θn

tn

δns 1An(s)ds (7.20)

+

∫ t∧θn

tn

N ν̂ns (s,Xn
s , Dϕ(s,Xn

s )) · dWs
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where

δns := −∂tϕ(s,Xn
s ) +H

(
s, Zns , Dϕ(s,Xn

s ), D2ϕ(s,Xn
s ), ν̂s

)
and

An := {s ∈ [tn, tn + θn] : δns > −η} .

By (7.16), observe that the diffusion term ζns := N ν̂ns (s,Xn
s , Dϕ(s,Xn

s )) in
(7.20) satisfies |ζns | ≥ η for all s ∈ An. Then, by introducing the exponential
local martingale Ln defined by

Lntn = 1 and dLnt = Lnt |ζnt |−2ζnt · dWt,

we see that the process MnLn is a local martingale wihc is bounded from below
by the constant ε ∧ γ. Then MnLn is a supermartingale, and it follows from
(7.20) that

ε ∧ γ ≤ E
[
Mn
θnL

n
θn

]
≤ Mn

tnL
n
tn = cn,

which can not happen because cn −→ 0. Hence, our starting point (7.22) can
not happen, and the proof of the supersolution property is complete.

2. Subsolution: Let (t0, x0) ∈ S and ϕ ∈ C2(S) be such that

(strict) max
S

(V ∗ − ϕ) = (V ∗ − ϕ)(t0, x0) = 0, (7.21)

and assume to the contrary that

2η :=
(
−∂tϕ+H

(
., ϕ,Dϕ,D2ϕ,ψ(., ϕ)

))
(t0, x0) > 0,

and infξ∈Ũ1

(
δU (ξ)− ξ · ψ(., Dϕ)

)
(t0, x0) > 0.

(7.22)

(2-i) By the continuity of H and ψ, and the characterization of int(U) in (7.8),
it follows from (7.22) that(

−∂tϕ+H
(
., y,Dϕ,D2ϕ,ψ(., Dϕ)

))
≥ η and ψ(., Dϕ) ∈ U

for (t, x) ∈ Bε(t0, x0) and |y − ϕ(t, x)| ≤ ε (7.23)

Also, since (t0, x0) is a strict maximizer in (7.21), we have

−ζ := max
∂pBε(t0,x0)

(V ∗ − ϕ) < 0, (7.24)

where ∂pBε(t0, x0) := {t0 + ε} × cl (Bε(t0, x0)) ∪ [t0, t0 + ε)× ∂Bε(x0) denotes
the parabolic boundary of Bε(t0, x0).
(2-ii) Let (tn, xn)n be a sequence in S which converges to (t0, x0) and such that
V (tn, xn)→ V ∗(t0, x0). Set yn = V (tn, xn)− n−1 and observe that

γn := yn − ϕ(tn, xn) −→ 0. (7.25)
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Let Zn := (Xn, Y n) denote the controlled state process associated to the Marko-
vian control ν̂nt = ψ(t,Xn

t , Dϕ(t,Xn
t )) and the initial condition Zntn = (xn, yn).

Since ψ is locally Lipschitz-continuous, the process Zn is well-defined. We next
define the stopping times

θ0
n := inf {s ≥ tn : (s,Xn

s ) /∈ Bε(t0, x0)} ,
θn := θ0

n ∧ inf {s ≥ tn : |Y n(s)− ϕ(s,Xn
s )| ≥ ε} .

By the first line in (7.23), (7.25) and a standard comparison theorem, it follows
that Y nθn −ϕ(θn, X

n
θn

) ≥ ε on {|Y nθn −ϕ(θn, X
n
θn

)| ≥ ε} for n large enough. Since
V ≤ V ∗ ≤ ϕ, we then deduce from (7.24) and the definition of θn that

Y nθn − V (θn, X
n
θn) ≥ 1{θn<θ0

n}

(
Y nθn − ϕ

(
θn, X

n
θn

))
+1{θn=θ0

n}

(
Y nθ0

n
− V ∗

(
θ0
n, X

n
θ0
n

))
= ε1{θn<θ0

n} + 1{θn=θon}

(
Y nθ0

n
− V ∗

(
θ0
n, X

n
θ0
n

))
≥ ε1{θn<θ0

n} + 1{θn=θ0
n}

(
Y nθ0

n
+ ζ − ϕ

(
θ0
n, X

n
θ0
n

))
≥ ε ∧ ζ + 1{θn=θ0

n}

(
Y nθ0

n
− ϕ

(
θ0
n, X

n
θ0
n

))
.

We continue by using Itô’s formula:

Y nθn − V (θn, X
n
θn) ≥ ε ∧ ζ + 1{θn=θ0

n}

(
γn +

∫ θn

tn

α(s,Xn
s , Y

n
s )ds

)
where the drift term α(·) ≥ η is defined in (7.23) and the diffusion coefficient
vanishes by the definition of the function ψ in (7.1). Since ε, ζ > 0 and γn → 0,
this implies that

Y n(θn) ≥ V (θn, X
n(θn)) for sufficiently large n.

Recalling that the initial position of the process Y n is yn = V (tn, xn)− n−1 <
V (tn, xn), this is clearly in contradiction with the second part of the geometric
dynamic programming principle discussed in Remark 7.3. ♦

7.1.4 Application: hedging under portfolio constraints

As an application of the previous results, we now study the problem of super-
hedging under portfolio constraints in the context of the Black-Scholes model.

a- Formulation We consider a financial market consisting of d + 1 assets.
The first asset X0 is nonrisky, and is normalized to unity. The d next assets are
risky with price process X = (X1, . . . , Xd)T defined by the Blac-Scholes model:

dXt = Xt ? σdWt,

where σ is a constant symmetric nondegenrate matrix in Rd, and x ? σ is the
square matrix in Rd with entries (x ? σ)i,j = xiσi,j .
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Remark 7.5. We observe that the normalization of the first asset to unity
does not entail any loss of generality as we can always reduce to this case by
discounting or, in other words, by taking the price process of this asset as a
numéraire.

Also, the formulation of the above process X as a martingale is not a re-
striction as our subsequent superhedging problem only involves the underlying
probability measure through the corresponding zero-measure sets. Therefore,
under the no-arbitrage condition (or more precisely, no free-lunch with vanish-
ing risk), we can reduce the model to the above martingale case by an equivalent
change of measure. ♦

Under the self-financing condition, the liquidation value of the portfolio is
defined by the controlled state process:

dY πt = σπt · dWt,

where π is the control process, with πit representing the amount invested in the
i−th risky asset Xi at time t.

We introduce portfolio constraints by imposing that the portfolio process π
must be valued in a subset U of Rd. We shalll assume that

U is closed convex subset of Rd, int(U) = ∅, and 0 ∈ U. (7.26)

We then define the controls set by Uo as in the previous sections, and we defined
the superhedging problem under portfolio constraints by the stochastic target
problem:

V (t, x) := inf
{
y : Y t,y,πT ≥ g(Xt,x

T ), P− a.s. for some π ∈ U0

}
, (7.27)

where g : Rd+ −→ R+ is a non-negative LSC function with linear growth.
We shall provide an explicit solution of this problem by only using the su-

persolution claim from Theorem 7.4. This will provide a minorant of the su-
perhedging cost V . To provide that this minorant is indeed the desired value
function, we will use a verification argument.

b- Deriving a minorant of the superhedging cost First, since 0 ≤ g(x) ≥
C(1+|x|) for some constant C > 0, we deduce that 0 ≤ V ≥ C(1+|x|), the right
hand-side inequality is easily justified by the buy-and-hold strategy suggested
by the linear upper bound. Then, by a direct application of the first part of
Theorem 7.4, we know that the LSC envelope V∗ of V is a supersolution of the
DPE:

−∂tV∗ − 1
2Tr[(x ? σ)2D2V∗] ≥ 0 (7.28)

δU (ξ)− ξ · (x ? DV∗)
)
≥ 0 for all ξ ∈ Ũ . (7.29)

Notice that (7.29) is equivalent to:

the map λ 7−→ h(λ) := λδU (ξ)− V∗(t, x ? eλξ) is nondecreasing, (7.30)
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where eλξ is the vector of Rd with entries (eλξ)i = eλξi . Then h(1) ≥ h(0)
provides:

V∗(t, x) ≥ sup
ξ∈Ũ

V∗
(
x ? eξ

)
− δU (ξ).

We next observe that V∗(T, .) ≥ g (just use the definition of V , and send t↗ T ).
Then, we deuce from the latter inquality that

V∗(T, x) ≥ ĝ(x) := sup
ξ∈Ũ

g
(
x ? eξ

)
− δU (ξ) for all x ∈ Rd+. (7.31)

In other words, in order to superhedge the derivative security with final payoff
g(XT ), the constraints on the portfolio require that one hedges the derivative
security with larger payoff ĝ(XT ). The function ĝ is called the face-lifted payoff,
and is the smallest majorant of g which satisfies the gradient constraint x ?
Dg(x) ∈ U for all x ∈ Rd+.

Combining (7.31) with (7.28), it follows from the comparison result for the
linear Black-Scholes PDE that

V (t, x) ≥ V∗(t, x) ≥ v(t, x) := E
[
ĝ(Xt,x

T )
]

for all (t, x) ∈ S. (7.32)

c- Explicit solution Our objective is now to prove that V = v. To see this
consider the Black-Scholes hedging strategy π̂ of the derivative security ĝ(Xt,x

T ):

v(t, x) +

∫ T

t

π̂s · σdWs = ĝ(Xt,x
T ).

Since ĝ has linear growth, it follows that π̂ ∈ H2. We also observe that the
random variable lnXt,x

T is gaussian, so that the function v can be written in:

v(t, x) =

∫
ĝ(ew)

1√
2πσ2(T − t)

e
− 1

2

(
w−x+ 1

2
σ2(T−t)

σ
√
T−t

)2

dw.

Under this form, it is clear that v is a smooth function. Then the above hedging
portfolio is given by:

π̂s := Xt,x
s ? DV (s,Xt,x

s )

Notice that, for all ξ ∈ Ũ ,

λδU (ξ)− v(t, xeλξ) = E
[
λδU (ξ)− ĝ

(
Xt,xeλξ

T

)]
is nondecreasing in λ by applying (7.30) to ĝ which, by definition satisfies x ?
Dg(x) ∈ U for all x ∈ Rd+. Then, x ? Dg(x) ∈ U , and therefore the above
replicating portfolio π̂ takes values in U . Since ĝ ≥ g, we deduce from (7.31)
that v ≥ V .
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7.2 Stochastic target problem with controlled
probability of success

In this section, we extend the model presented above to the case where the
target has to be reached only with a given probability p:

V̂ (t, x, p) := inf
{
y ∈ R+ : P

[
Y t,x,y,νT ≥ g(Xt,x,ν

T )
]
≥ p for some ν ∈ U0

}
.(7.33)

In order to avoid degenerate results, we restrict the analysis to the case where the
Y process takes non-negative values, by simply imposing the following conditions
on the coefficients driving its dynamics:

b(t, x, 0, u) ≥ 0 for all(t, x) ∈ S, u ∈ U. (7.34)

Notice that the above definition implies that

0 = V̂ (., 0) ≤ V̂ ≤ V̂ (., 1) = V, (7.35)

and

V̂ (., p) = 0 for p < 0 and V̂ (., p) =∞ for p > 1 , (7.36)

with the usual convention inf ∅ =∞.

7.2.1 Reduction to a stochastic target problem

Our first objective is to convert this problem into a (standard) stochastic target
problem, so as to apply the geometric dynamic programming arguments of the
previous section.

To do this, we introduce an additional controlled state variable:

P t,p,αs := p+

∫ s

t

αr · dWr, for s ∈ [t, T ], (7.37)

where the additional control α is an F−progressively measurable Rd−valued

process satisfying the integrability condition E[
∫ T

0
|αs|2ds] < ∞. We then set

X̂ := (X,P ), Ŝ := [0, T ) × Rd × (0, 1), Û := U × Rd, and denote by Û the
corresponding set of admissible controls. Finally, we introduce the function:

Ĝ(x̂, y) := 1{y≥g(x)} − p for y ∈ R, x̂ := (x, p) ∈ Rd × [0, 1].

Proposition 7.6. For all t ∈ [0, T ] and x̂ = (x, p) ∈ Rd × [0, 1], we have

V̂ (t, x̂) = inf
{
y ∈ R+ : Ĝ

(
X̂t,x̂,ν̂
T , Y t,x,y,νT

)
≥ 0 for some ν̂ = (ν, α) ∈ Û

}
.

Proof. We denote by v(t, x, p) the value function apprearing on the right-hand.
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We first show that V̂ ≥ v. For y > V̂ (t, x, p), we can find ν ∈ U such that
p0 := P

[
G
(
Xt,x,ν
T , Y t,x,y,νT

)
≥ 0
]
≥ p. By the stochastic integral representation

theorem, there exists an F-progressively measurable process α such that

1{Y t,x,y,νT ≥g(Xt,x,νT )} = p0 +

∫ T

t

αs · dWs = P t,p0,α
T and E[

∫ T

t

|αs|2ds] <∞.

Since p0 ≥ p, it follows that 1{Y t,x,y,νT ≥g(Xt,x,νT ,)} ≥ Pαt,p(T ), and therefore

y ≥ v(t, x, p) from the definition of the problem v.

We next show that v ≥ V̂ . For y > v(t, x, p), we have Ĝ
(
X̂t,x̂,ν̂
T , Y t,x,y,νT

)
≥

0 for some ν̂ = (ν, α) ∈ Û . Since Pαt,p is a martingale, it follows that

P
[
Y t,x,y,νT ≥ g

(
Xt,x,ν
T

)]
= E

[
1{Y t,x,y,νT ≥g(Xt,x,νT )}

]
≥ E

[
P t,p,αT

]
= p,

which implies that y ≥ V̂ (t, x, p) by the definition of V̂ . ♦

Remark 7.7. 1. Suppose that the infimum in the definition of V̂ (t, x, p) is
achieved and there exists a control ν ∈ U0 satisfying P

[
Y t,x,y,νT ≥ g

(
Xt,x,ν
T

)]
=

p, the above argument shows that:

P t,p,αs = P
[
Y t,x,y,νT ≥ g

(
Xt,x,ν
T

) ∣∣∣Fs] for all s ∈ [t, T ].

2. It is easy to show that one can moreover restrict to controls α such that
the process P t,p,α takes values in [0, 1]. This is rather natural since this process
should be interpreted as a conditional probability, and this corresponds to the
natural domain [0, 1] of the variable p. We shall however avoid to introduce this
state constraint, and use th efact that the value function V̂ (·, p) is constant for
p ≤ 0 and equal ∞ for p > 1, see (7.36).

7.2.2 The dynamic programming equation

The above reduction of the problem V̂ to a stochastic target problem allows to
apply the geometric dynamic programming principle of the previous section, and
to derive the corresponding dynamic programming equation. For û = (u, α) ∈ Û
and x̂ = (x, p) ∈ Rd × [0, 1], set

µ̂(x̂, û) :=

(
µ(x, u)

0

)
, σ̂(x̂, û) :=

(
σ(x, u)
αT

)
.

For (y, q, A) ∈ R× Rd+1 × Sd+1 and û = (u, α) ∈ Û ,

N̂ û(t, x̂, y, q) := u− σ̂(t, x̂, û)q = Nu(t, x, qx)− qpα for q = (qx, qp) ∈ Rd × R,

and we assume that

u 7−→ Nu(t, x, qx) is one-to-one, with inverse function ψ(t, x, qx, .) (7.38)
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Then, by a slight extension of Theorem 7.4, the corresponding dynamic pro-
gramming equation is given by:

0 = −∂tV̂ + sup
α

{
b(., V̂ , ψ(., DxV̂ , αDpV̂ ))− µ(., ψ(., DxV̂ , αDpV̂ )).DxV̂

−1

2
Tr
[
σ(., ψ(., DxV̂ , αDpV̂ ))2D2

xV̂
]

−1

2
α2D2

pV̂ − ασ(., ψ(., DxV̂ , αDpV̂ ))DxpV̂
}

7.2.3 Application: quantile hedging in the Black-Scholes
model

The problem of quantile hedging was solved by Föllmer and Leukert [?] in the
general model of asset prices process (non-necessarilly Markov), by means of the
Neyman-Pearson lemma from mathematical statistics. The stochastic control
approach developed in the present section allows to solve this type of problems in
a wider generality. The objective of this section is to recover the explicit solution
of [?] in the context of a complete financial market where the underlying risky
assets prices are not affected by the control:

µ(x, u) = µ(x) and σ(x, u) = σ(x) are independent of u, (7.39)

where µ and σ are Lipschitz-continuous, and σ(x) is invertible for all x.
Notice that we will be only using the supersolution property from the results

of the previous sections.

a- The financial market The process X, representing the price process of d
risky assets, is defined by Xt,x

t = x ∈ (0,∞)d, and

dXt,x
s = Xt,x

s ? σ(Xt,x
s )

(
λ(Xt,x

s )ds+ dWs

)
where λ := σ−1µ.

We assume that the coefficients µ and σ are such that Xt,x ∈ (0,∞)d P−a.s.
for all initial conditions (t, x) ∈ [0, T ]× (0,∞)d. In order to avoid arbitrage, we
also assume that σ is invertible and that

sup
x∈(0,∞)d

|λ(x)| <∞ where . (7.40)

The drift coefficient of the controlled process Y is given by:

b(t, x, y, u) = u · λ(x). (7.41)

The control process ν is valued in U = Rd, with components νis indicating the
dollar investment in the i−th security at time s. After the usual reduction of
the interest rates to zero, it follows from the self-financing condition that the
liquidation value of the portfolio is given by

Y t,x,y,νs = y +

∫ s

t

νr · σ(Xt,x
s )

(
λ(Xt,x

s )ds+ dWs

)
, s ≥ t ,



100 CHAPTER 7. STOCHASTIC TARGET PROBLEMS

b- The quantile hedging problem The quantile hedging problem of the
derivative security g(Xt,x(T )) is defined by the stochastic target problem with
controlled probability of success:

V̂ (t, x, p) := inf
{
y ∈ R+ : P

[
Y t,x,y,νT ≥ g(Xt,x

T )
]
≥ p for some ν ∈ U0

}
.

We shall assume throughout that 0 ≤ g(x) ≤ C(1 + |x|) for all x ∈ Rd+. By the
usual buy-and-hold hedging strategies, this implies that 0 ≤ V (t, x) ≤ C(1+|x|).

Under the above assumptions, the corresponding super-hedging cost V (t, x) :=
V̂ (t, x, 1) is continuous and is given by

V (t, x) = EQt,x [g(Xt,x
T )
]
,

where Qt,x is the P-equivalent martingale measure defined by

dQt,x

dP
= exp

(
−1

2

∫ T

t

|λ(Xt,x
s )|2ds−

∫ T

t

λ(Xt,x
s ) · dWs

)
.

In particular, V is a viscosity solution on [0, T )× (0,∞)d of the linear PDE:

0 = −∂tV −
1

2
Tr
[
σ2D2

xV
]
. (7.42)

For later use, let us denote by

WQt,x := W +

∫ ·
t

λ(Xt,x
s )ds, s ∈ [t, T ],

the Qt,x-Brownian motion defined on [t, T ].

c- The viscosity supersolution property By the results of the previous
section, we have V̂∗ is a viscosity supersolution on [0, T ) × Rd+ × [0, 1] of the
equation

0 ≤ −∂tV̂∗−
1

2
Tr
[
σσTD2

xV̂∗

]
− inf
α∈Rd

(
−αλDpV̂∗ + Tr

[
σαDxpV̂∗

]
+

1

2
|α|2D2

pV̂∗

)
.

(7.43)
The boundary conditions at p = 0 and p = 1 are immediate:

V̂∗(·, 1) = V andV̂∗(·, 0) = 0 on [0, T ]× Rd+. (7.44)

We next determine the boundary condition at the terminal time t = T .

Lemma 7.8. For all x ∈ Rd+ and p ∈ [0, 1], we have V̂∗(T, x, p) ≥ pg(x).

Proof. Let (tn, xn, pn)n be a sequence in [0, T )×Rd+×(0, 1) converging to (T, x, p)

with V̂ (tn, xn, pn) −→ V̂∗(T, x, p), and consider yn := V̂ (tn, xn, pn) + 1/n. By
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definition of the quantile hedging problem, there is a sequence (νn, αn) ∈ Û0

such that

1{Y tn,xn,yn,νnT −g(Xtn,xnT )≥0} ≥ P tn,pn,αnT .

This implies that

Y tn,xn,yn,νnT ≥ P tn,pn,αnT g(Xtn,xn
T ).

Taking the expectation under Qtn,xn , this provides:

yn ≥ EQtn,xn [Y tn,xn,yn,νnT

]
≥ EQtn,xn [P tn,pn,αnT g(Xtn,xn

T )
]

= E
[
Ltn,xnT P tn,pn,αnT g(Xtn,xn

T )
]

where we denotes Ltn,xnT := exp
(
−
∫ T
tn
λ(Xtn,xn

s ) · dWs − 1
2

∫ T
tn
|λ(Xtn,xn

s )|2ds
)

.

Then

yn ≥ E
[
P tn,pn,αnT g(x)

]
+ E

[
P tn,pn,αnT

(
Ltn,xnT g(Xtn,xn

T )− g(x)
)]

= png(x) + E
[
P tn,pn,αnT

(
Ltn,xnT g(Xtn,xn

T )− g(x)
)]

≥ png(x)− E
[
P tn,pn,αnT

∣∣Ltn,xnT g(Xtn,xn
T )− g(x)

∣∣] , (7.45)

where we used the fact that P tn,pn,αn is a nonnegative martingale. Now, since
this process is also bounded by 1, we have

E
[
P tn,pn,αnT

∣∣Ltn,xnT g(Xtn,xn
T )− g(x)

∣∣] ≤ E
[∣∣Ltn,xnT g(Xtn,xn

T )− g(x)
∣∣] −→ 0

as n → ∞, by the stability properties of the flow and the dominated conver-
gence theorem. Then, by taking limits in (7.45), we obtain that V̂∗(T, x, p) =
limn→∞ yn ≥ pg(x), which is the required inequality. ♦

d- An explicit minorant of V̂ The key idea is to introduce the Legendre-
Fenchel dual of V∗ with respect to the p−variable in order to remove the non-
linearity in (7.43):

v(t, x, q) := sup
p∈R

{
pq − V̂∗(t, x, p)

}
, (t, x, q) ∈ [0, T ]× (0,∞)d × R. (7.46)

By the definition of the function V̂ , we have

v(., q) =∞ for q < 0 and v(., q) = sup
p∈[0,1]

{
pq − V̂∗(., p)

}
for q > 0. (7.47)

Using the above supersolution property of V̂∗, we shall prove below that v is an
upper-semicontinuous viscosity subsolution on [0, T )× (0,∞)d × (0,∞) of

−∂tv −
1

2
Tr
[
σ2D2

xv
]
− 1

2
|λ|2 q2D2

qv − Tr [σλDxqv] ≤ 0 (7.48)
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with the boundary condition

v(T, x, q) ≤ (q − g(x))
+
. (7.49)

Since the above equation is linear, we deduce from the comparison result an
explicit upper bound for v given by the Feynman-Kac representation result:

v(t, x, q) ≤ v̄(t, x, q) := EQt,x
[(
Qt,x,qT − g(Xt,x

T )
)+]

, (7.50)

on [0, T ]× (0,∞)d× (0,∞), where the process Qt,x,q is defined by the dynamics

dQt,x,qs

Qt,x,qs

= λ(Xt,x
s ) · dWQt,x

s and Qt,x,q(t) = q ∈ (0,∞). (7.51)

Given the explicit representation of v̄, we can now provide a lower bound for
the primal function V̂ by using (7.47). Clearly the function v̄ is convex in q and
there is a unique solution q̄(t, x, p) to the equation

∂v̄

∂q
(t, x, q̄) = EQt,x

[
Qt,x,1T 1{Qt,x,q̄(T )≥g(Xt,xT )}

]
= P

[
Qt,x,q̄T ≥ g(Xt,x

T )
]

= p,

(7.52)
where we have used the fact that dP/dQt,x = Qt,x,1T . This induces the following

lower bound for the value function of the quantile hedging problem V̂ :

V̂ (t, x, p) ≥ V̂∗(t, x, p) ≥ pq̄(t, x, p)− v̄ (t, x, q̄(t, x, p))

= q̄(t, x, p)
(
p− EQt,x

[
Qt,x,1T 1{q̄(t,x,p)Qt,x,1T ≥g(Xt,xT )}

])
+EQt,x

[
g(Xt,x

T )1{q̄(t,x,p)Qt,x,1T ≥g(Xt,xT )}
]

= EQt,x
[
g(Xt,x

T )1{q̄(t,x,p)Qt,x,1T ≥g(Xt,xT )}
]

=: y(t, x, p).

e- The explicit solution We finally show that the above explicit minorant
y(t, x, p) is equal to V̂ (t, x, p). By the martingale representation theorem, there
exists a control process ν ∈ U0 such that

Y
t,x,y(t,x,p),ν
T ≥ g

(
Xt,x
T

)
1{q̄(t,x,p)Qt,x,1T ≥g(Xt,xT )}.

Since P
[
q̄(t, x, p)Qt,x,1T ≥ g(Xt,x

T )
]

= p, by (7.52), this implies that V̂ (t, x, p) =

y(t, x, p).

f- Proof of (7.48)-(7.49) First note that the fact that v is upper-semicontinuous
on [0, T ]× (0,∞)d × (0,∞) follows from the lower-semicontinuity of V̂∗ and the
representation in the right-hand side of (7.47), which allows to reduce the com-
putation of the sup to the compact set [0, 1]. Moreover, the boundary condition
(7.49) is an immediate consequence of the right-hand side inequality in (7.44)
and (7.47) again.
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We now turn to the supersolution property inside the domain. Let ϕ be a
smooth function with bounded derivatives and (t0, x0, q0) ∈ [0, T ) × (0,∞)d ×
(0,∞) be a local maximizer of v − ϕ such that (v − ϕ)(t0, x0, q0) = 0.
(i) We first show that we can reduce to the case where the map q 7→ ϕ(·, q) is
strictly convex. Indeed, since v is convex, we necessarily have Dqqϕ(t0, x0, q0) ≥
0. Given ε, η > 0, we now define ϕε,η by ϕε,η(t, x, q) := ϕ(t, x, q) + ε|q − q0|2 +
η|q − q0|2(|q − q0|2 + |t − t0|2 + |x − x0|2). Note that (t0, x0, q0) is still a local
maximizer of U −ϕε,η. Since Dqqϕ(t0, x0, q0) ≥ 0, we have Dqqϕε,η(t0, x0, q0) ≥
2ε > 0. Since ϕ has bounded derivatives, we can then choose η large enough
so that Dqqϕε,η > 0. We next observe that, if ϕε,η satisfies (7.48) at (t0, x0, q0)
for all ε > 0, then (7.48) holds for ϕ at this point too. This is due to the
fact that the derivatives up to order two of ϕε,η at (t0, x0, q0) converge to the
corresponding derivatives of ϕ as ε→ 0.
(ii) From now on, we thus assume that the map q 7→ ϕ(·, q) is strictly convex.
Let ϕ̃ be the Fenchel transform of ϕ with respect to q, i.e.

ϕ̃(t, x, p) := sup
q∈R
{pq − ϕ(t, x, q)} .

Since ϕ is strictly convex in q and smooth on its domain, ϕ̃ is strictly convex in
p and smooth on its domain, see e.g. [?]. Moreover, we have

ϕ(t, x, q) = sup
p∈R
{pq − ϕ̃(t, x, p)} = J(t, x, q)q − ϕ̃(t, x, J(t, x, q))

on (0, T )×(0,∞)d×(0,∞) ⊂ int(dom(ϕ)), where q 7→ J(·, q) denotes the inverse
of p 7→ Dpϕ̃(·, p), recall that ϕ̃ is strictly convex in p.

We now deduce from the assumption q0 > 0 and (7.47) that we can find
p0 ∈ [0, 1] such that v(t0, x0, q0) = p0q0− V̂∗(t0, x0, p0) which, by using the very
definition of (t0, x0, p0, q0) and v, implies that

0 = (V̂∗ − ϕ̃)(t0, x0, p0) = (local) min(V̂∗ − ϕ̃) (7.53)

and

ϕ(t0, x0, q0) = sup
p∈R
{pq0 − ϕ̃(t0, x0, p)} (7.54)

= p0q0 − ϕ̃(t0, x0, p0) with p0 = J(t0, x0, q0), (7.55)

where the last equality follows from (7.53) and the strict convexity of the map
p 7→ pq0 − ϕ̃(t0, x0, p) in the domain of ϕ̃.

We conclude the proof by discussing three alternative cases depending on
the value of p0.

• If p0 ∈ (0, 1), then (7.53) implies that ϕ̃ satisfies (7.43) at (t0, x0, p0) and
the required result follows by exploiting the link between the derivatives of
ϕ̃ and the derivatives of its p-Fenchel transform ϕ, which can be deduced
from (7.53).
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• If p0 = 1, then the first boundary condition in (7.44) and (7.53) imply
that (t0, x0) is a local minimizer of V̂∗(·, 1) − ϕ̃(·, 1) = V − ϕ̃(·, 1) such
that (V − ϕ̃(·, 1))(t0, x0) = 0. This implies that ϕ̃(·, 1) satisfies (7.42) at
(t0, x0) so that ϕ̃ satisfies (7.43) for α = 0 at (t0, x0, p0). We can then
conclude as in 1. above.

• If p0 = 0, then the second boundary condition in (7.44) and (7.53) imply
that (t0, x0) is a local minimizer of V̂∗(·, 0)− ϕ̃(·, 0) = 0− ϕ̃(·, 0) such that
0 − ϕ̃(·, 0)(t0, x0) = 0. In particular, (t0, x0) is a local maximum point
for ϕ̃(·, 0) so that (∂tϕ̃,Dxϕ̃)(t0, x0, 0) = 0 and Dxxϕ̃(t0, x0, 0) is negative
semi-definite. This implies that ϕ̃(·, 0) satisfies (7.42) at (t0, x0) so that ϕ̃
satisfies (7.43) at (t0, x0, p0), for α = 0. We can then argue as in the first
case.

♦



Chapter 8

Second Order Stochastic
Target Problems

In this chapter, we extend the class of stochastic target problems of the previous
section to the case where the quadratic variation of the control process ν is
involved in the optimization problem. This new class of problems is motivated
by applications in financial mathematics related.

We first start by studying in details the so-called problem of hedging under
Gamma constraints. This simple example already outlines the main difficulties.
By using the tools from viscosity solutions, we shall first exhibit a minorant for
the superhedging cost in this context. We then argue by verification to prove
that this minorant is indeed the desired value function.

We then turn to a general formulation of second order stochastic target
problems. Of course, in general, there is no hope to use a verification argument
as in the example of the first section. We therefore provide the main tools in
order to show that the value function is a viscosity solution of the corresponding
dynamic programming equation.

Finally, Section 8.3 provides another application to the problem of super-
hedging under illiquidity cost. We will consider the illiquid financial market
introduced by Cetin, Jarrow and Protter [?], and we will show that our sec-
ond order stochastic target framework leads to an illiquidity cost which can be
characterized by means of a nonlinear PDE.

8.1 Superhedging under gamma constraints

In this section, we focus on an alternative constraint on the portfolio π. For
simplicity, we consider a financial market with a single risky asset. Let Zt(ω)
:= S−1

t πt(ω) denote the vector of number of shares of the risky assets held at
each time t and ω ∈ Ω. By definition of the portfolio strategy, the investor has
to adjust his strategy at each time t, by passing the number of shares from Zt
to Zt+dt. His demand in risky assets at time t is then given by ”dYt”.
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In an equilibrium model, the price process of the risky asset would be pushed
upward for a large demand of the investor. We therefore study the hedging
problem with constrained portfolio adjustment.

However, market practitioners only focus on the diffusion component of the
hedge adjustment dZt, which is given by the so-called Gamma, i.e. the Hessian of
the Black-Scholes prices. The Gamma of the hedging strategy is an important
risk control parameter indicating the size of the rebalacement of the hedging
portfolio indcued by a stress scenario, i.e. a sudden jump of the underlying
asset spot price. A large portfolio gamma leads to two different risks depending
on its sign:

- A large positive gamma requires that the seller of the option adjusts his
hedging portfolio by a large purchase of the underlying asset. This is a typical
risk that traders want to avoid because then the price to be paid for this hedging
adjustment is very high, and sometimes even impossible because of the limited
offer of underlying assets on the financial market.

- A negative gamma induces a risk of different nature. Indeed the hedger
has the choice between two alternative strategies: either adjust the hedge at
the expense of an outrageous market price, or hold the Delta position risk. The
latter buy-and-hold strategy does not violate the hedge thanks to the (local)
concavity of the payoff (negative gamma). There are two ways to understand
this result: the second order term in the Taylor expansion has a sign in favor
of the hedger, or equivalently the option price curve is below its tangent which
represents the buy-and-hold position.

This problem turns out to present serious mathematical difficulties. The
analysis of this section provides a solution of the problem of hedging under
upper bound on the Gamma in a very specific situation. The lower bound on
the Gamma introduces more difficulties due to the fact that the nonlinearity in
the ”first guess” equation is not elliptic.

8.1.1 Problem formulation

We consider a financial market which consists of one bank account, with constant
price process S0

t = 1 for all t ∈ [0, T ], and one risky asset with price process
evolving according to the Black-Scholes model :

Su := St exp

(
−1

2
σ2(t− u) + σ(Wt −Wu)

)
, t ≤ u ≤ T.

Here W is a standard Brownian motion in R defined on a complete probability
space (Ω,F , P ). We shall denote by F = {Ft, 0 ≤ t ≤ T} the P -augmentation
of the filtration generated by W .

Observe that there is no loss of generality in taking S as a martingale, as
one can always reduce the model to this case by judicious change of measure.
On the other hand, the subsequent analysis can be easily extended to the case
of a varying volatility coefficient.

We denote by Z = {Zu, t ≤ u ≤ T} the process of number of shares of
risky asset S held by the agent during the time interval [t, T ]. Then, by the
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self-financing condition, the wealth process induced by some initial capital y, at
time t, and portfolio strategy Z is given by :

Yu = y +

∫ u

t

ZrdSr, t ≤ u ≤ T.

In order to introduce constraints on the variations of the hedging portfolio Z,
we restrict Z to the class of continuous semimartingales with respect to the
filtration F. Since F is the Brownian filtration, we define the controlled portfolio
strategy Zz,α,Γ by :

Zz,α,Γu = z +

∫ u

t

αrdr +

∫ u

t

ΓrσdWr, t ≤ u ≤ T, (8.1)

where z ∈ R is the time t initial portfolio and the control pair (α,Γ) are bounded
progressively measurable processes. We denote by Bt the colection of all such
control processes.

Hence a trading strategy is defined by the triple ν := (z, α,Γ) with z ∈ R
and (α,Γ) ∈ Bt. The associated wealth process, denoted by Y y,ν , is given by :

Y y,νu = y +

∫ u

t

Zνr dSr, t ≤ u ≤ T, (8.2)

where y is the time t initial capital. We now formulate the Gamma constraint
in the following way. Let Γ < 0 < Γ be two fixed fixed constants. Given some
initial capital y ∈ R, we define the set of y-admissible trading strategies by :

At(Γ,Γ) :=
{
ν = (y, α,Γ) ∈ R× Bt : Γ ≤ Γ· ≤ Γ

}
.

As in the previous sections, We consider the super-replication problem of some
European type contingent claim g(ST ) :

v(t, St) := inf
{
y : Y y,νT ≥ g(ST ) a.s. for some ν ∈ At(Γ,Γ)

}
. (8.3)

Remark 8.1. The above set of admissible strategies seems to be very restrictive.
We will see in the section that one can possibly enlarge, but not so much ! The
fundamental reason behind this can be understood from the following result due
to Bank and Baum, and restated here in the case of the Brownian motion:

Lemma 8.2. Let φ be a progressively measurable process with
∫ 1

0
|φt|2dt < ∞,

P−a.s. Then for all ε > 0, there is a process φε with dφεt = αεtdt for some

progressively measurable αε with
∫ 1

0
|αεt |dt <∞, P−a.s. such that:

sup
t≤1

∥∥∥∫ 1

0

φtdWt −
∫ 1

0

φεtdWt

∥∥∥
L∞

≤ ε.

Given this result, it is clear that without any constraint on the process
α in the strategy ν, the superhedging cost would be obviously equal to the
Black-Scholes unconstrained price. Indeed, the previous lemma says that one
can approximate the Black-Scholes hedging strategy by a sequence of hedging
strategies with zero gamma without affecting the liquidation value of the hedging
portfolio by more that ε. ♦
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8.1.2 Hedging under upper Gamma constraint

In this section, we consider the case

Γ = −∞ and we denote At(Γ) := At(−∞,Γ).

Our goal is to derive the following explicit solution : v(t, St) is the (uncon-
strained) Black-Scholes price of some convenient face-lifted contingent claim
ĝ(ST ), where the function ĝ is defined by

ĝ(s) := hconc(s) + Γs ln s with h(s) := g(s)− Γs ln s ,

and hconc denotes the concave envelope of h. Observe that this function can
be computed easily. The reason for introducing this function is the following.

Lemma 8.3. ĝ is the smallest function satisfying the conditions

(i) ĝ ≥ g , and (ii) s 7−→ ĝ(s)− Γs ln s is concave.

The proof of this easy result is omitted.

Theorem 8.4. Let g be a lower semicontinuous mapping on R+ with

s 7−→ ĝ(s)− C s ln s convex for some constant C. (8.4)

Then the value function (8.3) is given by :

v(t, s) = Et,s [ĝ (ST )] for all (t, s) ∈ [0, T )× (0,∞) .

Discussion 1. We first make some comments on the model. Intuitively, we
expect the optimal hedging portfolio to satisfy

Ẑu = vs(u, Su) ,

where v is the minimal superhedging cost. Assuming enough regularity, it fol-
lows from Itô’s formula that

dẐu = Audu+ σSuvss(u, Su)dWu ,

where A(u) is given in terms of derivatives of v. Compare this equation with
(8.1) to conclude that the associated gamma is

Γ̂u = Su vss(u, Su) .

Therefore the bound on the process Γ̂ translates to a bound on svss. Notice
that, by changing the definition of the process Γ in (8.1), we may bound vss
instead of svss. However, we choose to study svss because it is a dimensionless
quantity, i.e., if all the parameters in the problem are increased by the same
factor, svss still remains unchanged.
2. Intuitively, we expect to obtain a similar type solution to the case of port-
folio constraints. If the Black-Scholes solution happens to satisfy the gamma
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constraint, then it solves the problem with gamma constraint. In this case v
satisfies the PDE −Lv = 0. Since the Black-Scholes solution does not satisfy
the gamma constraint, in general, we expect that the function v solves the
variational inequality :

min
{
−Lv,Γ− svss

}
= 0 . (8.5)

3. An important feature of the log-normal Black and Sholes model is that the
variational inequality (8.5) reduces to the Black-Scholes PDE −Lv = 0 as long
as the terminal condition satisfies the gamma constraint (in a weak sense). From
Lemma 8.3, the face-lifted payoff function ĝ is precisely the minimal function
above g which satisfies the gamma constraint (in a weak sense). This explains
the nature of the solution reported in Theorem 8.4, namely v(t, St) is the Black-
Scholes price of the contingent claim ĝ (ST ).

Dynamic programming and viscosity property We now turn to the proof
of Theorem 8.4. We shall denote

v̂(t, s) := Et,s [ĝ (ST )] .

It is easy to check that v̂ is a smooth function satisfying

Lv̂ = 0 and sv̂ss ≤ Γ on [0, T )× (0,∞) . (8.6)

1. We start with the inequality v ≤ v̂. For t ≤ u ≤ T , we set

z := v̂s(t, s), αu := Lv̂s(u, Su), Γu := Suv̂ss(u, Su),

and we claim that

(α,Γ) ∈ Bt and Γ ≤ Γ. (8.7)

so that the corresponding control ν = (y, α,Γ) ∈ At(Γ). Before verifying this
claim, let us complete the proof of the required inequality. Since g ≤ ĝ, we have

g (ST ) ≤ ĝ (ST ) = v̂ (T, ST )

= v̂(t, St) +

∫ T

t

Lv̂(u, Su)du+ v̂s(u, Su)dSu

= v̂(t, St) +

∫ T

t

ZνudSu;

in the last step we applied Itô’s formula to v̂s. Now, observe that the right hand-
side of the latter inquality is the liquidation value of the portfolio started from
the initila capital v̂(t, St) and using the portfolio strategy ν. By the definition
of the superhgedging problem (8.3), we conclude that v ≤ v̂.

It remains to prove (8.7). The upper bound on Γ follows from (8.6). As for
the lower bound, it is obtained as a direct consequence of Condition (8.4). Using
again (8.6) and the smoothness of v̂, we see that 0 = (Lv̂)s = Lv̂s + σ2sv̂ss, so
that α = −σ2Γ is also bounded.
2. The proof of the reverse inequality v ≥ v̂ requires much more effort. The
main step is the following (half) dynamic programming principle.
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Lemma 8.5. Let y ∈ R, ν ∈ At(Γ) be such that Y y,νT ≥ g (ST ) P−a.s. Then

Y y,νθ ≥ v (θ, Sθ) , P− a.s.

for all stopping times θ valued in [t, T ].

The proof of this claim is easy and follows from the same argument than the
corresponding one in the standard stochastic target problems of the previous
section.

We continue by stating two lemmas whose proofs rely heavily on the above
dynamic programming principle, and will be reported later. We denote as usual
by v∗ the lower semicontinuous envelope of v.

Lemma 8.6. The function v∗ is a viscosity supersolution of the equation

−Lv∗ ≥ 0 on [0, T )× (0,∞).

Lemma 8.7. The function s 7−→ v∗(t, s)− Γs ln s is concave for all t ∈ [0, T ].

Before proceeding to the proof of these results, let us show how the remain-
ing inequality v ≥ v̂ follows from it. Given a trading strategy in At(Γ), the
associated wealth process is a square integrable martingale, and therefore a su-
permartingale. From this, one easily proves that v∗(T, s) ≥ g(s). By Lemma
8.7, v∗(T, ·) also satisfies requirement (ii) of Lemma 8.3, and therefore

v∗(T, ·) ≥ ĝ.

In view of Lemma 8.6, v∗ is a viscosity supersolution of the equation −Lv∗ = 0
and v∗(T, ·) = ĝ. Since v̂ is a viscosity solution of the same equation, it follows
from the classical comparison theorem that v∗ ≥ v̂.

Hence, in order to complete the proof of Theorem 8.4, it remains to prove
Lemmas 8.6 and 8.7.

Proof of Lemmas 8.6 and 8.7 We split the argument in several steps.
3. We first show that the problem can be reduced to the case where the controls
(α,Γ) are uniformly bounded. For ε ∈ (0, 1], set

Aεt :=
{
ν = (y, α,Γ) ∈ At(Γ) : |α(.)|+ |Γ(.)| ≤ ε−1

}
,

and

vε(t, St) = inf
{
y : Y y,νT ≥ g(ST ) P − a.s. for some ν ∈ Aεt

}
.

Let vε∗ be the lower semicontinuous envelope of vε. It is clear that vε also satisfies
the dynamic programming equation of Lemma 8.5.

Since

v∗(t, s) = lim inf∗ v
ε(t, s) = lim inf

ε→0,(t′,s′)→(t,s)
vε∗(t

′, s′) ,
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we shall prove that

−Lvε ≥ 0 in the viscosity sense, (8.8)

and the statement of the lemma follows from the classical stability result of
Proposition ??.
4. We now derive the implications of the dynamic programming principle of
Lemma 8.5 applied to vε. Let ϕ ∈ C∞(R2) and (t0, s0) ∈ (0, T )× (0,∞) satisfy

0 = (vε∗ − ϕ)(t0, s0) = min
(0,T )×(0,∞)

(vε∗ − ϕ) ;

in particular, we have vε∗ ≥ ϕ. Choose a sequence (tn, sn) → (t0, s0) so that
vε(tn, sn) converges to vε∗(t0, s0). For each n, by the definition of vε and the
dynamic programming, there are yn ∈ [vε(tn, sn), vε(tn, sn) + 1/n], hedging
strategies νn = (zn, αn,Γn) ∈ Aεtn satisfying

Y yn,νnθn
− vε (θn, Sθn) ≥ 0

for every stopping time θn valued in [tn, T ]. Since vε ≥ vε∗ ≥ ϕ,

yn +

∫ θn

tn

Zνnu dSu − ϕ (θn, Sθn) ≥ 0.

Observe that

βn := yn − ϕ(tn, sn) −→ 0 as n −→∞.

By Itô’s formula, this provides

Mn
θn ≤ Dn

θn + βn, (8.9)

where

Mn
t :=

∫ t

0

[
ϕs(tn + u, Stn+u)− Y νntn+u

]
dStn+u

Dn
t := −

∫ t

0

Lϕ(tn + u, Stn+u)du .

We now choose conveniently the stopping time θn. For all h > 0, define the
stopping time

θn := (tn + h) ∧ inf {u > tn : |ln (Su/sn)| ≥ 1} .

5. By the smoothness of Lϕ, the integrand in the definition of Mn is bounded
up to the stopping time θn and therefore, taking expectation in (8.9) provides :

−Etn,sn

[∫ t∧θn

0

Lϕ(tn + u, Stn+u)du

]
≥ −βn,

We now send n to infinity, divide by h and take the limit as h↘ 0. The required
result follows by dominated convergence. ♦
6. It remains to prove Lemma 8.7. The key-point is the following result, which
is a consequence of Theorem 4.5.
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Lemma 8.8. Let ({anu, u ≥ 0})n and ({bnu, u ≥ 0})n be two sequences of real-
valued, progressively measurable processes that are uniformly bounded in n. Let
(tn, sn) be a sequence in [0, T ) × (0,∞) converging to (0, s) for some s > 0.
Suppose that

Mn
t∧τn :=

∫ tn+t∧τn

tn

(
ζn +

∫ u

tn

anr dr +

∫ u

tn

bnr dSr

)
dSu

≤ βn + Ct ∧ τn

for some real numbers (ζn)n, (βn)n, and stopping times (τn)n ≥ tn. Assume
further that, as n tends to infinity,

βn −→ 0 and t ∧ τn −→ t ∧ τ0 P − a.s.,

where τ0 is a strictly positive stopping time. Then :
(i) limn→∞ ζn = 0.
(ii) limu→0 essinf0≤r≤u bu ≤ 0, where b be a weak limit process of (bn)n.

7. We now complete the proof of Lemma 8.7. We start exactly as in the previous
proof by reducing the problem to the case of uniformly bounded controls, and
writing the dynamic programming principle on the value function vε.

By a further application of Itô’s lemma, we see that :

Mn(t) =

∫ t

0

(
ζn +

∫ u

0

anr dr +

∫ u

0

bnr dStn+r

)
dStn+u , (8.10)

where

ζn := ϕs(tn, sn)− zn
an(r) := Lϕs(tn + r, Stn+r)− αntn+r

bnr := ϕss(tn + r, Stn+r)−
Γntn+r

Stn+r
.

Observe that the processes an.∧θn and bn.∧θn are bounded uniformly in n since
Lϕs and ϕss are smooth functions. Also since Lϕ is bounded on the stochastic
interval [tn, θn], it follows from (8.9) that

Mn
θn ≤ C t ∧ θn + βn

for some positive constant C. We now apply the results of Lemma 8.8 to the
martingales Mn. The result is :

lim
n→∞

zn = ϕs(t0, y0) and lim
t→0

ess inf
0≤u≤t

bt ≤ 0.

where b is a weak limit of the sequence (bn). Recalling that Γn(t) ≤ Γ, this
provides that :

−s0ϕss(t0, s0) + Γ ≥ 0.

Hence vε∗ is a viscosity supersolution of the equation −s(v∗)ss + Γ ≥ 0, and the
required result follows by the stability result of Proposition ??. ♦
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8.1.3 Including the lower bound on the Gamma

We now turn to our original problem (8.3) of superhedging under upper and
lower bound on the Gamma process.

Following the same intuition as in point 2 of the discussion subsequent to
Theorem 8.4, we guess that the value function v should be characterized by the
PDE:

F (s, ∂tu, uss) := min
{
−Lu,Γ− suss, suss − Γ

}
= 0,

where the first item of the minimum expression that the value function should
be dominating the Black-Scholes solution, and the two next ones inforce the
constraint on the second derivative.

This first guess equation is however not elliptic because the third item of the
minimum is increasing in uss. This would of course divert us from the world
of viscosity solutions and the maximum principle. But of course, this is just a
guess, and we should expect, as usual in stochastic control, to obtain an elliptic
dynamic programming equation.

To understand what is happening in the present situation, we have to go
back to the derivation of the DPE from dynamic programming principle in the
previous subsection. In particular, we recall that in the proof of Lemmas 8.6
and 8.7, we arrived at the inequality (8.9):

Mn
θn ≤ Dn

θn + βn,

where

Dn
t := −

∫ t

0

Lϕ(tn + u, Stn+u)du,

and Mn is given by (8.10), after an additional application of Itô’s formula,

Mn(t) =

∫ t

0

(
ζn +

∫ u

0

anr dr +

∫ u

0

bnr dStn+r

)
dStn+u ,

with

ζn := ϕs(tn, sn)− zn
an(r) := Lϕs(tn + r, Stn+r)− αntn+r

bnr := ϕss(tn + r, Stn+r)−
Γntn+r

Stn+r
.

To gain more intuition, let us supresse the sequence index n, set βn = 0, and
take the processes a and b to be constant. Then, we are reduced to the process

M(t) = ζ(St0+t−St0)+a

∫ t0+t

t0

(u−t0)dSu+
b

2

(
(St0+t − St0)2 −

∫ t

t0

σ2S2
udu

)
.

This decomposition reveals many observations:
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• The second term should play no role as it is negligible in small time com-
pared to the other ones.

• The requirement M(.) ≤ D(.) implies that b ≤ 0 because otherwise the
third term would dominate the other two ones, by the law of iterated
logarithm of the Brownian motion, and would converge to +∞ violating
the upper bound D. Since b ≤ 0 and Γ ≤ Γ ≤ Γ, this provides

Γ ≤ sϕss − sbt0 ≤ Γ.

• We next observe that, by taking the liminf of the third term, the squared
difference (St0+t − St0)2 vanishes. So we may continue as in Step 5 of the
proof of Lemmas 8.6 and 8.7 taking expected values, normalizing by h,
and sending h to zero. Because of the finite variation component of the
third term

∫ t
t0
σ2S2

udu, this leads to

0 ≤ −∂tϕ−
1

2
σ2s2ϕss −

bt0
2
σ2s2

= −∂tϕ−
1

2
σ2s2(ϕss + bt0),

Collecting the previous inequalities, we arrive at the supersolution property:

F̂ (s, ∂tϕ,ϕss) ≥ 0,

where

F̂ (s, ∂tϕ,ϕss) = sup
β≥0

F (s, ∂tϕ,ϕss + β).

A remarkable feature of the nonlinearity F̂ is that it is elliptic ! in fact, it is
easy to show that F̂ is the smallest elliptic majorant of F . For this reason, we
call F̂ the elliptic majorant of F .

The above discussion says all about the derivation of the supersolution prop-
erty. However, more conditions on the set of admissible strategies need to be
imposed in order to turn it into a rigorous argument. Once the supersolution
property is proved, one also needs to verify the subsolution that the subsolution
property holds true. This also requires to be very careful about the set of ad-
missible strategies. Instead of continuing this example, we shall state without
proof the viscosity property, without specifying the precise set of admissible
strategies. This question will be studied in details in the subsequent paragraph,
where we analyse a general class of second order stochastic target problems.

Theorem 8.9. Under a convenient specification of the set A(Γ,Γ), the value
function v is a viscosity solution of the equation

F̂ (s, ∂tv, vss) = 0 on [0, T )× R+.
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8.2 Second order target problem

In this section, we introduce the class of second order stochastic target problems
motivated by the hedging problem under Gamma constraints of the previous
section.

8.2.1 Problem formulation

The finite time horizon T ∈ (0,∞) will be fixed throughout this section. As
usual, {Wt}t∈[0,T ] denotes a d-dimensional Brownian motion on a complete prob-
ability space (Ω,F , P ), and F = (Ft)t∈[0,T ] the corresponding augmented filtra-
tion.

State processes We first start from the uncontrolled state process X defined
by the stochastic differential equation

Xt = x+

∫ t

s

[µ(Xu)du+ σ(Xu)dWu] , t ∈ [s, T ].

Here, µ and σ are assumed to satisfy the usual Lipshitz and linear growth
conditions so as to ensure the existence of a unique solution to the above SDE.
We also assume that σ(x) is invertible for all x ∈ Rd.

The control is defined by the Rd-valued process {Zt}t∈[s,T ] of the form

Zt = z +

∫ t

s

Ardr +

∫ t

s

ΓrdX
s,x
r , t ∈ [s, T ], (8.11)

Γt = γ +

∫ t

s

ardr +

∫ t

s

ξrdX
s,x
r , t ∈ [s, T ], (8.12)

where {Γt}t∈[s,T ] takes values in Sd. Notice that both Z and Γ have continuous
sample paths, a.s.

Before specifying the exact class of admissible control processes Z, we intro-
duce the controlled state process Y defined by

dYt = f(t,Xs,x
t , Yt, Zt,Γt) dt+ Zt ◦ dXs,x

t , t ∈ [s, T ), (8.13)

with initial data Ys = y. Here ◦ denotes the Fisk-Stratonovich integral. Due to
the form of the Z process, this integral can be expressed in terms of standard
Ito integral,

Zt ◦ dXs,x
t = Zt · dXs,x

t +
1

2
Tr[σtσΓt]dt.

The function f : [0, T ) × Rd × R × Rd × Sd → R, appearing in the controlled
state equation (8.13), is assumed to satisfy the following Lipschitz and growth
conditions:
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(A1) For all N > 0, there exists a constant FN such that

|f(t, x, y, z, γ)− f(t, x, y′, z, γ)| ≤ FN |y − y′|

for all (t, x, y, z, γ) ∈ [0, T ]× Rd × R× Rd × Sd, y′ ∈ R satisfying

max{|x|, |y|, |y′|, |z|, |γ|} ≤ N.

(A2) There exist constants F and p ≥ 0 such that

|f(t, x, y, z, γ)| ≤ F (1 + |x|p + |y|+ |z|p + |γ|p)

for all (t, x, y, z, γ) ∈ [0, T ]× Rd × R× Rd × Sd.

(A3) There exists a constant c0 > 0 such that

f(t, x, y′, z, γ)− f(t, x, y, z, γ) ≥ −c0(y′ − y) for every y′ ≥ y,

and (t, x, z, γ) ∈ [0, T )× Rd × Rd × Sd.

Admissible control processes As outlined in Remark 8.1, the control pro-
cesses must be chosen so as to exclude the possibility of avoiding the impact of
the Gamma process by approximation.

We shall fix two constants B, b ≥ 0 throughout, and we refrain from indexing
all the subsequent classes of processes by these constants. For (s, x) ∈ [0, T ]×Rd,
we define the norm of an F−progressively measurable process {Ht}t∈[s,T ] by,

‖H‖B,bs,x :=

∥∥∥∥ sup
s≤t≤T

|Ht|
1 + |Xs,x

t |B

∥∥∥∥
Lb
.

For all m > 0, we denote by As,xm,b be the class of all (control) processes Z of
the form (8.11), where the processes A, a, ξ are F-progressively measurable and
satisfy:

‖Z‖B,∞s,x ≤ m, ‖Γ‖B,∞s,x ≤ m, ‖ξ‖B,2s,x ≤ m, (8.14)

‖A‖B,bs,x ≤ m, ‖a‖B,bs,x ≤ m. (8.15)

The set of admissible portfolio strategies is defined by

As,x :=
⋃

b∈(0,1]

⋃
m≥0

As,xm,b. (8.16)

The stochastic target problem Let g : Rd → R be a continuous function
satisfying the linear growth condition,

(A4) g is continuous and there exist constants G and p such that

|g(x)| ≤ G(1 + |x|p) for all x ∈ Rd .

For (s, x) ∈ [0, T ]× Rd, we define:

V (s, x) := inf
{
y ∈ R : Y s,x,y,ZT ≥ g(Xs,x

T ),P− a.s. for some Z ∈ As,x
}
.

(8.17)
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8.2.2 The geometric dynamic programming

As usual, the key-ingredient in order to obtain a PDe satisfied by our value
function V is the derivation of a convenient dynamic prgramming principle
obtained by allowing the time origin to move. In the present context, we have
the following statement which is similar to the case of standard stochastic target
problems.

Theorem 8.10. For any (s, x) ∈ [0, T )× Rd, and a stopping time τ ∈ [s, T ],

V (s, x) = inf
{
y ∈ R : Y s,x,y,Zτ ≥ V (τ,Xs,x

τ ) , P− a.s. for some Z ∈ As,x
}
.

(8.18)

The proof of this result can be consulted in [?]. Because the processes Z
and Γ are not allowed to jump, the proof is more involved than in the standard
stochastic target case, and uses crucially the nature of the above defined class
of admissible strategies As,x.

To derive the dynamic programming equation, we will split the geometric
dynamic programming principle in the following two claims:

(GDP1) For all ε > 0, there exist yε ∈ [V (s, x), V (s, x) + ε] and Zε ∈ As,x s.t.

Y s,x,yε,Zεθ ≥ V (θ,Xs,x
θ ) , P− a.s. (8.19)

(GDP2) For all y < V (s, x) and every Z ∈ As,x,

P
[
Y s,x,y,Zθ ≥ V (θ,Xs,x

θ )
]
< 1. (8.20)

Notice that (8.18) is equivalent to (GDP1)-(GDP2). We shall prove that (GDP1)
and (GDP2) imply that the value function V is a viscosity supersolution and
subsolution, respectively, of the corresponding dynamic programming equation.

8.2.3 The dynamic programming equation

Similar to the problem of hedging under Gamma constraints, the dynamic pro-
gramming equation corresponding to our second order target problem is ob-
tained as the parabolic envelope of the first guess equation:

−∂tv + f̂
(
., v,Dv,D2v

)
= 0 on [0, T )× Rd, (8.21)

where

f̂ (t, x, y, z, γ) := sup
β∈Sd+

f (t, x, y, z, γ + β) (8.22)

is the smallest majorant of f which is non-increasing in the γ argument, and is
called the parabolic envelope of f . In the following result, we denote by V ∗ and
V∗ the upper- and lower-semicontinuous envelopes of V :

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′) and V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′)

for (t, x) ∈ [0, T ]× Rd.
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Theorem 8.11. Assume that V is locally bounded, and let conditions (A1-A2-
A3-A4) hold true. Then V is a viscosity solution of the dynamic programming
equation (8.21) on [0, T ]×Rd, i.e. V∗ and V ∗ are, respectively, viscosity super-
solution and sub-solution of (8.21).

Proof of the viscosity subsolution property Let (t0, x0) ∈ Q and ϕ ∈
C∞ (Q) be such that

0 = (V ∗ − ϕ)(t0, x0) > (V ∗ − ϕ)(t, x) for Q 3 (t, x) 6= (t0, x0). (8.23)

In order to show that V ∗ is a sub-solution of (8.21), we assume to the contrary,
i.e., suppose that there is β ∈ Sd+ satisfying

−∂ϕ
∂t

(t0, x0) + f
(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0) + β

)
> 0. (8.24)

We will then prove the sub-solution property by contradicting (GDP2).
(1-i) Set

ψ(t, x) := ϕ(t, x) + β(x− x0) · (x− x0),

h(t, x) := −∂ψ
∂t

(t, x) + f
(
t, x, ψ(t, x), Dψ(t, x), D2ψ(t, x)

)
.

In view of (8.24), h(t0, x0) > 0. Since the nonlinearity f is continuous and ϕ is
smooth, the subset

N := {(t, x) ∈ Q ∩B1(t0, x0) : h(t, x) > 0}

is an open bounded neighborhood of (t0, x0). Here B1(t0, x0) is the unit ball of
Q centered at (t0, x0). Since (t0, x0) is defined by (8.23) as the point of strict
maximum of the difference (V ∗ − ϕ), we conclude that

−η := max
∂N

(V ∗ − ϕ) < 0. (8.25)

Next we fix λ ∈ (0, 1), and choose
(
t̂, x̂
)

so that(
t̂, x̂
)
∈ N , |x̂− x0| ≤ λη, and

∣∣V (t̂, x̂)− ϕ (t̂, x̂)∣∣ ≤ λη. (8.26)

Set X̂ := X t̂,x̂ and define a stopping time by

θ := inf
{
t ≥ t̂ : (t, X̂t) 6∈ N

}
.

Then, θ > t̂. The path-wise continuity of X̂ implies that (θ, X̂θ) ∈ ∂N . Then,
by (8.25),

V ∗(θ, X̂θ) ≤ ϕ(θ, X̂θ)− η. (8.27)

(1-ii) Consider the control process

ẑ := Dψ
(
t̂, x̂
)
, Ât := LDψ(t, X̂t)1[t̂,θ)(t) and Γ̂t := D2ψ(t, X̂t)1[t̂,θ)(t)
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so that, for t ∈
[
t̂, θ
]
,

Ẑt := ẑ +

∫ t

t̂

Ârdr +

∫ t

t̂

Γ̂rdX̂r = Dψ(t, X̂t).

Since N is bounded and ϕ is smooth, we directly conclude that Ẑ ∈ At̂,x̂.

(1-iii) Set ŷ < V (t̂, x̂), Ŷt := Y t̂,x̂,ŷ,Ẑt and Ψ̂t := ψ(t, X̂t). Clearly, the
process Ψ is bounded on [t̂, θ]. For later use, we need to show that the process
Ŷ is also bounded. By definition, Ŷt̂ < Ψt̂. Consider the stopping times

τ0 := inf
{
t ≥ t̂ : Ψt = Ŷt

}
,

and, with N := η−1,

τη := inf
{
t ≥ t̂ : Ŷt = Ψt −N

}
.

We will show that for a sufficiently large N , both τ0 = τη = θ. This proves that

as Ψ, Ŷ is also bounded on [t̂, θ].

Set θ̂ := θ∧ τ0 ∧ τη. Since both processes Ŷ and Ψ solve the same stochastic

differential equation, it follows from the definition of N that for t ∈ [t̂, θ̂]:

d
(

Ψt − Ŷt
)

=

[
∂ψ

∂t
(t, X̂t)− f

(
t, X̂t, Ŷt, Ẑt, Γ̂t

)]
dt

≤
[
f
(
t, X̂t,Ψt, Ẑt, Γ̂t

)
− f

(
t, X̂t, Ŷt, Ẑt, Γ̂t

)]
dt

≤ FN

(
Ψt − Ŷt

)
dt ,

by the local Lipschitz property (A1) of f . Then

0 ≤ Ψθ̂ − Ŷθ̂ ≤
(

Ψt̂ − Ŷt̂
)
eFNT ≤ 1

2
‖β‖λ2eFNT η2, (8.28)

where the last inequality follows from (8.26). This shows that, for λ sufficiently

small, θ̂ < τη, and therefore the difference Ψ−Ŷ is bounded. Since Ψ is bounded,

this implies that Ŷ is also bounded for small η.

(1-iv) In this step we will show that for any initial data

ŷ ∈ [V (t̂, x̂)− λη, V (t̂, x̂)),

we have Ŷθ ≥ V (θ,Xθ). This inequality is in contradiction with (GDP2) as
Ŷt̂ = ŷ < V (t̂, x̂). This contradiction proves the sub-solution property.

Indeed, using ŷ ≥ V (t̂, x̂) − λη and V ≤ V ∗ ≤ ϕ together with (8.25) and
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(8.26), we obtain the following sequence of inequalities,

Ŷθ − V (θ, X̂θ) ≥ Ŷθ − ϕ(θ, X̂θ) + η,

= [ŷ − ϕ(t̂, x̂) + η] +

∫ θ

t̂

[
dŶt − dϕ(t, X̂t)

]
,

≥ η(1− 2λ) +

∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dϕ(t, X̂t)

]
≥ η(1− 2λ) +

1

2
β
(
X̂θ − x̂

)
·
(
X̂θ − x̂

)
+

∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dψ(t, X̂t)

]
≥ η(1− 2λ) +

∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dψ(t, X̂t)

]
,

where the last inequality follows from the nonnegativity of the symmetric matrix
β. We next use Itô’s formula and the definition of N to arrive at

Ŷθ − V (θ, X̂θ) ≥ η(1− 2λ) +

∫ θ

t̂

[
f(t, X̂t, Ŷt, Ẑt, Γ̂t)− f(t, X̂t,Ψt, Ẑt, Γ̂t)

]
dt.

In the previous step, we prove that Ŷ and Ψ are bounded, say by N . Since the
nonlinearity f is locally bounded, we use the estimate (8.28) to conclude that

Ŷθ − V
(
θ, X̂θ

)
≥ η(1− 2λ)− 1

2
‖β‖TFNeFNTλ2η2 ≥ 0

for all sufficiently small λ. This is in contradiction with (GDP2). Hence, the
proof of the viscosity supersolution property is complete.

Proof of the viscosity supersolution property We first approximate the
value function by

V m(s, x) := inf{y ∈ R | ∃Z ∈ As,xm so that Y s,x,y,ZT ≥ g(Xs,x
T ), a.s.}.

Then, similar to (8.20), we can prove the following analogue statement of
(GDP1) for V m:

(GDP1m) For every ε > 0 and stopping time θ ∈ [s, T ], there exist Zε ∈ As,xm
and yε ∈ [V m(s, x), V m(s, x) + ε] such that Y s,x,yε,Zεθ ≥ V m (θ,Xs,x

θ ).

Lemma 8.12. V m∗ is a viscosity super-solution of (8.21). Consequently, V∗ is
a viscosity super-solution of (8.21).

Proof. Choose (t0, x0) ∈ [s, T )× Rd and ϕ ∈ C∞([s, T )× Rd) such that

0 = (V m∗,s − ϕ)(t0, x0) = min
(t,x)∈[s,T )×Rd

(V m∗,s − ϕ)(t, x) .
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Let (tn, xn)n≥1 be a sequence in [s, T ) × Rd such that (tn, xn) → (t0, x0) and
V m(tn, xn) → V m∗,s(t0, x0). There exist positive numbers εn → 0 such that for
yn = V m(tn, xn) + εn, there exists Zn ∈ Atn,xnm with

Y nT ≥ g(Xn
T ),

where we use the compact notation (Xn, Y n) = (Xtn,xn , Y tn,xn,yn,Z
n

) and

Znr = zn +

∫ r

tn

Anudu+

∫ r

tn

ΓnudX
n
u ,

Γnr = γn +

∫ r

tn

anudu+

∫ r

tn

ξnudX
n
u , r ∈ [tn, T ].

Moreover, |zn|, |γn| ≤ m(1 + |xn|p) by assumption (8.14). Hence, by passing to
a subsequence, we can assume that zn → z0 ∈ Rd and γn → γ0 ∈ Sd. Observe
that αn := yn − ϕ(tn, xn) → 0. We choose a decreasing sequence of numbers
δn ∈ (0, T − tn) such that δn → 0 and αn/δn → 0. By (GDP1m),

Y ntn+δn ≥ V
m
(
tn + δn, X

n
tn+δn

)
,

and therefore,

Y ntn+δn − yn + αn ≥ ϕ
(
tn + δn, X

n
tn+δn

)
− ϕ(tn, xn) ,

which, after two applications of Itô’s formula, becomes

αn +

∫ tn+δn

tn

[f(r,Xn
r , Y

n
r , Z

n
r ,Γ

n
r )− ϕt(r,Xn

r )]dr

+ [zn −Dϕ(tn, xn)]′[Xn
tn+δn − xn]

+

∫ tn+δn

tn

(∫ r

tn

[Anu − LDϕ(u,Xn
u )]du

)′
◦ dXn

r

+

∫ tn+δn

tn

(∫ r

tn

[Γnu −D2ϕ(u,Xn
u )]dXn

u

)′
◦ dXn

r ≥ 0. (8.29)

It is shown in Lemma 8.13 below that the sequence of random vectors
δ−1
n

∫ tn+δn
tn

[f(r,Xn
r , Y

n
r , Z

n
r ,Γ

n
r )− ϕt(r,Xn

r )]dr

δ
−1/2
n [Xn

tn+δn
− xn]

δ−1
n

∫ tn+δn
tn

(∫ r
tn

[Anu − LDϕ(u,Xn
u )]du

)′
◦ dXn

r

δ−1
n

∫ tn+δn
tn

(∫ r
tn

[Γnu −D2ϕ(u,Xn
u )]dXn

u

)′
◦ dXn

r

 , n ≥ 1 , (8.30)

converges in distribution to
f(t0, x0, ϕ(t0, x0), z0, γ0)− ϕt(t0, x0)

σ(x0)W1

0
1
2W

′
1σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)W1

 . (8.31)
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Set ηn = |zn − Dϕ(tn, xn)|, and assume δ
−1/2
n ηn → ∞ along a subsequence.

Then, along a further subsequence, η−1
n (zn − Dϕ(tn, xn)) converges to some

η0 ∈ Rd with

|η0| = 1 . (8.32)

Multiplying inequality (8.29) with δ
−1/2
n η−1

n and passing to the limit yields

η′0σ(x0)W1 ≥ 0 ,

which, since σ(x0) is invertible, contradicts (8.32). Hence, the sequence (δ
−1/2
n ηn)

has to be bounded, and therefore, possibly after passing to a subsequence,

δ−1/2
n [zn −Dϕ(tn, xn)] converges to some ξ0 ∈ Rd .

It follows that z0 = Dϕ(t0, x0). Moreover, we can divide inequality (8.29) by
δn and pass to the limit to get

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0)− ϕt(t0, x0)

+ ξ′0σ(x0)W1 +
1

2
W ′1σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)W1 ≥ 0 .

(8.33)

Since the support of the random vector W1 is Rd, it follows from (8.33) that

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0)− ϕt(t0, x0)

+ξ′0σ(x0)w +
1

2
w′σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)w ≥ 0,

for all w ∈ Rd. This shows that

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0)−ϕt(t0, x0) ≥ 0 and β := γ0−D2ϕ(t0, x0) ≥ 0 ,

and therefore,

−ϕt(t0, x0) + sup
β∈Sd+

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0) + β) ≥ 0 .

This proves that V m is a viscosity super-solution.
Since by definition,

V = inf
m

V m,

by the classical stability property of viscosity solutions, V∗ is also a viscosity
super-solution of the DPE (8.21). In fact, this passage to the limit does not
fall exactly into the stability result of Theorem 5.8, but its justification follows
the lines of the proof of stability, the interested reader can find the detailed
argument in Corollary 5.5 in [?]. ♦

Lemma 8.13. The sequence of random vectors (8.30), on a subsequence, con-
verges in distribution to (8.31).
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Proof. Define a stopping time by

τn := inf{r ≥ tn : Xn
r /∈ B1(x0)} ∧ (tn + δn) ,

where B1(x0) denotes the open unit ball in Rd around x0. It follows from the
fact that xn → x0 that

P [τn < tn + δn]→ 0 .

So that in (8.30) we may replace the upper limits of the integrations by τn
instead of tn + δn.

Therefore, in the interval [tn, τn] the process Xn is bounded. Moreover, in
view of (8.15) so are Zn, Γn and ξn.

Step 1. The convergence of the second component of (8.30) is straightforward
and the details are exactly as in Lemma 4.4 [?].

Step 2. Let B be as in (8.14). To analyze the other components, set

An,∗ := sup
u∈[tn,T ]

|Anu|
1 + |Xn

u |B
,

so that, by (8.15),
‖An,∗‖L(1/m)(Ω,P) ≤ m. (8.34)

Moreover, since on the interval [tn, τn], Xn is uniformly bounded by a deter-
ministic constant C(x0) depending only on x0,

|Anu| ≤ C(x0) An,∗ ≤ C(x0)m, ∀ u ∈ [tn, τn].

(Here and below, the constant C(x0) may change from line to line.) We define
an,∗ similarly. Then, it also satisfies the above bounds as well. In view of
(8.15), also an,∗ satisfies (8.34). Moreover, using (8.14), we conclude that ξnu is
uniformly bounded by m.

Step 3. Recall that dΓnu = anudu + ξnudX
n
u , Γntn = γn. Using the notation and

the estimates of the previous step, we directly calculate that

sup
t∈[tn,τn]

|Γnt − γn| ≤ C(x0)δna
n,∗ +

∣∣∣∣∫ τn

tn

ξnu · µndu
∣∣∣∣+

∣∣∣∣∫ τn

tn

ξnuσ(Xn
u )dWu

∣∣∣∣
:= In1 + In2 + In3 .

Then,

E[(In3 )2] ≤ E
(∫ τn

tn

|ξnu |2|σ|2du
)
≤ δn m2C(x0)2.

Hence, In3 converges to zero in L2. Therefore, it also converges almost surely on
a subsequence. We prove the convergence of In2 using similar estimates. Since
an,∗ satisfies (8.34),

E[(In1 )(1/m)] ≤ (C(x0)δn)(1/m) E[|an,∗|(1/m)] ≤ (C(x0)δn)(1/m) m.
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Therefore, In1 converges to zero in L(1/m) and consequently on almost surely on
a subsequence.

Hence, on a subsequence, Γnt is uniformly continuous. This together with
standard techniques used in Lemma 4.4 of [?] proves the convergence of the first
component of (8.30).

Step 4. By integration by parts,∫ τn

tn

∫ t

tn

AnududX
n
t = (Xn

τn −X
n
tn)

∫ τn

tn

Anudu−
∫ τn

tn

(Xn
u −Xn

tn)Anudu.

Therefore, ∣∣∣∣ 1

δn

∫ τn

tn

∫ t

tn

AnududX
n
t

∣∣∣∣ ≤ C(x0) sup
t∈[tn,τn]

|Xn
t −Xn

tn | A
n,∗.

Also Xn is uniformly continuous and An,∗ satisfies (8.34). Hence, we can show
that the above terms, on a subsequence, almost surely converge to zero. This
implies the convergence of the third term.
Step 5. To prove the convergence of the final term it suffices to show that

Jn :=
1

δn

∫ τn

tn

∫ t

tn

[Γnu − γn]dXn
u ◦ dXn

t

converges to zero. Indeed, since γn → γ0, this convergence together with the
standard arguments of Lemma 4.4 of [?] yields the convergence of the fourth
component.

Since on [tn, τn] Xn is bounded, on this interval |σ(Xn
t )| ≤ C(x). Using this

bound, we calculate that

E[(Jn)2] ≤ C(x0)4

δ2
n

∫ tn+δn

tn

∫ t

tn

E
[
1[tn,τn] |Γnu − γn|2

]
du dt

≤ C(x0)4E

[
sup

t∈[tn,τn]

|Γnu − γn|2
]

=: C(x0)4E
[
(en)2

]
In step 3, we proved the almost sure convergence of en to zero. Moreover, by
(8.14), |en| ≤ m. Therefore, by dominated convergence, we conclude that Jn

converges to zero in L2. Thus almost everywhere on a subsequence. ♦

8.3 Superhedging under illiquidity cost

In this section, we analyze the superhedging problem under the more realistic
CJP model. We refer to [?] for all technical details.

Following Çetin, Jarrow and Protter [?] (CJP, hereafter), we account for the
liquidity cost by modeling the price process of this asset as a function of the
exchanged volume. We thus introduce a supply curve

S (St, ν) ,
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where ν ∈ R indicates the volume of the transaction, the process St = S (St, 0) is
the marginal price process defined by some given initial condition S(0) together
with the Black-Scholes dynamics:

dSt
St

= σdWt, (8.35)

where as usual the prices are discounted, i.e. expressed in the numéraire defined
by the nonrisky asset, and the drift is omitted by a change of measure.

The function S : R+ × R −→ R is assumed to be smooth and increasing in
ν. S(s, ν) represents the price per share for trading of size ν and marginal price
s.

A trading strategy is defined by a pair (Z0, Z) where Z0
t is the position in

cash and Zt is the number of shares held at each time t in the portfolio. As
in the previous paragraph, we will take the process Z in the set of admissible
strategies At,s defined in (8.16), whenever the problem is started at the time
origin t with the initial spot price s for the underlying asset.

To motivate the continuous-time model, we strat from discrete-time trading
strategies. Let 0 = t0 < . . . < tn = T be a partition of the time interval [0, T ],
and denote δψ(ti) := ψ(ti) − ψ(ti−1) for any function ψ. By the self-financing
condition, it follows that

δZ0
ti + δZtiS (Sti , δZti) = 0, 1 ≤ i ≤ n.

Summing up these equalities, it follows from direct manipulations that

Z0
T + ZTST = Z0

0 + Z0S0 −
n∑
i=1

[δZtiS (Sti , δZti) + (Z0S0 − ZTST )]

= Z0
0 + Z0S0 −

n∑
i=1

[δZtiSti + (Z0S0 − ZTST )]

−
n∑
i=1

δZti [S (Sti , δZti)− Sti ]

= Z0
0 + Z0S0 +

n∑
i=1

Zti−1
δSti −

n∑
i=1

δZti [S (Sti , δZti)− Sti ] .

(8.36)

Then, the continuous-time dynamics of the process

Y := Z0 + ZS

are obtained by taking limits in (8.36) as the time step of the partition shrinks
to zero. The last sum term in (8.36) is the term due to the liquidity cost.

Since the function ν 7−→ S(s, ν) is assumed to be smooth, it follows from
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the form of the continuous-time process Y in (??) that:

Yt = Y0 +

∫ t

0

ZudSu −
∫ t

0

4

Suφ(Su)
d〈Z〉u (8.37)

= Y0 +

∫ t

0

ZudSu − 4

∫ t

0

4

φ(Su)
Γ2
uσ

2(u, Su)Sudu, (8.38)

where ` is the liquidity function defined by

`(s) :=
s

4

(
∂S
∂v

(s, 0)

)−1

. (8.39)

The above liquidation value of the portfolio exhibit a penalization by a linear
term in Γ2, with coefficient determined by the slope of the order book at the
origin. This type of dynamics falls into the general problems analyzed in the
previous section.

Remark 8.14. The supply function S(s, ν) can be inferred from the data on
order book prices. We refer to [?] for a parametric estimation of this model on
real financial data.

In the context of the CJP model, we ignore the illiquidity cost at the maturity
date T , and we formulate the super-hedging problem by:

V (t, s) := inf
{
y : Y y,ZT ≥ g(St,sT ), P− a.s. for some Z ∈ At,s

}
. (8.40)

Then, the viscosity property for the value function V follows from the results
of the previous section. The next result says more as it provides uniqueness.

Theorem 8.15. Assume that V is locally bounded. Then, the super-hedging
cost V is the unique solution of the PDE problem

−∂tV −
1

2
σ2sH

(
(−`) ∨ (sVss)

)
= 0, V (T, .) = g (8.41)

−C ≤ V (t, s) ≤ C(1 + s), (t, s) ∈ [0, T ]× R+, for some C > 0, (8.42)

where H(γ) := γ + 1
2`γ

2.

We refer to [?] for the proof of uniqueness. We conclude this section by some
comments.

Remark 8.16. 1. The PDE (8.41) is very similar to the PDE obtained in the
problem of hedging under Gamma constraints. We observe here that −` plays
the same role as the lower bound Γ on the Gamma of the portfolio. Therefore,
the CJP model induces an endogeneous lower bound on the Gamma of the
portfolio.
2. However, there is no counterpart in (8.41) to the upper bound Γ which
induced the face-lifting of the payoff in the problem of hedging under Gamma
constraints.



Chapter 9

Backward SDEs and
Stochastic Control

In this chapter, we introduce the notion of backward stochastic differential equa-
tion (BSDE hereafter) which allows to relate standard stochastic control to
stichastic target problems.

More importantly, the general theory in this chapter will be developed in the
non-Markov framework. The Markovian framework of the previous chapters and
the corresponding PDEs will be obtained under a specific construction. From
this viewpoint, BSDEs can be viewed as the counterpart of PDEs in the non-
Markov framework.

However, by their very nature, BSDEs can only cover the subclass of stan-
dard stochastic control problems with uncontrolled diffusion, with corresponding
semilinear DPE. Therefore a further extension is needed in order to cover the
more general class of fully nonlinear PDEs, as those obtained as the DPE of
standard stochastic control problems. This can be achieved by means of the
notion of second order BSDEs which are very connected to second order target
problems. This extension will be discussed in Chapter ??.

9.1 Motivation and examples

The first appearance of BSDEs was in the early work of Bismut [?] who was
extensding the Pontryagin maximum principle of optimality to the stochastic
framework. Similar to the deterministic context, this approach developed by
the Russian school introduces the so-called adjoint process defined by a stochas-
tic differential equation combined with a final condition. In the deterministic
framework, the existence of a solution to the adjoint equation follows from the
usual theory by obvious time inversion. The main difficulty in the stochastic
framework is that the adjoint process is required to be adapted to the given
filtration, so that one can not simply solve the existence problem by running
the time clock backward.

127
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A systematic study of BSDEs was started by Pardoux and Peng [?]. It seems
that the motivation is also from optimal control which was an important field
of interest for Shige Peng. However, the natural connections with problems in
financial mathematics was very quickly realized, see Elkaroui, Peng and Quenez
[?]. Therefore, a large development of the theory was achieved in connection
with financial applications and crucially driven by the intuition from finance.

9.1.1 The stochastic Pontryagin maximum principle

Our objective in this section is to see how the notion of BSDE appears naturally
in the context of the Pontryagin maximum principle. Therefore, we are not
intending to develop any general theory about this important question, and we
will not make any effort in weakening the conditions for the main statement.
We will instead considerably simplify the mathematical framework in order for
the main ideas to be as transparent as possible.

Consider the stochastic control problem

V0 := sup
ν∈U0

J0(ν) where J0(ν) := E [g(Xν
T )] ,

the set of control processes U0 is defined as in Section 2.1, and the controlled
state process is defined by some initial date X0 and the SDE with random
coefficients:

dXν
t = b(t,Xν

t , νt)dt+ σ(t,Xν
t , νt)dWt.

Observe that we are not emphasizing on the time origin and the position of
the state variable X at the time origin. This is a major difference between the
dynamic programming approach, developed by the American school, and the
Pontryagin maximul principle approach of the Russian school.

For every u ∈ U , we define:

Lu(t, x, y, z) := b(t, x, u) · y + Tr
[
σ(t, x, u)Tz

]
,

so that

b(t, x, u) =
∂Lu(t, x, y, z)

∂y
and σ(t, x, u) =

∂Lu(t, x, y, z)

∂z
.

We also introduce the function

`(t, x, y, z) := sup
u∈U

Lu(t, x, y, z),

and we will denote by H2 the space of all F−progressively measurable processes
with finite L2 ([0, T ]× Ω, dt⊗ dP)−norm.

Theorem 9.1. Let ν̂ ∈ U0 be such that:
(i) there is a solution (Ŷ , Ẑ) in H2 of the backward stochastic differential equa-
tion:

dŶt = −∇xLν̂t(t, X̂t, Ŷt, Ẑt)dt+ ZtdWt, and ŶT = ∇g(X̂T ), (9.1)
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where X̂ := X ν̂ ,
(ii) ν̂ satisfies the maximum principle:

Lν̂t(t, X̂t, Ŷt, Ẑt) = `(t, X̂t, Ŷt, Ẑt). (9.2)

(iii) The functions g and `(t, ., y, z) are concave, for fixed t, y, z, and

∇xLν̂t(t, X̂t, Ŷt, Ẑt) = ∇x`(t, X̂t, Ŷt, Ẑt) (9.3)

Then V0 = J0(ν̂), i.e. ν̂ is an optimal control for the problem V0.

Proof. For an arbitrary ν ∈ U0, we compute that

J0(ν̂)− J0(ν) = E
[
g(X̂T )− g(Xν

T )
]

≥ E
[
(X̂T −Xν

T ) · ∇g(X̂T )
]

= E
[
(X̂T −Xν

T ) · ŶT
]

by the concavity assumption on g. Using the dynamics of X̂ and Ŷ , this pro-
vides:

J0(ν̂)− J0(ν) ≥ E

[∫ T

0

d
{

(X̂T −Xν
T ) · ŶT

}]

= E
[ ∫ T

0

(
b(t, X̂t, ν̂t)− b(t,Xν

t , νt)
)
· Ŷtdt

−(X̂t −Xν
t ) · ∇xLν̂t(t, X̂t, Ŷt, Ẑt)dt

+Tr
[(
σ(t, X̂t, ν̂t)− σ(t,Xν

t , νt)
)T
Ẑt

]
dt
]

= E
[ ∫ T

0

(
Lν̂t(t, X̂t, Ŷt, Ẑt)− Lνt(t,Xt, Ŷt, Ẑt)

−(X̂t −Xν
t ) · ∇xLν̂t(t, X̂t, Ŷt, Ẑt)

)
dt
]
,

where the diffusion terms have zero expectations because the processes Ŷ and
Ẑ are in H2. By Conditions (ii) and (iii), this implies that

J0(ν̂)− J0(ν) ≥ E
[ ∫ T

0

(
`(t, X̂t, Ŷt, Ẑt)− `(t,Xt, Ŷt, Ẑt)

−(X̂t −Xν
t ) · ∇x`(t, X̂t, Ŷt, Ẑt)

)
dt
]

≥ 0

by the concavity assumption on `. ♦

Let us comment on the conditions of the previous theorem.
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- Condition (ii) provides a feedback definition to ν̂. In particular, ν̂t is
a function of (t, X̂t, Ŷt, Ẑt). As a consequence, the forward SDE defining X̂
depends on the backward component (Ŷ , Ẑ). This is a situation of forward-
backward stochastic differential equation which will not be discussed in these
notes.

- Condition (9.3) in (iii) is satisfied under natural smoothness conditions. In
the economic literature, this is known as the envelope theorem.

- Condition (i) states the existence of a solution to the BSDE (9.1), which
will be the main focus of the subsequent section.

9.1.2 BSDEs and stochastic target problems

Let us go back to a subclass of the stochastic target problems studied in Chapter
7 defined by taking the state process X independent of the control Z which is
assumed to take values in Rd. For simplicity, let X = W . Then the stochastic
target problem is defined by

V0 := inf
{
Y0 : Y ZT ≥ g(WT ), P− a.s. for some Z ∈ H2

}
,

where the controlled process Y satisfies the dynamics:

dY Zt = b(t,Wt, Yt, Zt)dt+ Zt · dWt. (9.4)

If existence holds for the latter problem, then there would exist a pair (Y,Z) in
H2 such that

Y0 +

∫ T

0

[
b(t,Wt, Yt, Zt)dt+ Zt · dWt

]
≥ g(WT ), P− a.s.

If in addition equality holds in the latter inequality then (Y,Z) is a solution of
the BSDE defined by (9.4) and the terminal condition YT = g(WT ), P−a.s.

9.1.3 BSDEs and finance

In the Black-scholes model, we know that any derivative security can be perfectly
hedged. The corresponding superhedging problem reduces to a hedging problem,
and an optimal hedging portfolio exists and is determined by the martingale
representation theorem.

In fact, this goes beyond the Markov framework to which the stochastic
target problems are restricted. To see this, consider a financial market with
interest rate process {rt, t ≥ 0}, and s risky assets with price process defined by

dSt = St ? (µtdt+ σtdWt).

Then, under the self-financing condition, the liquidation value of the portfolio
is defined by

dY πt = rtY
π
t dt+ πtσt (dWt + λtdt) , (9.5)
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where the risk premium process λt := σ−1
t (µt − rt1) is assumed to be well-

defined, and the control process πt denotes the vector of holdings amounts in
the d risky assets at each point in time.

Now let G be a random variable indicating the random payoff of a contract.
G is called a contingent claim. The hedging problem of G consists in searching
for a portfolio strategy π̂ such that

Y π̂T = G, P− a.s. (9.6)

We are then reduced to a problem of solving the BSDE (9.5)-(9.6). This problem

can be solved very easily if the process λ is so that the process {Wt+
∫ t

0
λsds, t ≥

0} is a Brownian motion under the so-called equivalent probability measure
Q. Under this condition, it suffices to get rid of the linear term in (9.5) by
discounting, then π̂ is obtained by the martingale representation theorem in the
present Brownian filtration under the equivalent measure Q.

We finally provide an example where the dependence of Y in the control
variable Z is nonlinear. The easiest example is to consider a financial market
with different lending and borrowing rates rt ≤ rt. Then the dynamics of
liquidation value of the portfolio (9.6) is replaced by the following SDE:

dYt = πt · σt(dWt + λtdt)(Yt − πt · 1)+rt − (Yt − πt · 1)−rt (9.7)

As a consequence of the general of the subsequent section, we will obtain the
existence of a hedging process π̂ such that the corresponding liquidation value
satisfies (9.7) together with the hedging requirement (9.6).

9.2 Wellposedness of BSDEs

Throughout this section, we consider a d−dimensional Brownian motion W on
a complete probability space (Ω,F ,P), and we denote by F = FW the corre-
sponding augmented filtration.

Given two integers n, d ∈ N, we consider the mapping

f : [0, T ]× Ω× Rn × Rn×d −→ R,

that we assume to be P⊗B(Rn+nd)−measurable, where P denotes the σ−algebra
generated by predictable processes. In other words, for every fixed (y, z) ∈
Rn × Rn×d, the process {ft(y, z), t ∈ [0, T ]} is F−predictable.

Our interest is on the BSDE:

dYt = −ft(Yt, Zt)dt+ ZtdWt and YT = ξ, P− a.s. (9.8)

where ξ is some given FT−measurable r.v. with values in Rn.
We will refer to (9.8) as BSDE(f, ξ). The map f is called the generator. We

may also re-write the BSDE (9.8) in the integrated form:

Yt = ξ +

∫ T

t

fs(Ys, Zs)ds−
∫ T

t

ZsdWs, t ≤ T, ,P− a.s. (9.9)
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9.2.1 Martingale representation for zero generator

When the generator f ≡ 0, the BSDE problem reduces to the martingale repre-
sentation theorem in the present Brownian filtration. More precisely, for every
ξ ∈ L2(Rn,FT ), there is a unique pair process (Y,Z) in H2(Rn×Rn×d) satisfying
(9.8):

Yt := E[ξ|Ft] = E[ξ] +

∫ t

0

ZsdWs

= ξ −
∫ T

t

ZsdWs.

Here, for a subset E of Rk, k ∈ N, we denoted by H2(E) the collection of all
F−progressively measurable L2([0, T ]×Ω,Leb⊗P)−processes with values in E.
We shall frequently simply write H2 keeping the reference to E implicit.

Let us notice that Y is a uniformly integrable martingale. Moreover, by the
Doob’s maximal inequality, we have:

‖Y ‖2S2 := E
[
sup
t≤T
|Yt|2

]
≤ 4E

[
|YT |2

]
= 4‖Z‖2H2 . (9.10)

Hence, the process Y is in the space of continuous process with finite S2−norm.
For later use, we report the following necessary and sufficient condition for

a martingale to be uniformly integrabile.

Lemma 9.2. Let M = {Mt, t ∈ [0, T )} be a scalar local martingale. Then, M
is uniformly integrable if and only if

lim
λ→∞

λP
[
sup
t≤T
|Mt| > λ

]
= 0.

Proof. Denote by Θ the collection of all F−stopping times, and

Θ(M) := {θ ∈ Θ : M.∧θ is a martingale} .

1. We first prove that

limn→∞ E|Mθn | = supn≥1 E|Mθn | = supθ∈Θ(M) E|Mθ| = supθ∈Θ E|Mθ|
for all (θn)n≥1 ⊂ Θ(M) with θn −→∞, P− a.s.

(9.11)
To see this, let (θn) be such a sequence, then it follows from Fatou’s lemma that

E|Mθ| ≤ lim inf
n→∞

E|Mθ∧θn | ≤ lim inf
n→∞

E|Mθn | for all θ ∈ Θ,

by the Jensen inequality. Then

E|Mθ| ≤ lim inf
n→∞

E|Mθn | ≤ lim sup
n→∞

E|Mθn |

≤ sup
n≥1

E|Mθn | ≤ sup
θ∈Θ(M)

E|Mθ| ≤ sup
θ∈Θ

E|Mθ|.
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and the required result follows from the arbitrariness of θ ∈ Θ.
2. For every λ > 0, the stopping time Tλ := inf{t : |Mt| > λ} ∈ Θ(M), and

E|MTλ | = λP
[
sup
t<T
|Mt| > λ

]
+ E

[
|M∞|1{supt<T |Mt|≤λ}

]
.

Since E|M∞| ≤ lim infn E|Mn| = M0 <∞, the second term on the right hand-
side convergence to E|M∞| as λ → ∞. Since the left hand-side term is non-
decreasing in λ, we deduce that

lim
λ→∞

E|MTλ | = p+ E|M∞| where p := lim
λ→∞

λP
[
sup
t<T
|Mt| > λ

]
. (9.12)

3. Observe that Tλ ∈ Θ(M) and Tλ →∞ a.s. when λ→∞. Then, it follows
from (9.11) and (9.12) that

lim
λ→∞

E|Mθn | = p+ E|M∞| for all sequence (θn)n satisfying (9.11).

Then p = 0 iff Mθn −→M∞ in L1 for all sequence (θn)n satisfying (9.11), which
is now equivalent to the uniform integrability of M . ♦

9.2.2 BSDEs with affine generator

We next consider a scalr BSDE (n = 1) with generator

ft(y, z) := at + bty + ct · z, (9.13)

where a, b, c are F−progressively measurable processes with values in R, R and

Rd, respectively. We also assume that b, c are bounded and E[
∫ T

0
|at|2dt] <∞.

This case is easily handled by reducing to the zero generator case. How-
ever, it will paly a crucial role for the understanding of BSDEs with generator
quadratic in z. This will be the focus of the next chapter.

First, by introducing the equivalent probability Q ∼ P defined by the density

dQ
dP

= exp

(∫ T

0

ct · dWt −
1

2

∫ T

0

|ct|2dt

)
,

it follows from the Girsanov theorem that the process Bt := Wt−
∫ t

0
csds defines

a Brownian motion under Q. By formulating the BSDE under Q:

dYt = −(at + btYt)dt+ Zt · dBt,

we have reduced to the case where the generator does not depend on z. We
next get rid of the linear term in y by introducing:

Ȳt := Yte
∫ t
0
bsds so that dȲt = −ate

∫ t
0
bsdsdt+ Zte

∫ t
0
bsdsdBt.
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Finally, defining

¯̄
tY := Ȳt +

∫ t

0

aue
∫ u
0
bsdsdu,

we arrive at a BSDE with zero generator for ¯̄
tY which can be solved by the

martingale representation theorem under the equivalent probability measure Q.
Of course, one can also express the solution under P:

Yt = E

[
ΓtT ξ +

∫ T

t

Γtsasds
∣∣∣Ft] , t ≤ T,

where

Γts := exp

(∫ s

t

budu−
1

2

∫ s

t

|cu|2du+

∫ s

t

cu · dWu

)
for 0 ≤ t ≤ s ≤ T.(9.14)

9.2.3 The main existence and uniqueness result

The following result was proved by Pardoux and Peng [?].

Theorem 9.3. Assume that {ft(0, 0), t ∈ [0, T ]} ∈ H2 and, for some constant
C > 0,

|ft(y, z)− ft(y′, z′)| ≤ C(|y − y′|+ |z − z′|), dt⊗ dP− a.s.

for all t ∈ [0, T ] and (y, z), (y′, z′) ∈ Rn × Rn×d. Then, for every ξ ∈ L2, there
is a unique solution (Y, Z) ∈ S2 ×H2 to the BSDE(ξ, f).

Proof. Denote S = (Y, Z), and introduce the equivalent norm in the correspond-
ing H2 space:

‖S‖α := E

[∫ T

0

eαt(|Yt|2 + |Zt|2)dt

]
.

where α will be fixed later. We consider the operator

φ : s = (y, z) ∈ H2 7−→ Ss = (Y s, Zs)

defined by:

Y st = ξ +

∫ T

t

fu(yu, zu)du−
∫ T

t

Zsu · dWu, t ≤ T.

1. First, since |fu(yu, zu)| ≤ |fu(0, 0)| + C(|yu| + |zu|), we see that the pro-
cess {fu(yu, zu), u ≤ T} is in H2. Then Ss is well-defined by the martingale
representation theorem and Ss = φ(s) ∈ H2.
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2. For s, s′ ∈ H2, denote δs := s−s′, δS := Ss−Ss′ and δf := ft(S
s)−ft(Ss

′
).

Since δYT = 0, it follows from Itô’s formula that:

eαt|δYt|2 +

∫ T

t

eαu|δZu|2du =

∫ T

t

eαu
(
2δYu · δfu − α|δYu|2

)
du

−2

∫ T

t

eαu(δZu)TδYu · dWu.

In the remaining part of this step, we prove that

M. :=

∫ .

0

eαu(δZu)TδYu · dWu is a uniformly integrable martingale.(9.15)

so that we deduce from the previous equality that

E

[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du

]
= E

[∫ T

t

eαu
(
2δYu · δfu − α|δYu|2

)
du

]
.

(9.16)
To prove (9.15), we set V := supt≤T |Mt|, and we verify the condition of Lemma
9.2:

λP [V > λ] = λE
[
1{1<λ−1V }

]
≤ E

[
V 1{V >λ}

]
which converges to zero, provided that V ∈ L1. To check that the latter condi-
tion hold true, we estimate by the Burkholder-Davis-Gundy inequality that:

E[V ] ≤ CE

(∫ T

0

e2αu|δYu|2|δZu|2du

)1/2


≤ C ′E

sup
u≤T
|δYu|

(∫ T

0

|δZu|2du

)1/2


≤ C ′

2

(
E
[

sup
u≤T
|δYu|2

]
+ E

[∫ T

0

|δZu|2du

])
<∞.

3. We now continue estimating (9.16) by using the Lipschitz property of the
generator:

E
[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du
]

≤ E
[ ∫ T

t

eαu
(
−α|δYu|2 + C2|δYu|(|δyu|+ |δzu|)

)
du
]

≤ E

[∫ T

t

eαu
(
−α|δYu|2 + C

(
ε2|δYu|2 + ε−2(|δyu|+ |δzu|)2

))
du

]
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for any ε > 0. Choosing Cε2 = α, we obtain:

E

[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du

]
≤ E

[∫ T

t

eαu
C2

α
(|δyu|+ |δzu|)2du

]

≤ 2
C2

α
‖δs‖2α.

This provides

‖δZ‖2α ≤ 2
C2

α
‖δs‖2α and ‖δY ‖2αdt ≤ 2

C2T

α
‖δs‖2α

where we abused notatation by writing ‖δY ‖α and ‖δZ‖α although these pro-
cesses do not have the dimension required by the definition. Finally, these two
estimates imply that

‖δS‖α ≤
√

2C2

α
(1 + T )‖δs‖α.

By choosing α > 2(1 + T )C2, it follows that the map φ is a contraction on H2,
and that there is a unique fixed point.
4. It remain to prove that Y ∈ S2. This is easily obtained by first estimating:

E
[
sup
t≤T
|Yt|2

]
≤ C

(
|Y0|2 + E

[∫ T

0

|ft(Yt, Zt)|2dt

]
+ E

[
sup
t≤T

∣∣∣ ∫ t

0

Zs · dWs

∣∣∣2]) ,
and then using the Lipschitz property of the generator and the Burkholder-
Davis-Gundy inequality. ♦

Remark 9.4. Consider the Picard iterations:

(Y 0, Z0) = (0, 0), and

Y k+1
t = ξ +

∫ T

t

fu(Y ku , Z
k
u)du+

∫ T

t

Zk+1
u · dWu.

Then, Sk = (Y k, Zk) −→ (Y, Z) in H2. Moreover, since

‖Sk‖α ≤
(

2C2

α
(1 + T )

)k
,

it follows that
∑
k ‖Sk‖α < ∞, and we conclude by the Borel-Cantelli lemma

that the convergence (Y k, Zk) −→ (Y, Z) also holds dt⊗ dP−a.s.

9.3 Comparison and stability

Theorem 9.5. Let n = 1, and let (Y i, Zi) be the solution of BSDE(f i, ξi) for
some pair (ξi, f i) satisfying the conditions of Theorem 9.3, i = 0, 1. Assume
that

ξ1 ≥ ξ0 and f1
t (Y 0

t , Z
0
t ) ≥ f0

t (Y 0
t , Z

0
t ), dt⊗ dP− a.s. (9.17)
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Then Y 1
t ≥ Y 0

t , t ∈ [0, T ], P−a.s.

Proof. We denote

δY := Y 1 − Y 0, δZ := Z1 − Z0, δ0f := f1(Y 0, Z0)− f0(Y 0, Z0),

and we compute that

d(δYt) = − (αtδYt + βt · δZt + δ0ft) dt+ δZt · dWt, (9.18)

where

αt :=
f1
t (Y 1

t , Z
1
t )− f1

t (Y 0
t , Z

1
t )

δYt
1{δYt 6=0},

and, for j = 1, . . . , d,

βjt :=
f1
t

(
Y 0
t , Z

1
t ⊕j−1 Z

0
t

)
− f1

t

(
Y 0
t , Z

1
t ⊕j Z0

t

)
δZ0,j

t

1{δZ0,j
t 6=0},

where δZ0,j denotes the j−th component of δZ, and for every z0, z1 ∈ Rd,
z1 ⊕j z0 :=

(
z1,1, . . . , z1,j , z0,j+1, . . . , z0,d

)
for 0 < j < n, z1 ⊕0 z

0 := z0,
z1 ⊕n z0 := z1.

Since f1 is Lipschitz-continuous, the processes α and β are bounded. Solving
the linear BSDE (9.18) as in subsection 9.2.2, we get:

δYt = E

[
ΓtT δYT +

∫ T

t

Γtuδ0fudu
∣∣∣Ft] , t ≤ T,

where the process Γt is defined as in (9.14) with (δ0f, α, β) substituted to (a, b, c).
Then Condition (9.17) implies that δY ≥ 0, P−a.s. ♦

Our next result compares the difference in absolute value between the solu-
tions of the two BSDEs, and provides a bound which depends on the difference
between the corresponding final datum and the genrators. In particular, this
bound provide a transparent information about the nature of conditions needed
to pass to limits with BSDEs.

Theorem 9.6. Let (Y i, Zi) be the solution of BSDE(f i, ξi) for some pair
(ξi, f i) satisfying the conditions of Theorem 9.3, i = 0, 1. Then:

‖Y 1 − Y 0‖2S2 + ‖Z1 − Z0‖2H2 ≤ C
(
‖ξ1 − ξ0‖2L2 + ‖(f1 − f0)(Y 0, Z0)‖2H2

)
,

where C is a constant depending only on T and the Lipschitz constant of f1.

Proof. We denote δξ := ξ1−ξ0, δY := Y 1−Y 0, δf := f1(Y 1, Z1)−f0(Y 0, Z0),
and ∆f := f1 − f0. Given a constant β to be fixed later, we compute by Itô’s
formula that:

eβt|δYt|2 = eβT |δξ|2 +

∫ T

t

eβu
(
2δYu · δfu − |δZu|2 − β|δYu|2

)
du

+2

∫ T

t

eβuδZT
u δYu · dWu.
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By the same argument as in the proof of Theorem 9.3, we see that the stochastic
integral term has zero expectation. Then

eβt|δYt|2 = Et

[
eβT |δξ|2 +

∫ T

t

eβu
(
2δYu · δfu − |δZu|2 − β|δYu|2

)
du

]
, (9.19)

where Et := E[.|Ft]. We now estimate that, for any ε > 0:

2δYu · δfu ≤ ε−2|δYu|2 + ε2|δfu|2

≤ ε−2|δYu|2 + ε2
(
C(|δYu|+ |δZu|) + |∆fu(Y 0

u , Z
0
u)|
)2

≤ ε−2|δYu|2 + 3ε2
(
C2(|δYu|2 + |δZu|2) + |∆fu(Y 0

n , Z
0
u)|2

)
.

We then choose ε2 := C2/6 and β := ε−2 + 1/2, and plug the latter estimate in
(9.19). This provides:

eβt|δYt|2 + Et

[∫ T

t

|δZu|2du

]
≤ Et

[
eβT |δξ|2 +

C2

2

∫ T

0

eβu|δfu(Y 1, Z0
u)|2du

]
,

which implies the required inequality by taking the supremum over t ∈ [0, T ] and
using the Doob’s maximal inequality for the martingale {Et[eβT |δξ|2], t ≤ T}.
♦

9.4 BSDEs and stochastic control

We now turn to the question of controlling the solution of a family of BSDEs
in the scalr case n = 1. Let (ξν , fν)ν∈U be a family of coefficients, where U is
some given set of controls. We assume that the coefficients (ξν , fν)ν∈U satisfy
the conditions of the existence and uniqueness theorem 9.3, and we consider the
following stochastic control problem:

V0 := sup
ν∈U

Y ν0 , (9.20)

where (Y ν , Zν) is the solution of BSDE(ξν , fν).
The above stochastic control problem boils down to the standard control

problems of Section 2.1 when the generators fα are all zero. When the gen-
erators fν are affine in (y, z), the problem (9.20) can also be recasted in the
standard framework, by discounting and change of measure.

The following easy result shows that the above maximization problem can
be solved by maximizing the coefficients (ξα, fα):

ft(y, z) := ess sup
ν∈U

fνt (y, z), ξ := ess sup
ν∈U

ξν . (9.21)

The notion of essential supremum is recalled in the Appendix of this chapter.
We will asume that the coefficients (f, ξ) satisfy the conditions of the existence
result of Theorem 9.3, and we will denote by (Y, Z) the corresponding solution.
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A careful examination of the statement below shows a great similarity with
the verification result in stochastic control. In the present non-Markov frame-
work, this remarkable observation shows that the notion of BSDEs allows to
mimic the stochastic control methods developed previous chapters in the Markov
case.

Proposition 9.7. Assume that the coefficients (ξ, f) and (ξν , fν) satisfy the
conditions of Theorem 9.3, for all ν ∈ U . Assume further that there exists some
ν̂ ∈ U such that

ft(y, z) = f ν̂(y, z) and ξ = ξν̂ .

Then V0 = Y ν̂0 and Yt = ess supν∈U Y
ν
t , t ∈ [0, T ], P−a.s.

Proof. The P−a.s. inequality Y ≤ Y ν , for all ν ∈ U , is a direct consequence
of the comparison result of Theorem 9.5. Hence Yt ≤ supν∈U Y

ν
t , P−a.s. To

conclude, we notice that Y and Y ν̂ are two solutions of the same BSDE, and
therefore must coincide, by uniqueness. ♦

The next result characterizes the solution of a standard stochastic control
problem in terms of a BSDE. Here, again, we emphasize that, in the present non-
Markov framework, the BSDE is playing the role of the dynamic programming
equation whose scope is restricted to the Markov case.

Let

U0 := inf
ν∈U

EPν
[
βν0,T ξ

ν +

∫ T

0

βνu,T `u(νu)du

]
,

where

dPν

dP

∣∣∣∣
FT

:= e
∫ T
0
λt(νt)·dWt− 1

2

∫ T
0
|λt(νt)|2dt and βνt,T := e−

∫ T
t
ku(νu)du.

We assume that all coefficients involved in the above expression satisfy the
required conditions for the problem to be well-defined.

We first notice that for every ν ∈ U , defining

Y νt := EPν
[
βνt,T ξ

ν +

∫ T

t

βνu,T `u(νu)du
∣∣∣Ft]

is the first component of the solution (Y ν , Zν) of the affine BSDE:

dY νt = −fνt (Y νt , Z
ν
t )dt+ Zνt dWt, Y νT = ξν

with fνt (y, z) := `t(νt) − kt(νt)y + λt(νt)z. In view of this observation, the
following result is a direct application of Proposition 9.7.

Proposition 9.8. Assume that the coefficients

ξ := ess sup
ν∈U

ξν and ft(y, z) := ess sup
ν∈U

fνt (y, z)

satisfy the conditions of Theorem 9.3, and let (Y,Z) be the corresponding solu-
tion. Then U0 = Y0.
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9.5 BSDEs and semilinear PDEs

In this section, we specialize the discussion to the so-called Markov BSDEs in
the one-dimensional case n = 1. This class of BSDEs corresponds to the case
where

ft(y, z) = F (t,Xt, y, z) and ξ = g(XT ),

where F : [0, T ]× Rd × R× Rd −→ R and g : Rd −→ R are measurable, and X
is a Markov diffusion process defined by some initial data X0 and the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (9.22)

Here µ and σ are continuous and satisfy the usual Lipschitz and linear growth
condtions on order to ensure existence and uniqueness of a strong solution to
the SDE SDE-MarkovBSDE, and

f, g have polynomial growth in x

and f is uniformly Lipschitz in (y, z).

Then, it follows from Theorem 9.3 that the above Markov BSDE has a unique
solution.

We next move the time origin by considering the solution {Xt,x
s , s ≥ t} of

(9.22) with initial data Xt,x
t = x. The corresponding solution of the BSDE

dYs = −F (s,Xt,x
s , Ys, Zs)ds+ ZsdWs, YT = g

(
Xt,x
T

)
(9.23)

will be denote by (Y t,x, Zt,x).

Proposition 9.9. The process {(Y t,xs , Zt,xs ) , s ∈ [t, T ]} is adapted to the filtra-
tion

F ts := σ (Wu −Wt, u ∈ [t, s]) , s ∈ [t, T ].

In particular, u(t, x) := Y t,xt is adeterministic function and

Y t,xs = Y
s,Xt,xs
s = u

(
s,Xt,x

s

)
, for all s ∈ [t, T ], P− a.s.

Proof. The first claim is obvious, and the second one follows from the fact that

Xt,x
r = X

s,Xt,xs
r . ♦

Proposition 9.10. Let u be the function defined in Proposition 9.9, and assume
that u ∈ C1,2([0, T ),Rd). Alors

−∂tu−Au− f(., u, σTDu) = 0 on [0, T )× Rd.

Proof. This an easy application of Itô’s lemma together with the usual localiza-
tion technique. ♦

CONCLUDE WITH NONLINEAR FEYNMAC-KAC
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9.6 Appendix: essential supremum

The notion of essential supremum has been introduced in probability in order to
face maximization problem over an infinite family Z. The problem arises when
Z is not countable because then the supremum is not measurable, in general.

Theorem 9.11. Let Z be a family of r.v. Z : Ω −→ R ∪ {∞} on a probability
space (Ω,F ,P). Then there exists a unique (a.s.) r.v. Z̄ : Ω −→ R ∪ {∞} such
that:
(a) Z̄ ≥ Z, a.s. for all Z ∈ Z,
(b) For all r.v. Z ′ satisfying (a), we have Z̄ ≤ Z ′, a.s.
Moreover, there exists a sequence (Zn)n∈N ⊂ Z such that Z̄ = supn∈N Zn.
The r.v. Z̄ is called the essential supremum of the family Z, and denoted by
ess supZ.

Proof. The uniqueness of Z̄ is an immediate consequence of (b). To prove
existence, we consider the set D of all countable subsets of Z. For all D ∈ D,
we define ZD := sup{Z : Z ∈ D}, and we introduce the r.v. ζ := sup{E[ZD] :
D ∈ D}.
1. We first prove that there exists D∗ ∈ D such that ζ = E[ZD∗ ]. To see this, let
(Dn)n ⊂ D be a maximizing sequence, i.e. E[ZDn ] −→ ζ, then D∗ := ∪nDn ∈ D
satisfies E[ZD∗ ] = ζ. We denote Z̄ := ZD∗ .
2. It is clear that the r.v. Z̄ satisfies (b). To prove that property (a) holods
true, we consider an arbitrary Z ∈ Z together with the countable family D :=
D∗∪{Z} ⊂ D. Then ZD = Z ∨ Z̄, and ζ = E[Z̄] ≤ E[Z ∨ Z̄] ≤ ζ. Consequently,
Z ∨ Z̄ = Z̄, and Z ≤ Z̄, a.s. ♦
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Chapter 10

Quadratic backward SDEs

In this chapter, we consider an extension of the notion of BSDEs to the case
where the dependence of the generator in the variable z has quadratic growth.
In the Markovian case, this corresponds to a problem of second order semi-
linear PDE with quadratic growth in the gradient term. The first existence
and uniqueness result in this context was established by M. Kobylanski in her
PhD thesis by adapting the PDE technique to the non-Markov BSDE frame-
work. In this chapter, we present an alternative argument introduced recently
by Tevzadze.

Qadratic BSDEs turn out to play an important role in the applications,
and the extension of this section is needed in order to analyze the problem of
portfolio optimization under portfolio constraints.

We shall consider thoughout this chapter the BSDE

Yt = ξ +

∫ T

t

fs(Zs)ds−
∫ T

t

Zs · dWs (10.1)

where ξ is a bounded FT−measurable r.v. and f : [0, T ] × Ω × Rd −→ R is
P ⊗ B(Rd)−measurable, and satisfies a quadratic growth condition:

‖ξ‖∞ <∞ and |ft(z)| ≤ C(1 + |z|2) for some constant C > 0. (10.2)

We could have included a Lipschitz dependence of the generator on the variable
y without altering the results of this chapter. However, for exposition clarity
and transparency, we drop this dependence in order to concentrate on the main
difficulty, namely the quadratic growth in z.

10.1 A priori estimates and uniqueness

In this section, we prove two easy results. First, we show the connection between
the boundedness of the component Y of the solution, and the BMO (Bouded
Mean Oscillation) property for the martingale part

∫ .
0
Zt · dWt. Then, we prove

uniquenss in this class.

143
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10.1.1 A priori estimates for bounded Y

We denote byM2 the collection of all P−square integrable martingales on time
interval [0, T ]. We first introduce the so-called class of martingales with bounded
mean oscillations:

BMO :=
{
M ∈M2 : ‖M‖bmo <∞

}
,

where

‖M‖bmo := sup
τ∈T T0

‖E[〈M〉T − 〈M〉τ |Fτ ]‖∞ .

Here, T T0 is the collection of all stopping times, and 〈M〉 denotes the quadratic
variation process of M . We will be essentially working with square integrable
martingales of the form M =

∫ .
0
φsdWs. The following definition introduces an

abuse of notation which will be convenient for our presentation.

Definition 10.1. A process φ ∈ H2 is said to be a BMO martingale generator
if

‖φ‖H2
bmo

:=
∥∥ ∫ .

0
φs · dWs

∥∥
bmo <∞.

We denote by H2
bmo :=

{
φ ∈ H2 : ‖φ‖H2

bmo
<∞

}
.

For this class of martingales, we can re-write the BMO norm by the Itô
isometry into:

‖φ‖2H2
bmo

:= sup
τ∈T T0

∥∥∥∥∥E[
∫ T

τ

|φs|2ds
∣∣Fτ]

∥∥∥∥∥
∞

.

The following result shows why this notion is important in the context of
quadratic BSDEs.

Lemma 10.2. Let (Y, Z) be a solution of the quadratic BSDE (10.1) (in par-
ticular, Z ∈ H2

loc), and assume that the process Y is bounded and f satisfies
(10.2). Then Z ∈ H2

bmo.

Proof. Let (τn)n≥1 ⊂ T T0 be a localizing sequence of the local martingale
∫ .

0
Zs ·

dWs. By Itô’s formula together with the boundedness of Y , we have for any
τ ∈ T T0 :

eβ‖Y ‖∞ ≥ eβYτn − eβYτ =

∫ τn

τ

βeβYs
(

(
1

2
β|Zs|2 − fs(Zs))ds+ Zs · dWs

)
.

By the Doob’s optional sampling theorem, this provides:

β2

2
E
[∫ τn

τ

eβYs |Zs|2ds
∣∣∣Fτ] ≤ eβ‖Y ‖∞ + βE

[∫ τn

τ

eβYsfs(Zs)ds
∣∣∣Fτ]

≤ (1 + βCT )eβ‖Y ‖∞ + βCE
[∫ τn

τ

eβYs |Zs|2ds
∣∣∣Fτ] .
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Then, setting β = 4C, it follows that

e−β‖Y ‖∞E

[∫ T

τ

|Zs|2ds
∣∣∣Fτ] ≤ E

[∫ T

τ

eβYs |Zs|2ds
∣∣∣Fτ]

= lim
n→∞

↑ E
[∫ τn

τ

eβYs |Zs|2ds
∣∣∣Fτ]

≤ 1 + 4C2T

4C2
eβ‖Y ‖∞ ,

which provides the required result by the arbitrariness of τ ∈ T T0 . ♦

10.1.2 Some propeties of BMO martingales

In this section, we list without proof some properties of the space BMO. We
refer to the book of Kazamaki [?] for a complete presentation on this topic.

1. The set BMO is a Banach space.

2. M ∈ BMO if and only if
∫
HdM ∈ BMO for all bounded progressively

measurable process H.

3. If M ∈ BMO, then

(a) the process E(M) := eM−
1
2 〈M〉 is a uniformly integrable martingale,

(b) the process M − 〈M〉 is a BMO martingale under the equivalent
measure E(M) · P

(c) E(M) ∈ Lr for some r > 1.

4. For φ ∈ H2
bmo, we have

E

[(∫ T

0

|φs|2ds
)p]

≤ 2p!
(

4‖φ‖2H2
bmo

)p
for all p ≥ 1.

In our subsequent analysis, we shall only make use of the properties 1 and
3a.

10.1.3 Uniqueness

We now introduce the main condition for the derivation of the existence and
uniqueness result.

Assumption 10.3. the quadratic genrator f is C2 in z, and there is a constant
θ such that

|Dzft(z)| ≤ θ1(1 + |z|), |D2
zzft(z)| ≤ θ2 for all (t, ω, z) ∈ [0, T ]× Ω× Rd.
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Lemma 10.4. Let Assumption 10.3 hold true. Then, there exists a bounded
progressively measurable process φ such that for all t ∈ [0, T ], z, z′ ∈ Rd

|ft(z)− ft(z′)− φt · (z − z′)| ≤ θ2|z − z′| (|z|+ |z′|) , P− a.s. (10.3)

Proof. Since f is C2 in z, we introduce the process φt := Dzft(0) which is
bounded by θ, according to Assumption 10.3. By the mean value theorem, we
compute that, for some constant λ = λ(ω) ∈ [0, 1]:

|ft(z)− ft(z′)− φt · (z − z′)| = |Dzft(λz + (1− λ)z′)− φt| |z − z′|
≤ θ2|λz + (1− λ)z′| |z − z′|,

by the bound on D2
zzft(z) in Assumption 10.3. The required result follows from

the trivial inequality |λz + (1− λ)z′| ≤ |z|+ |z′|. ♦

We are now ready for the proof of the uniqueness result. As for the Lipschitz
case, we have the following comparison result which implies uniqueness.

Theorem 10.5. Let f0, f1 be two quadratic generators satisfying (10.2). As-
sume further that f1 satisfies Assumption (10.3). Let (Y i, Zi), i = 0, 1, be two
solutions of (10.1) with coefficients (f i, ξi).

ξ1 ≥ ξ0 and f1
t (Z0

t ) ≥ f0
t (Z0

t ), t ∈ [0, T ], P− a.s.

Assume further that Y 0, Y 1 are bounded. Then Y 1 ≥ Y 0, P−a.s.

Proof. We denote δξ := ξ1 − ξ0, δY := Y 1 − Y 0, δZ := Z1 − Z0, and δf :=
f1(Z1)− f0(Z0). Then, it follows from Lemma 10.4 that:

δYt = δξ −
∫ T

t

δZs · dWs +

∫ T

t

δfsds

≥ δξ −
∫ T

t

δZs · dWs +

∫ T

t

(f1 − f0)(Z0
s )ds

+

∫ T

t

(
f1(Z1

s )− f1(Z0
s )
)
ds

≥ δξ −
∫ T

t

δZs · dWs +

∫ T

t

(f1 − f0)(Z0
s )ds

+

∫ T

t

(
φs · (Z1

s − Z0
s )− θ2|Z1

s − Z0
s |(|Z0

s |+ |Z1
s |)
)
ds

= δξ −
∫ T

t

δZs · (dWs − Λsds) +

∫ T

t

(f1 − f0)(Z0
s )ds,

where φ is the bounded process introduced in Lemma 10.4, and the process Λ
is defined by:

Λs := φs − θ2
|Z0
s |+ |Z1

s |
|Z1
s − Z0

s |
(Z1

s − Z0
s )1{Z1

s−Z0
s 6=0}, s ∈ [t, T ].
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Since Y 0 and Y 1 are bounded, and both generators f0, f1 satisfy Condition
(10.2), it follows from Lemma 10.2 that Z0 and Z1 are in H2

bmo. Hence Λ ∈
H2

bmo, and by property 3a of BMO martingales, we deduce that the process
W.−

∫ .
0

Λsds is a Brownian motion under an equivalent probability measure Q.
Taking conditional expectations under Q then provivides:

δYt ≥ EQ

[
δξ +

∫ T

t

(f1 − f0)(Z0
s )ds

]
, a.s.

which implies the required comparison result. ♦

10.2 Existence

In this section, we prove existence of a solution to the quadratic BSDE in two
steps. We first prove existence (and uniqueness) by a fixed point argument when
the final data ξ is bounded by some constant depending on the generator f and
the maturity T . In the second step, we decompose the final data as ξ =

∑n
i=1 ξi

with ξi is sufficiently small so that the existence result of the first step applies.
Then, we construct a solution of the quadratic BSDE with final data ξ by adding
these solutions.

10.2.1 Existence for small final condition

In this subsection, we prove an existence and uniqueness result for the quadratic
BSDE (10.1) under Condition (10.3) with φ ≡ 0.

Theorem 10.6. Assume that the generator f satisfies:

ft(0) = 0 and |ft(z)− ft(z′)| ≤ θ2|z − z′| (|z|+ |z′|) , P− a.s. (10.4)

Then, for every FT−measurable r.v. ξ with ‖ξ‖L∞ ≤ 1
64θ2

, there exists a unique
solution (Y,Z) to the quadratic BSDE (10.1) with

‖Y ‖2S∞ + ‖Z‖2H2
bmo

≤ (16θ2)
2
.

Proof. Consider the map Φ : (y, z) ∈ S∞ ×H2
bmo 7−→ S = (Y,Z) defined by:

Yt = ξ +

∫ T

t

fs(zs)ds−
∫ T

t

Zs · dWs, t ∈ [0, T ], P− a.s.

The existence of the pair (Y,Z) = Φ(y, z) ∈ H2 is justified by the martingale
representation theorem together with Property 4 of BMO martingales which
ensures that the process f(Z) is in H2.

To obtain the required result, we will prove that Φ is a contracting mapping
on S∞×H2

bmo when ξ has a small L∞−norm as in the statement of the theorem.
1. In this step, prove that

(Y, Z) = Φ(y, z) ∈ S∞ ×H2.
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First, we estimate that:

|Yt| =

∣∣∣∣∣Et[ξ +

∫ T

t

fs(zs)ds
]∣∣∣∣∣

≤ ‖ξ‖∞ + C
(
T + ‖z‖H2

bmo

)
,

proving that the process Y is bounded. We next calculate by Itô’s formula that,
for every stopping time τ ∈ T T0 :

|Yτ |2 + Eτ

[∫ T

τ

|Zs|2ds

]
= |ξ|2 + Eτ

[∫ T

τ

2Ysfs(zs)ds

]

≤ ‖ξ‖2L∞ + 2‖Y ‖S∞Eτ

[∫ T

τ

|fs(zs)|ds

]
,

where Eτ [.] = E[.|Fτ ] and, similar to the proof of Theorem 9.3, the expectation
of the stochastic integral vanishes by Lemma 9.2 together with Property 4 of
BMO martingales.

By the trivial inequality 2ab ≤ 1
4a

2 + 4b2, it follows from the last inequality
that:

|Yτ |2 + Eτ

[∫ T

τ

|Zs|2ds

]
≤ ‖ξ‖2L∞ +

1

4
‖Y ‖2S∞ + 4

(
Eτ

[∫ T

τ

|fs(zs)|ds

])2

≤ ‖ξ‖2L∞ +
1

4
‖Y ‖2S∞ + 4

(
Eτ

[∫ T

τ

θ2|zs|2ds

])2

by Condition (10.4). Taking the supremum over all stopping times τ ∈ T T0 , this
provides:

‖Y ‖2S∞ + ‖Z‖2H2
bmo

≤ 2‖ξ‖2L∞ +
1

2
‖Y ‖2S∞ + 8θ2

2‖z‖4H2
bmo

,

and therefore:

‖Y ‖2S∞ + ‖Z‖2H2
bmo

≤ 4‖ξ‖2L∞ + 16θ2
2 ‖z‖4H2

bmo
.

The power 4 on the right hand-side is problematic because it may cause the
explosion of the norms on the right hand-side which are only raised to the
power 2 ! This is precisely the reason why we need to restrict ‖ξ‖L∞ to be
small. For instance, assuming that

‖ξ‖L∞ ≤
1

64θ2
and ‖y‖2S∞ + ‖z‖2H2

bmo
≤ R2 := 4‖ξ‖2,

it follows from the previous estimates that

‖Y ‖2S∞ + ‖Z‖2H2
bmo
≤ 4

(
1

64θ2

)2

+ 16θ2
2

(
1

16θ2

)4

< R2.
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Denoting by BR the ball of radius R in S∞ ×H2
bmo, we have then proved that

Φ(BR) ⊂ BR.

2. For i = 0, 1 and (yi, zi) ∈ BR, we denote (Y i, Zi) := Φ(yi, zi), δy := y1 − y0,
δz := z1−z0, δY := Y 1−Y 0, δZ := Z1−Z0, and δf := f(z1)−f(z0). We argue
as in the previous step: apply Itô’s formula for each stopping time τ ∈ T T0 , take
conditional expectations, and maximize over τ ∈ T T0 . This leads to:

‖δY ‖2S∞ + ‖δZ‖2H2
bmo

≤ 16 sup
τ∈T T0

(
Eτ

[∫ T

τ

|δfs|ds

])2

. (10.5)

We next estimate that(
Eτ

[∫ T

τ

|δfs|ds

])2

≤ θ2
2

(
Eτ

[∫ T

τ

|δz|(|z0
s |+ |z1

s |)ds

])2

≤ θ2
2 Eτ

[∫ T

τ

|δzs|2ds

]
Eτ

[∫ T

τ

(|z0
s |+ |z1

s |)2ds

]

≤ 4R2θ2
2 Eτ

[∫ T

τ

|δzs|2ds

]
.

Then, it follows from (10.5) that

‖δY ‖2S∞ + ‖δZ‖2H2
bmo

≤ 16× 4R2θ2
2 ‖δz‖2H2

bmo
≤ 1

4
‖δz‖2H2

bmo
.

Hence Φ is a contraction, and there is a unique fixed point. ♦

10.2.2 Existence for bounded final condition

We now use the existence result of Theorem 10.6 to build a solution for a
quadratic BSDE with general bounded final. Let us already observe that, in
contrast with Theorem 10.6, the following construction will only provide exis-
tence (and not uniqueness) of a solution (Y, Z) with bounded Y component.
However, this is all we need to prove in this section as the uniqueness is a
consequence of Theorem 10.5.

We first observe that, under Condition (10.2), we may assume without loss
of generality that ft(0) = 0. This is an immediate consequence of the obvious
equivalence:

(Y,Z) solution of BSDE(f, ξ) iff (Ỹ , Z) solution of BSDE(f, ξ̃),

where Ỹt := Yt −
∫ t

0
fs(0)ds, 0 ≤ t ≤ T , and ξ̃ := ξ −

∫ T
0
fs(0)ds.

We then continue assuming that ft(0) = 0.
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Consider an arbitrary decomposition of the final data ξ as

ξ =

n∑
i=1

ξi where ‖ξi‖L∞ ≤
1

64θ2
. (10.6)

For instance, one may simply take ξi := 1
nξ and n sufficiently large so that

(10.6) holds true.
We will then construct solutions (Y i, Zi) to quadratic BSDEs with final data

ξi as follows:

Step 1 Let f1 := f , and define (Y 1, Z1) as the unique solution of the quadratic
BSDE

Y 1
t = ξ1 +

∫ T

t

f1
s (Z1

s )ds−
∫ T

t

Z1
s · dWs, t ∈ [0, T ]. (10.7)

Under Condition (10.2) and Assumption 10.3, it will be shown in Lemma
10.8 below that there is a unique solution (Y 1, Z1) with bounded Y 1 and
Z1 ∈ H2

bmo. This is achieved by applying Theorem 10.6 under a measure
Q defined by the density E(

∫ .
0
Dft(Z

0
t ) · dWt) where Z0 := 0 and Dft(0)

is bounded.

Step 2 Given (Y j , Zj)j≤i−1, we define the generator

f it (z) := ft

(
Z
i−1

t + z
)
− ft

(
Z
i−1

t

)
where Z

i−1

t :=

i−1∑
j=1

Zjt .(10.8)

We will justify in Lemma 10.8 below that there is a unique solution (Y i, Zi)
to the BSDE

Y it = ξi +

∫ T

t

f is(Z
i
s)ds−

∫ T

t

Zis · dWs, t ∈ [0, T ], (10.9)

with bounded Y i and such that Z
i

:= Z1
t + . . .+ Zit ∈ H2

bmo.

Step 3 We finally observe that by setting Y := Y 1 + . . .+ Y n and Z := Z
n
, and

by summing the BSDEs (10.9), we directly obtain:

Yt =

n∑
i=1

ξi +

∫ T

t

n∑
i=1

f is(Z
i
s)ds−

∫ T

t

Zs · dWs

= ξ +

∫ T

t

fs(Zs)ds−
∫ T

t

Zs · dWs,

which means that (Y,Z) is a solution of our quadratic BSDE of interest.
Moreover, Y inherits the boundedness of the Y i’s, and Z ∈ H2

bmo by
Lemma 10.2. Finally, as mentioned before, uniqueness is a consequence of
Theorem 10.5.
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By the above argument, we have the following existence and uniqueness
result.

Theorem 10.7. Let f be a quadratic generator satisfying (10.2) and Assump-
tion 10.3. Then, for any ξ ∈ L∞(FT ), there is a unique solution (Y, Z) ∈
S∞ ×H2

bmo to the quadratic BSDE (10.1).

For the proof of this theorem, it only remains to show the existence claim in
the above Step 2.

Lemma 10.8. For i = 1, . . . , n, let the final data ξi be bounded as in (10.6).
Then there exists a unique solution (Y i, Zi)1≤i≤n of the BSDEs (10.9) with

bounded Y i’s. Moreover, the process Z
i

:= Z0 + . . . + Zi ∈ H2
bmo for all i =

1, . . . , n.

Proof. we shall argue by induction. That the claim is true for i = 1 was justified
in Step 1 above. We next assume that the claim is true for all j ≤ i − 1, and
extend it to i.
1- We first prove a convenient estimate for the generator. Set

φit := Df it (0) = Dft(Z
i−1

). (10.10)

Then, it follows from the mean value theorem there exists a radom λ = λ(ω ∈
[0, 1] such that∣∣f it (z)− f it (z′)− φit · (z − z′)∣∣ =

∣∣Df it (λz + (1− λ)z′
)
−Df it (0)

∣∣ |z − z′|
≤ θ2|λz + (1− λ)z′| |z − z′|
≤ θ2|z − z′|(|z|+ |z′|). (10.11)

2. We rewrite the BSDE (10.9) into

Y it = ξi +

∫ T

t

his(Z
i
s)ds−

∫ T

t

Zis · (dWs − φisds), where his(z) := f is(z)− φis · z.

By the definition of the process φi in (10.10), it follows from Assumption 10.3

that |φit| ≤ θ1(1 + |Zi−1

t |). Then φi ∈ H2
bmo is inherited from the induction

hypothesis which garantees that Zj ∈ H2
bmo for j ≤ i− 1, and therefore Z

i−1 ∈
H2

bmo. By Property 3a of BMO martingales, we then conclude that

B := W −
∫ .

0

φisds is a Brownian motion under Q := E
(∫ .

0

φis · dWs

)
T

· P.

We now view the latter BSDE as formulated under the equivalent probability
measure Q by:

Y it = ξi +

∫ T

t

his(Z
i
s)ds−

∫ T

t

Zis · dBs, Q− a.s.
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where, by (10.11), the quadratic generator hi satisfies the conditions of Theo-
rem 10.6 with the same parameter θ2, and the existence of a unique solution
(Y i, Zi) ∈ S∞ ×H2

bmo(Q) follows.

3. It remains to prove that Z
i

:= Z1 + . . .+ Zi ∈ H2
bmo. To see this, we define

Y
i

:= Y 1 + . . .+Y i, and observe that the pair process (Y
i
, Z

i
) solves the BSDE

Y
i

t =

i∑
j=1

ξj +

∫ T

t

i∑
j=1

f js (Zjs)ds−
∫ T

t

Z
i

s · dWs

=

i∑
j=1

ξj +

∫ T

t

f is(Z
i

s)ds−
∫ T

t

Z
i

s · dWs.

Since
∑i
j=1 ξj is bounded and f i satisfies (10.2), it follows from Lemma 10.2

that Z
i ∈ H2

bmo. ♦

Remark 10.9. The conditions of Assumption 10.3 can be weakened by es-
sentially removing the smoothness conditions. Indeed and existence result was
established by Kobylansky [?] and Morlais [?] under weaker assumptions.

10.3 Portfolio optimization under constraints

10.3.1 Problem formulation

In this section, we consider a financial market consisting of a non-risky asset,
normalized to unity, and d risky assets S = (S1, . . . , Sd) defined by some initial
condition S0 and the dynamics:

dSt = St ? σt (dWt + θtdt) ,

where θ and σ are bounded progressively measurable processes with values in
Rd and Rd×d, respectively. We also assume that σt is invertible with bounded
inverse process σ−1.

In financial words, θ is the risk premium process, and σ is the volatility
(matrix) process.

Given a maturity T > 0, a portfolio strategy is a progressively measurable

process {πt, t ≤ T} with values in Rd and such that
∫ T

0
|πt|2dt <∞, P−a.s.

For each i = 1, . . . , d and t ∈ [0, T ], πit denotes the Dollar amount invested
in the i−th risky asset at time t. Then, the liquidation value of a self-financing
portfolio defined by the portfolio strategy π and the initial capital π is given by:

Xπ
t = X0 +

∫ t

0

πr · σr (dWr + θrdr) , t ∈ [0, T ]. (10.12)

We shall impose more conditions later on the set of portfolio strategies. In
particular, we will consider the case where the portfolio strategy is restricted to
some

K closed convex subset of Rd.
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The objective of the portfolio manager is to maximize the expected utility of
the final liquidation value of the portfolio, where the utility function is defined
by

U(x) := −e−x/η for all x ∈ R, (10.13)

for some parameter η > 0 representing the risk tholerance of the investor, i.e.
η−1 is the risk aversion.

Definition 10.10. A portfolio strategy π is said to be admissible if it takes

values in K, E
[∫ T

0
|πt|2dt

]
<∞, and

the family
{
e−X

π
τ /η, τ ∈ T T0

}
is uniformly integrable. (10.14)

We denote by A the collection of all admissible portfolio strategies.

We are now ready for the formulation of the portfolio manager problem.
Let ξ be some bounded FT−measurable r.v. representing the liability at the
maturity T . The portfolio manager problem is defined by the stochastic control
problem:

V0 := sup
π∈A

E [U (Xπ
T − ξ)] . (10.15)

Our main objective in the subsequent subsections is to provide a characterization
of the value function and the solution of this problem in terms of a BSDE.

Remark 10.11. The restriction to the exponential utility case (10.13) is crucial
to obtain a connection of this problem to BSDEs.

• In the Markovian framework, we may characterize the value function V
by means of the corresponding dynamic programming equation. Then,
extending the definition in a natural way to allow for a changing time
origin, the dynamic programming equation of this problem is

−∂tv −
∑
π

{
π · σθDxv +

1

2
|σTπ|2Dxxv + (σTπ) · (s ? σDxsv)

}
= 0.

(10.16)
Notice that the above PDE is fully nonlinear, while BSDEs are connected
to semilinear PDEs. So, in general, there is no reason for the portfolio
optimization problem to be related to BSDEs.

• Let us continue the discussion of the Markovian framework in the context
of an exponential utility. Due to the expression of the liquidation value
process (10.13), it follows that U(XX0,π

T ) = e−X0/ηU(X0,π
T ), where we

emphasized the dependence of the liqudation value on the initial capital
X0. Then, by definition of the value function V , we have

V (t, x, s) = e−x/ηV (t, 0, s),
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i.e. the dependence of the value function V in the variable x is perfectly
determined. By plugging this information into the dynamic programming
equation (10.16), it turns out that the resulting PDE for the function
U(t, s) := V (t, O, s) is semilinear, thus explaining the connection to BS-
DEs.

• A similar argument holds true in the case of power utility function U(x) =
xp/p for p < 1. In this case, due to the domain restriction of this utility
function, one defines the wealth process X in a multiplicative way, by tak-
ing as control π̃t := πt/Xt, the proportion of wealth invested in the risky

assets. Then, it follows that XX0,π̃
T = X0X

0,π̃
T , V (t, x, s) = xpV (t, 0, s)

and the PDE satisfied by V (t, 0, s) turns out to be semilinear.

10.3.2 BSDE characterization

The main result of this section provides a characterization of the portfolio man-
ager problem in terms of the BSDE:

Yt = ξ +

∫ T

t

fr(Zr)dr −
∫ T

t

Zr · dWr, t ≤ T, (10.17)

where the generator f is given by

ft(z) := −z · θt −
η

2
|θt|2 +

1

2η
inf
π∈A

∣∣σT
t π − (z + ηθt)

∣∣2 .
= −z · θt −

η

2
|θt|2 +

1

2η
dist(z + ηθt, σtA)2, (10.18)

where for x ∈ Rd, dist(x, σtA) denotes the Euclidean distance from x to the set
σtA, the image of A by the matrix σt.

Example 10.12. (Complete market) Consider the case A = Rd, i.e. no port-
folio constraints. Then ft(z) = −z · θt − η

2 |θt|
2 is an affine generator in z, and

the above BSDE can be solved explicitly:

Yt = EQ
t

[
ξ − η

2

∫ T

t

|θr|2dr

]
, t ∈ [0, T ],

where Q is the so-called risk-neutral probability measure which turns the process
W +

∫ .
0
θrdr into a Brownian motion. ♦

Notice that, except for the complete market case A = Rd of the previous
example, the above generator is always quadratic in z. Since the risk premium
process is assumed to be bounded, the above generator satisfies Condition (10.2).
As for Assumption 10.3, its verification depends on the geometry of the set
A. Finally, the final condition represented by the liability ξ is assumed to be
bounded.
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Theorem 10.13. Let A be a closed convex set, and suppose that f satisfies
Assumption 10.3. Then the value function of the portfolio management problem
and the corresponding optimal portfolio are given by

V0 = −e−
1
η (X0−Y0) and π̂t := Arg min

π∈A
|σT
t π − (Zt + ηθt)|,

where X0 is the initial capital of the investor, and (Y, Z) is the unique solution
of the quadratic BSDE (10.17).

Proof. For every π ∈ A, we define the process

V πt := −e−(X0,π
t −Yt)/η, t ∈ [0, T ].

1. We first compute by Itô’s formula that

dV πt = −1

η
V πt

(
dX0,π

t − dYt
)

+
1

2η2
V πt d〈X0,π − Y 〉t

= −1

η
V πt

[
(ft(Zt)− ϕt(Zt, πt)) dt+

(
σT
t πt − Zt

)
· dWt

]
,

where we denoted:

ϕt(z, π) := −σT
t π · θt +

1

2η
|σT
t πt − z|2

= −z · θt −
η

2
|θt|2 +

1

2η

∣∣σT
t π − (z + ηθt)

∣∣2 ,
so that ft(z) = infπ∈A ϕt(z, π). Consequently, the process V π is a local su-
permartingale. Now recall from Theorem 10.7 that the solution (Y,Z) of the
quadratic BSDE has a bounded component Y . Then, it follows from admissibil-
ity condition (10.14) of Definition 10.10 that the process V π is a supermartin-
gale. In particular, this implies that −e−(X0−Y0)/η ≥ E[V πT ], and it then follows
from the arbitrariness of π ∈ A that

V0 ≤ −e−(X0−Y0)/η. (10.19)

2. To prove the reverse inequality, we notice that the portfolio strategy π̂
introduced in the statement of the theorem satisfies

dV π̂t = −1

η
V π̂t
(
σT
t π̂t − Zt

)
· dWt.

Then V π̂t is a local martingale. We continue by estimating its diffusion part:∣∣σT
t π̂t − Zt

∣∣ ≤ η|θt|+
∣∣σT
t π̂t − (Zt + ηθt)

∣∣
= η|θt|+

√
ft(Zt) + Zt · θt +

η

2
|θt|2

≤ C(1 + |Zt|),
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for some constant C. Since Z ∈ H2
bmo by Theorem 10.7, this implies that

σT
t π̂t − Zt ∈ H2

bmo and σT
t π̂t ∈ H2

bmo. Then, it follows from Property 3a of
BMO martingales that π̂ ∈ A and V π̂ is a martingale. Hence

π̂ ∈ A and E
[
−e−(Xπ̂T−YT )/η

]
= −e−(X0−Y0)/η

which, together with (10.19) shows that V0 = −e−(X0−Y0)/η and π̂ is an optimal
portfolio strategy. ♦

Remark 10.14. The condition that A is convex in Theorem 10.13 can be
dropped by defining the optimal portfolio process π̂ as a measurable selection
in the set of minimizers of the norm |σT

t π − (Zt + ηθt)| over π ∈ A. See [?].

10.4 Interacting investors with performance con-
cern

10.4.1 The Nash equilibrium problem

In this section, we consider N portfolio managers i = 1, . . . , N whose prefer-
ences are characterized by expected exponential utility functions with tholerance
parameters ηi:

U i(x) := −e−x/η
i

, x ∈ R. (10.20)

In addition, we assume that each investor is concerned about the average per-
formance of his peers. Given the portfolio strategies πi, i = 1, . . . , N , of the
managers, we introduce the average performance viewed by agent i as:

X
i,π

:=
1

N − 1

∑
j 6=i

Xπj

T . (10.21)

The portfolio optimization problem of the i−th agent is then defined by:

V i0
(
(πj)j 6=i

)
:= V i0 := sup

πi∈Ai
E
[
U i
(

(1− λi)Xπi

T + λi(Xπi

T −X
i,π

T )
)]
, 1 ≤ i ≤ N,

(10.22)
where λi ∈ [0, 1] measures the sensitivity of agent i to the performance of his
peers, and the set of admissible portfolios Ai is defined as follows.

Definition 10.15. A progressively measurable process πi with values in Rd is
said to be admissible for agent i, and we denote πi ∈ Ai if
• πi takes values in Ai, a given closed convex subset of Rd,

• E[
∫ T

0
|πit|2dt] <∞,

• the family

{
e
−Xπ

i
/ηi

τ , τ ∈ T
}

is uniformly bounded in Lp for some p > 1.

Our main interest is to find a Nash equilibrium, i.e. a situation where all
portfolio managers are happy with the portfolio given those of their peers.
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Definition 10.16. A Nash equilibrium for the N portfolio managers is an
N−uple (π̂1, . . . , π̂N ) ∈ A1 × . . .AN such that, for every i = 1, . . . , N , given
(π̂j)j 6=i, the portfolio strategy π̂i is a solution of the portfolio optimization prob-
lem V i0

(
(π̂j)j 6=i

)
.

10.4.2 The individual optimization problem

In this section, we provide a formal argument which helps to understand the
contruction of Nash equilibrium of the subsequent section.

For fixed i = 1, . . . , N , we rewrite (10.22) as:

V i0 := sup
πi∈Ai

E
[
U i
(
Xπi

T − ξ̃i
)]
, where ξ̃i := λiX

i,π

T . (10.23)

Then, from the example of the previous section, we expect that value function
V i0 and the corresponding optimal solution be given by:

V i0 = −e(Xi0−λ
iX

i
0−Ỹ

i
0 )/ηi , (10.24)

and

σT
t π̂

i
t = ait(ζ̃

i
t + ηiθt) := Arg min

ui∈Ai
|σT
t u− (ζ̃it + ηiθt)|, (10.25)

where (Ỹ i, ζ̃i) is the solution of the quadratic BSDE:

Ỹ it = ξ̃i+

∫ T

t

(
−ζ̃ir ·θr−

ηi

2
|θt|2+f̃ ir(ζ̃

i
r+ηiθt)

)
dr−

∫ T

t

ζ̃ir ·dWr, t ≤ T, (10.26)

and the generator f̃ i is given by:

f̃ it (z
i) :=

1

2ηi
dist(zi, σtA

i)2, zi ∈ Rd. (10.27)

This suggests that one can search for a Nash equilibrium by solving the
BSDEs (10.26) for all i = 1, . . . , N . However, this raises the following difficulties.

The first concern that one would have is that the final data ξi does not have
to be bounded as it is defined in (10.23) through the performance of the other
portfolio managers.

But in fact, the situation is even worse because the final data ξi induces a
coupling of the BSDEs (10.26) for i = 1, . . . , N . To express this coupling in a
more transparent way, we substitute the expressions of ξi and rewrite (10.26)
for t = 0 into:

Ỹ i0 = ηiξ +

∫ T

0

f̃ ir(ζ
i
r)dr −

∫ T

0

(
ζir − λiN

∑
j 6=i

ajr(ζ
j
r )
)
· dBr

where λiN := λi

N−1 , the process

Bt := Wt +

∫ t

0

θrdr, t ≤ T,
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is the Brownian motion under the risk-neutral probaility measure, the final data
involves the bounded r.v.

ξ :=

∫ T

0

θr · dBr −
1

2

∫ T

0

|θt|2dt.

Then Ỹ0 = Y0, where (Y, ζ) is defined by the BSDE

Y it = ηiξ +

∫ T

t

f̃ ir(ζ
i
r)dr −

∫ T

t

(
ζir − λiN

∑
j 6=i

ajr(ζ
j
r )
)
· dBr. (10.28)

In order to sketch (10.28) into the BSDEs framework, we further introduce the
mapping φt : RNd −→ RNd defined by the components:

φit(ζ
1, . . . , ζN ) := ζi − λiN

∑
j 6=i

ajt (ζ
j) for all ζ1, . . . , ζN ∈ Rd. (10.29)

It turns out that the mapping φt is invertible under fairly general conditions.
We shall prove this result in Lemma 10.17 below in the case where the Ai’s are
linear supspaces of Rd. Then one can rewrite (10.28) as:

Y it =
ηi

2
ξ +

∫ T

t

f ir(Zr)dr −
∫ T

t

Zir · dBr, (10.30)

where the generator f i is now given by:

f i(z) := f̃ ir
(
{φ−1

t (z)}i
)

for all z = (z1, . . . , zN ) ∈ RNd, (10.31)

and {φ−1
t (z)}i indicates the i-th block component of size d of φ−1

t (z).

10.4.3 The case of linear constraints

We now focus on the case where the constraints sets are such that

Ai is a linear subspace of Rd, i = 1, . . . , N. (10.32)

Then, denoting by P it the orthogonal projection operator on σtA
i (i.e. the image

of Ai by the matrix σt), we immediately compute that

ait(ζ
i) := P it (ζ

i) (10.33)

and

φit(ζ
1, . . . , ζN ) := ζi − λiN

∑
j 6=i

P jt (ζj), for i = 1, . . . , N. (10.34)
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Lemma 10.17. Let (Ai)1≤i≤N be linear subspaces of Rd. Then, for all t ∈
[0, T ]:
(i) the linear mapping φt of (10.34) is invertible if and only if

N∏
i=1

λi < 1 or

N⋂
i=1

Ai = {0}. (10.35)

(ii) this condition is equivalent to the invertibility of the matrices Id − Qit,
i = 1, . . . , N , where

Qit :=
∑
j 6=i

λjN
1 + λjN

P jt (Id + λjNP
i
t ),

(iii) under (10.35), the i−th component of φ−1
t is given by:

{φ−1
t (z)}i = (Id −Qit)−1

zi +
∑
j 6=i

1

1 + λjN
P jt (λiNz

j − λjNz
i)

 .

Proof. We omit all t subscripts, and we denote µi := λiN . For arbitrary ζ1, . . . , ζN

in Rd, we want to find a unique solution to the system

ζi − µi
∑
k 6=i

P kζk = zi, 1 ≤ i ≤ N. (10.36)

1. Since P j is a projection, we immediately compute that (Id + µjP j)−1 =

Id − µj

1+µj P
j . Then, substracting equations i and j from the above system, we

see that

µiP jζj = P j(Id + µjP j)−1
(
µj(Id + µiP i)ζi + µizj − µjzi

)
=

1

1 + µj
P j
(
µj(Id + µiP i)ζi + µizj − µjzi

)
.

Then it follows from (10.36) that

zi = ζi −
∑
j 6=i

1

1 + µj
P j
(
µj(Id + µiP i)ζi + µizj − µjzi

)
,

and we can rewrite (10.36) equivalently as:Id −∑
j 6=i

µj

1 + µj
P j(Id + µiP i)

 ζi = zi+
∑
j 6=i

1

1 + µj
P j(µizj−µjzi), (10.37)

so that the invertibility of φ is now equivalent to the invertibility of the matrices
Id −Qi, i = 1, . . . , N , where Qi is introduced in statement of the lemma.
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2. We now prove that Id − Qi is invertible for every i = 1, . . . , N iff (10.35)
holds true.

2a. First, assume to the contrary that λi = 1 for all i and ∩Ni=1A
i contains

a nonzero element x0. Then, it follows that y0 := σTx0 satisfies P iy0 = y0 for
all i = 1, . . . , N , and therefore Qiy0 = y0. Hence Id −Qi is not invertible.

2b. Conversely, we consider separately two cases.

• If λi0 < 1 for some i0 ∈ {1, . . . , N}, we estimate that

µi0

1 + µi0
<

1
N−1

1 + 1
N−1

and
µi

1 + µi
≤

1
N−1

1 + 1
N−1

for i 6= i0.

Then for all i 6= i0 and x 6= 0, it follows that |Qix| < |x| proving that
I −Qi is invertible.

• If λi = 1 for all i = 1, . . . , N , then for all x ∈ Ker(Qi), we have x = Qix
and therefore

|x| =
∣∣∣∑
j 6=i

µj

1 + µj
P j(Id + µiP i)x

∣∣∣
=

1

N

∣∣∣∑
j 6=i

P j(Id +
1

N − 1
P i)x

∣∣∣
≤ 1

N

∑
j 6=i

(1 +
1

N − 1
|x| = |x|,

where we used the fact that the spectrum of the P i’s is reduced to {0, 1}.
Then equality holds in the above inequalities, which can only happen if
P ix = x for all i = 1, . . . , N . We can then conclude that ∩Ni=1Ker(Id −
P i) = {0} implies that Id −Qi is invertible. This completes the proof as
∩Ni=1Ker(Id − P i) = {0} is equivalent to ∩Ni=1A

i = {0}.

♦

10.4.4 Nash equilibrium under deterministic coefficients

The discussion of Section 10.4.2 shows that the question of finding a Nash equi-
librium for our problem reduces to the vector BSDE with quadratic generator
(10.30), that we rewrite here for convenience:

Y it =
ηi

2
ξ +

∫ T

t

f ir(Zr)dr −
∫ T

t

Zir · dBr, (10.38)

where ξ :=
∫ T

0
θr · dBr − 1

2

∫ T
0
|θr|2dr, and the generator f i is given by:

f i(z) := f̃ ir
(
{φ−1

t (z)}i
)

for all z = (z1, . . . , zN ) ∈ RNd. (10.39)
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Unfortunately, the problem of solving vector BSDEs with quadratic generator is
still not understood... therefore, we will not continue in the generality assumed
so far, and we will focus in the sequel on the case where

the Ai’s are vector subspaces of Rd, and
σt = σ(t) and θt = θ(t) are deterministic functions.

(10.40)

Then, the vector BSDE reduces to:

Y it =
ηi

2
ξ +

1

2ηi

∫ T

t

(Id − P i(t))
(
{φ(t)−1(Zr)}i

)
dr −

∫ T

t

Zir · dBr, (10.41)

where P it = P i(t) is deterministic, {φ−1
t (z)}i = {φ(t)−1(z)}i is deterministic

and given explicitly by (10.17) (iii).
In this case, an explicit solution of the vector BSDE is given by:

Zit = ηiθ(t)

Y it = −η
i

2

∫ T

0

|θ(t)|2dt+
1

2ηi

∫ t

0

|(Id − P i(t))M i(t)θ(t)|2dt,
(10.42)

where

M i(t) :=

Id −∑
j 6=i

λjN
1 + λjN

P j(t)(Id + λjNP
i(t)

−1

×

ηiId +
∑
j 6=i

1

1 + λjN
P j(t)(λiNη

j − λjNη
i)

 .

By (10.25), the candidate for Agent i−th optimal portfolio is also deterministic
and given by:

π̂i := σ−1P iM iθ, i = 1, . . . , N. (10.43)

Proposition 10.18. In the context of the financial market with determinis-
tic coefficients (10.40), the N−uple (π̂1, . . . , π̂N ) defined by (10.43) is a Nash
equilibrium.

Proof. The above explicit solution of the vector BSDE induce an explicit solu-
tion (Ỹ i, ζ̃i) of the coupled system of BSDEs (10.26), 1 ≤ i ≤ N with determin-
istic ζ̃i. In order to prove the required result, we have to argue by verification
following the lines of the proof of Theorem 10.13 for every fixed i in {1, . . . , n}.
1. First for an arbitrary πi, we define the process

V π
i

t := −e−(Xπ
i

t −λ
iX̄i0−Ỹ

i
t )/ηi , t ∈ [0, T ].

By Itô’s formula, it is immediately seen that this process is a local supermartin-
gale (the generator has been defined precisely to satisfy this property !). By the
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admissibility condition of Definition 10.15 together with the fact that Ỹ i has
a gaussian distribution (as a diffusion process with deterministic coefficients),

it follows that the family {V πiτ , τ ∈ T } is uniformly bounded in L1+ε for some

ε > 0. Then the process V π
i

is a supermartingale. By the arbitrariness of
πi ∈ Ai, this provides the first inequality

−e−(Xi0−λ
iX̄i0−Ỹ

i
0 )/ηi ≥ V i0

(
(π̂j)j 6=i

)
.

2. We next prove that equality holds by verifying that π̂i ∈ Ai, and the pro-
cess V π̂

i

is a martingale. This will provide the value function of Agent i’s
portfolio optimization problem, and the fact that π̂ is optimal for the problem
V i0V

i
0

(
(π̂j)j 6=i

)
.

That π̂i ∈ Ai is immediate; recall again that π̂i is deterministic. As in
the previous step, direct application of Itô’s formula shows that V π̂

i

is a local
martingale, and the martingale property follows from the fact that X π̂i and Ỹ i

have deterministic coefficients. ♦
We conclude this section with an simple example which show the effect of

the interaction between managers.

Example 10.19. (N = 3 investors, d = 3 assets)Consider a financial mar-
ket with N = d = 3. Denoting by (e1, e2, e3) the canonical basis of R3, the
constraints set for the agents are

A1 = Re2 + Re1, A2 = Re3 + Re2, A3 = Re3,

i.e. Agent 1 is allowed to trade without constraints the first two assets, Agent 2
is allowed to trade without constraints the last two assets, and Agent 3 is only
allowed to trade the third assets without constraints.

We take, σ = I3. In the present context of deterministic coefficients, this
means that the price processes of the assets are independent. Therefore, if there
were no interaction between the investors, their optimal investment strategies
would not be affected by the assets that they are not allowed to trade.

In this simples examples, all calculations can be performed explicitely. The
Nash equilibrium of Propostion 10.18 is given by:

π̂1
t = ηθ1(t)e1 +

2 + λ1

2− λ1λ2

2

ηθ2(t)e2,

π̂2
t =

2 + λ2

2− λ1λ2

2

ηθ2(t)e2 +
2 + λ2

2− λ2λ3

2

ηθ3(t)e3,

π̂3
t =

2 + λ3

2− λ2λ3

2

ηθ3(t)e3.

This shows that, whenever two investors have access to the same asset, their
interaction induces an aver-investment in this asset characterized by a dilation
factor related to the their sensitivity to the performance of the other investor.

♦



Chapter 11

Probabilistic numerical
methods for nonlinear
PDEs

In this chapter, we introduce a backward probabilistic scheme for the numerical
approximation of the solution of a nonlinear partial differential equation. The
scheme is decomposed into three steps:
(i) The Monte Carlo step consists in isolating the linear generator of some
underlying diffusion process, so as to split the PDE into this linear part and a
remaining nonlinear one.
(ii) Evaluating the PDE along the underlying diffusion process, we obtain a
natural discrete-time approximation by using finite differences approximation
in the remaining nonlinear part of the equation.

Our main concern will be to prove the convergence of this discrete-time
approximation. In particular, the above scheme involves the calculation of con-
ditional expectations, that should be replaced by some approximation for any
practical implementation. The error analysis of this approximation will not be
addresses here.

We then concentrate on the particular case of semilinear PDEs. By exploit-
ing the connection with BSDEs, we can improve the convergence results by
proving an estimate of the rate of convergence.

11.1 Probabilistic algorithm for nonlinear PDEs

Let µ and σ be two maps from R+×Rd to Rd and Sd, respectively. Let a := σ2,
and define the linear operator:

LXϕ :=
∂ϕ

∂t
+ µ ·Dϕ+

1

2
a ·D2ϕ.

163
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Given a map

F : (t, x, r, p, γ) ∈ R+ × Rd × R× Rd × §d 7−→ F (x, r, p, γ) ∈ R

we consider the Cauchy problem:

−LXv − F
(
·, v,Dv,D2v

)
= 0, on [0, T )× Rd, (11.1)

v(T, ·) = g, on ∈ Rd. (11.2)

Consider an Rd-valued Brownian motion W on a filtered probability space
(Ω,F ,F,P).

11.1.1 Discretization

For a positive integer n, let h := T/n, ti = ih, i = 0, . . . , n, and consider the
one step ahead Euler discretization

X̂t,x
h := x+ µ(t, x)h+ σ(t, x)(Wt+h −Wt), (11.3)

of the diffusion X corresponding to the linear operator LX . Our analysis does
not require any existence and uniqueness result for the underlying diffusion X.
However, the subsequent formal discussion assumes it in order to provides a
natural justification of our numerical scheme.

Assuming that the PDE (11.1) has a classical solution, it follows from Itô’s
formula that

Eti,x
[
v
(
ti+1, Xti+1

)]
= v (ti, x) + Eti,x

[∫ ti+1

ti

LXv(t,Xt)dt

]
where we ignored the difficulties related to local martingale part, and Eti,x :=
E[·|Xti = x] denotes the expectation operator conditional on {Xti = x}. Since
v solves the PDE (11.1), this provides

v(ti, x) = Eti,x
[
v
(
ti+1, Xti+1

)]
+ Eti,x

[∫ ti+1

ti

F (·, v,Dv,D2v)(t,Xt)dt

]
.

By approximating the Riemann integral, and replacing the process X by its
Euler discretization, this suggest the following approximation:

vh(T, .) := g and vh(ti, x) := Rti [v
h(ti+1, .)](x), (11.4)

where we denoted for a function ψ : Rd −→ R with exponential growth:

Rt[ψ](x) := E
[
ψ(X̂t,x

h )
]

+ hF (t, ·,Dhψ) (x), (11.5)

with Dhψ :=
(
D0
hψ,D1

hψ,D2
hψ
)T

, and:

Dkhψ(x) := E[Dkψ(X̂t,x
h )] for k = 0, 1, 2,
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and Dk is the k−th order partial differential operator with respect to the space
variable x. The differentiations in the above scheme are to be understood in the
sense of distributions. This algorithm is well-defined whenever g has exponential
growth and F is a Lipschitz map. To see this, observe that any function with
exponential growth has weak gradient and Hessian, and the exponential growth
is inherited at each time step from the Lipschitz property of F .

At this stage, the above backward algorithm presents the serious drawback
of involving the gradient Dvh(ti+1, .) and the Hessian D2vh(ti+1, .) in order to
compute vh(ti, .). The following result avoids this difficulty by an easy integra-
tion by parts argument.

Lemma 11.1. Let f : Rd → R be a function with exponential growth. Then:

E[Dif(X̂ti,x
h )] = E[f(X̂ti,x

h )Hh
i (ti, x)] for i = 1, 2,

where

Hh
1 =

1

h
σ−1Wh and Hh

2 =
1

h2
σ−1

(
WhW

T
h − hId

)
σ−1. (11.6)

Proof. We only provide the argument in the one-dimensional case; the extension
to any dimension d is immediate. Let G be a one dimensional Gaussian random
variable with men m and variance v. Then, for any function f with exponential
growth, it follows from an integration by parts that:

E[f ′(G)] =

∫
f ′(s)e−

1
2

(s−m)2

v
ds√
2πv

=

∫
f(s)

s−m
v

e−
1
2

(s−m)2

v
ds√
2πv

= E
[
f(G)

G−m
v

]
,

where the bracket term is zero by the exponential growth of f . This implies the
required result for i = 1.

To obtain the result for i = 2, we continue by integrating by parts once
more:

E[f ′′(G)] = E
[
f ′(G)

G−m
v

]
=

∫
f ′(s)

s−m
v

e−
1
2

(s−m)2

v
ds√
2πv

=

∫
f(s)

(
−1

v
+ (

s−m
v

)2

)
e−

1
2

(s−m)2

v
ds√
2πv

= E
[
f(G)

(G−m)2 − v
v2

]
.

♦

In the sequel, we shall denote Hh := (1, Hh
1 , H

h
2 )T. In view of the last lemma,

we may rewrite the discretization scheme (11.4) into:

vh(T, .) = g and vh(ti, x) = Rti

[
vh(ti+1, .)

]
(x), (11.7)
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where

Rti [ψ](x) = E
[
ψ(X̂t,x

h )
]

+ hF (t, ·,Dhψ) (x),

and

Dkhψ(x) := E
[
ψ(X̂t,x

h )Hk
h(t, x)

]
for k = 0, 1, 2. (11.8)

Observe that the choice of the drift and the diffusion coefficients µ and σ in
the nonlinear PDE (11.1) is arbitrary. So far, it has been only used in order to
define the underlying diffusion X. Our convergence result will however place
some restrictions on the choice of the diffusion coefficient, see Remark 11.6.

Once the linear operator LX is chosen in the nonlinear PDE, the above
algorithm handles the remaining nonlinearity by the classical finite differences
approximation. This connection with finite differences is motivated by the fol-
lowing formal interpretation of Lemma 11.1, where for ease of presentation, we
set d = 1, µ ≡ 0, and σ(x) ≡ 1:

• Consider the binomial random walk approximation of the Brownian mo-
tion Ŵtk :=

∑k
j=1 wj , tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent

random variables distributed as 1
2

(
δ√h + δ−

√
h

)
. Then, this induces the

following approximation:

D1
hψ(x) := E

[
ψ(Xt,x

h )Hh
1

]
≈ ψ(x+

√
h)− ψ(x−

√
h)

2
√
h

,

which is the centered finite differences approximation of the gradient.

• Similarly, consider the trinomial random walk approximation Ŵtk :=∑k
j=1 wj , tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent random

variables distributed as 1
6

(
δ{
√

3h} + 4δ{0} + δ{−
√

3h}

)
, so that E[wnj ] =

E[Wn
h ] for all integers n ≤ 4. Then, this induces the following approxima-

tion:

D2
hψ(x) := E

[
ψ(Xt,x

h )Hh
2

]
≈ ψ(x+

√
3h)− 2ψ(x) + ψ(x−

√
3h)

3h
,

which is the centered finite differences approximation of the Hessian.

In view of the above interpretation, the numerical scheme (11.7) can be viewed
as a mixed Monte Carlo–Finite Differences algorithm. The Monte Carlo compo-
nent of the scheme consists in the choice of an underlying diffusion process X.
The finite differences component of the scheme consists in approximating the
remaining nonlinearity by means of the integration-by-parts formula of Lemma
11.1.
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11.1.2 Convergence of the discrete-time approximation

The main convergence result of this section requires the following assumptions.

Assumption 11.2. The PDE (11.1) has comparison for bounded functions,
i.e. for any bounded upper semicontinuous subsolution u and any bounded lower
semicontinuous supersolution v on [0, T )× Rd, satisfying

u(T, ·) ≤ v(T, ·),

we have u ≤ v.

For our next assumption, we denote by Fr, Fp and Fγ the partial gradients
of F with respect to r, p and γ, respectively. We also denote by F−γ the pseudo-
inverse of the non-negative symmetric matrix Fγ . We recall that any Lipschitz
function is differentiable a.e.

Assumption 11.3. (i) The nonlinearity F is Lipschitz-continuous with re-
spect to (x, r, p, γ) uniformly in t, and |F (·, ·, 0, 0, 0)|∞ <∞.
(ii) F is elliptic and dominated by the diffusion of the linear operator LX , i.e.

Fγ ≤ a on Rd × R× Rd × §d. (11.9)

(iii) Fp ∈ Image(Fγ) and
∣∣FT
p F
−
γ Fp

∣∣
∞ < +∞.

Before commenting this assumption, we state our main convergence result.

Theorem 11.4. Let Assumptions 11.2 and 11.3 hold true, and assume that µ, σ
are Lipschitz-continuous and σ is invertible. Then for every bounded Lipschitz
function g, there exists a bounded function v so that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (11.1)-(11.2).

The proof of this result is reported in the subsection 11.1.4. We conclude by
some remarks.

Remark 11.5. Assumption 11.3 (iii) is equivalent to

|m−F |∞ <∞ where mF := min
w∈Rd

{
Fp · w + wTFγw

}
. (11.10)

This is immediately seen by recalling that, by the symmetric feature of Fγ , any
w ∈ Rd has an orthogonal decomposition w = w1 +w2 ∈ Ker(Fγ)⊕ Image(Fγ),
and by the nonnegativity of Fγ :

Fp · w + wTFγw = Fp · w1 + Fp · w2 + wT
2 Fγw2

= −1

4
FT
p F
−
γ Fp + Fp · w1 +

∣∣1
2

(F−γ )1/2 · Fp − F 1/2
γ w2

∣∣2.
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Remark 11.6. Assumption 11.3 (ii) places some restrictions on the choice of
the linear operator LX in the nonlinear PDE (11.1). First, F is required to
be uniformly elliptic, implying an upper bound on the choice of the diffusion
matrix σ. Since σ2 ∈ S+

d , this implies in particular that our main results do not
apply to general degenerate nonlinear parabolic PDEs. Second, the diffusion of
the linear operator σ is required to dominate the nonlinearity F which places
implicitly a lower bound on the choice of the diffusion σ.

Example 11.7. Let us consider the nonlinear PDE in the one-dimensional
case −∂v∂t −

1
2

(
a2v+

xx − b2v−xx
)

where 0 < b < a are given constants. Then if we
restrict the choice of the diffusion to be constant, it follows from Condition F
that 1

3a
2 ≤ σ2 ≤ b2, which implies that a2 ≤ 3b2. If the parameters a and b

do not satisfy the latter condition, then the diffusion σ has to be chosen to be
state and time dependent.

Remark 11.8. Under the boundedness condition on the coefficients µ and
σ, the restriction to a bounded terminal data g in the above Theorem 11.4
can be relaxed by an immediate change of variable. Let g be a function with
α−exponential growth for some α > 0. Fix some M > 0, and let ρ be an
arbitrary smooth positive function with:

ρ(x) = eα|x| for |x| ≥M,

so that both ρ(x)−1∇ρ(x) and ρ(x)−1∇2ρ(x) are bounded. Let

u(t, x) := ρ(x)−1v(t, x) for (t, x) ∈ [0, T ]× Rd.

Then, the nonlinear PDE problem (11.1)-(11.2) satisfied by v converts into the
following nonlinear PDE for u:

−LXu− F̃
(
·, u,Du,D2u

)
= 0 on [0, T )× Rd (11.11)

v(T, ·) = g̃ := ρ−1g on Rd,

where

F̃ (t, x, r, p, γ) := rµ(x) · ρ−1∇ρ+
1

2
Tr
[
a(x)

(
rρ−1∇2ρ+ 2pρ−1∇ρT

)]
+ρ−1F

(
t, x, rρ, r∇ρ+ pρ, r∇2ρ+ 2p∇ρT + ργ

)
.

Recall that the coefficients µ and σ are assumed to be bounded. Then, it is
easy to see that F̃ satisfies the same conditions as F . Since g̃ is bounded, the
convergence Theorem 11.4 applies to the nonlinear PDE (11.11). ♦

11.1.3 Consistency, monotonicity and stability

The proof of Theorem 11.4 is based on the monotone schemes method of Barles
and Souganidis [?] which exploits the stability properties of viscosity solutions.
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The monotone schemes method requires three conditions: consistency, mono-
tonicity and stability that we now state in the context of backward scheme
(11.7).

To emphasize on the dependence on the small parameter h in this section,
we will use the notation:

Th[ϕ](t, x) := Rt[ϕ(t+ h, .)](x) for all ϕ : R+ × Rd −→ R.

Lemma 11.9 (Consistency). Let ϕ be a smooth function with bounded deriva-
tives. Then for all (t, x) ∈ [0, T ]× Rd:

lim
(t′, x′) → (t, x)
(h, c) → (0, 0)

t′ + h ≤ T

[c+ ϕ](t′, x′)−Th[c+ ϕ](t′, x′)

h
= −

(
LXϕ+ F (·, ϕ,Dϕ,D2ϕ)

)
(t, x).

The proof is a straightforward application of Itô’s formula, and is omitted.

Lemma 11.10 (Monotonicity). Let ϕ,ψ : [0, T ] × Rd −→ R be two Lipschitz
functions. Then:

ϕ ≤ ψ =⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) + Ch E[(ψ − ϕ)(t+ h, X̂t,x
h )] for some C > 0

where C depends only on constant K in (11.10).

Proof. By Lemma 11.1 the operator Th can be written as:

Th[ψ](t, x) = E
[
ψ(X̂t,x

h )
]

+ hF
(
t, x,E[ψ(X̂t,x

h )Hh(t, x)]
)
.

Let f := ψ − ϕ ≥ 0 where ϕ and ψ are as in the statement of the lemma. Let
Fτ denote the partial gradient with respect to τ = (r, p, γ). By the mean value
Theorem:

Th[ψ](t, x)−Th[ϕ](t, x) = E
[
f(X̂t,x

h )
]

+ hFτ (θ) · Dhf(X̂t,x
h )

= E
[
f(X̂t,x

h ) (1 + hFτ (θ) ·Hh(t, x))
]
,

for some θ = (t, x, r̄, p̄, γ̄). By the definition of Hh(t, x):

Th[ψ]−Th[ϕ] = E
[
f(X̂t,x

h )
(
1 + hFr + Fp.σ

−1Wh + h−1Fγ · σ−1(WhW
T
h − hI)σ−1

)]
,

where the dependence on θ and x has been omitted for notational simplicity.
Since Fγ ≤ a by Assumption 11.3, we have 1− a−1 · Fγ ≥ 0 and therefore:

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h )
(
hFr + Fp.σ

−1Wh + h−1Fγ · σ−1WhW
T
h σ
−1
)]

= E
[
f(X̂t,x

h )

(
hFr + hFp.σ

−1Wh

h
+ hFγ · σ−1WhW

T
h

h2
σ−1

)]
.
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Let m−F := max{−mF , 0}, where the function mF is defined in (11.10). Under
Assumption F, we have K := |m−F |∞ <∞, then

Fp.σ
−1Wh

h
+ hFγ · σ−1WhW

T
h

h2
σ−1 ≥ −K

one can write,

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h ) (hFr − hK)
]
≥ −C ′hE

[
f(X̂t,x

h )
]

for some constant C > 0, where the last inequality follows from (11.10). ♦

Lemma 11.11 (Stability). Let ϕ,ψ : [0, T ] × Rd −→ R be two L∞−bounded
functions. Then there exists a constant C > 0 such that

|Th[ϕ]−Th[ψ]|∞ ≤ |ϕ− ψ|∞(1 + Ch)

In particular, if g is L∞−bounded, the family (vh)h defined in (11.7) is L∞−bounded,
uniformly in h.

Proof. Let f := ϕ− ψ. Then, arguing as in the previous proof,

Th[ϕ]−Th[ψ] = E
[
f(X̂h)

(
1− a−1 · Fγ + h|Ah|2 + hFr −

h

4
FT
p F
−
γ Fp

)]
.

where

Ah =
1

2
(F−γ )1/2Fp − F 1/2

γ σ−1Wh

h
.

Since 1−Tr[a−1Fγ ] ≥ 0, |Fr|∞ <∞, and |FT
p F
−
γ Fp|∞ <∞ by Assumption ??,

it follows that

|Th[ϕ]−Th[ψ]|∞ ≤ |f |∞
(
1− a−1 · Fγ + hE[|Ah|2] + Ch

)
But, E[|Ah|2] = h

4F
T
p F
−
γ Fp + a−1 · Fγ . Therefore, by Assumption F

|Th[ϕ]−Th[ψ]|∞ ≤ |f |∞
(

1 +
h

4
FT
p F
−
γ Fp + Ch

)
≤ |f |∞(1 + C̄h).

To prove that the family (vh)h is bounded, we proceed by backward induction.
By the assumption of the lemma vh(T, .) = g is L∞−bounded. We next fix
some i < n and we assume that |vh(tj , .)|∞ ≤ Cj for every i + 1 ≤ j ≤ n − 1.
Proceeding as in the proof of Lemma 11.10 with ϕ ≡ vh(ti+1, .) and ψ ≡ 0, we
see that ∣∣vh(ti, .)

∣∣
∞ ≤ h |F (t, x, 0, 0, 0)|+ Ci+1(1 + Ch).

Since F (t, x, 0, 0, 0) is bounded by Assumption 11.3, it follows from the discrete
Gronwall inequality that |vh(ti, .)|∞ ≤ CeCT for some constant C independent
of h. ♦
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11.1.4 Barles-Souganidis monotone scheme method

This section is dedicated to the proof of Theorem 11.4. We emphasize on the fact
that the subsequent argument applies to any numerical scheme which satisfies
the considetency, monotonicity and stability properties. In the present situation,
we also need to prove a technical result concerning the limiting behavior of the
boundary condition at T . This will be needed in order to use the comparison
result which is assumed to hold for the equation. The statement and its proof
are collected in Lemma 11.12.

Proof of Theorem 11.4 1. By the stability property of Lemma ??, it follows
that the relaxed semicontinious envelopes

v(t, x) := lim inf
(h,t′,x′)→(0,t,x)

vh(t′, x′) and v(t, x) := lim sup
(h,t′,x′)→(0,t,x)

vh(t′, x′)

are bounded. We shall prove in Step 2 below that v and v are viscosity superso-
lution and subsolution, respectively. The final ingredient is reported in Lemma
11.12 below which states that v(T, .) = v(T, .). Then, the proof is completed by
appealing to the comparison result of Assumption 11.2.

2. We only prove that v is a viscosity supersolution of (11.1). The proof of the
viscosity subsolution property of v follows exactly the same line of argument.
Let (t0, x0) ∈ [0, T )× Rd and ϕ ∈ C2

(
[0, T ]× Rd

)
be such that

0 = (v − ϕ)(t0, x0) = (strict) min
[0,T ]×Rd

(v − ϕ). (11.12)

Since vh is uniformly bounded in h, we may assume without loss of generality
that ϕ is bounded. Let (hn, tn, xn)n be a sequence such that

hn → 0, (tn, xn)→ (t0, x0), and vhn(tn, xn) −→ v(t0, x0). (11.13)

For a positive scalar r with 2r < T − t0, we denote by Br(tn, xn) the ball of
radius r centered at (tn, xn), and we introduce:

δn := (vhn∗ − ϕ)(t̂n, x̂n) = min
Br(tn,xn)

(vhn∗ − ϕ), (11.14)

where vhn∗ is the lower-semicontinuous envelope of vhn . We claim that

δn −→ 0 and (t̂n, x̂n) −→ (t0, x0). (11.15)

This claim is proved in Step 3 below. By the definition of vhn∗ , we may find a
sequence (t̂′n, x̂

′
n)n≥1 converging to (t0, x0), such that:

|vhn(t̂′n, x̂
′
n)− vhn∗ (t̂n, x̂n)| ≤ h2

n and |ϕ(t̂′n, x̂
′
n)− ϕ(t̂n, x̂n)| ≤ h2

n. (11.16)
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By (11.14), (11.16), and the definition of the functions vh in (11.7), we have

2h2
n + δn + ϕ(t̂′n, x̂

′
n) ≥ h2

n + δn + ϕ(t̂n, x̂n)

= h2
n + vhn∗ (t̂n, x̂n)

≥ vhn(t̂′n, x̂
′
n)

= Thn [vhn ](t̂′n, x̂
′
n)

≥ Thn [ϕhn + δn](t̂′n, x̂
′
n)

+ChnE
[
(vhn − ϕ− δn)

(
X̂
t̂′n,x̂

′
n

hn

)]
,

where the last inequality follows from (11.14) and the monotonicity property of
Lemma 11.10. Dividing by hn, the extremes of this inequality provide:

δn + ϕ(t̂′n, x̂
′
n)−Thn [ϕhn + δn](t̂′n, x̂

′
n)

hn
≥ CE

[
(uhn − ϕ− δn)

(
X̂
t̂′n,x̂

′
n

hn

)]
.

We now send n to infinity. The right hand-side converges to zero by (11.13),
(11.15), and the dominated convergence theorem. For the left hand-side term,
we use the consistency result of Lemma 11.9. This leads to(

− LXϕ− F (., ϕ,Dϕ,D2ϕ)
)
(t0, x0) ≥ 0,

as required.
3. We now prove Claim (11.15). Since (t̂n, x̂n)n is a bounded sequence, we may
extract a subsequence, still named (t̂n, x̂n)n, converging to some (t̂, x̂). Then:

0 = (v − ϕ)(t0, x0)

= lim
n→∞

(vhn − ϕ)(tn, xn)

≥ lim sup
n→∞

(vhn∗ − ϕ)(tn, xn)

≥ lim sup
n→∞

(vhn∗ − ϕ)(t̂n, x̂n)

≥ lim inf
n→∞

(vhn∗ − ϕ)(t̂n, x̂n)

≥ (v − ϕ)(t̂, x̂).

Since (t0, x0) is a strict minimize of the difference (v − ϕ), this implies (11.15).
♦

The following result is needed in order to use the comparison result of As-
sumption 11.2. We shall not report its long technical proof, see [?].

Lemma 11.12. The function vh is Lipschtiz in x, 1/2−Hölder continuous in
t, uniformly in h, and for all x ∈ Rd, we have

|vh(t, x)− g(x)| ≤ C(T − t) 1
2 .
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11.2 BSDE convergence results in the semilin-
ear case

In this section, we consider the case of a semilinear PDE:

−LXv − F
(
., v, σTDv

)
= 0 and v(T, .) = g,

and we take the BSDE point of view by considering the corresponding BSDE:

Yt = g(XT ) +

∫ T

t

F (s,Xs, Ys, Zs) ds−
∫ T

t

Zs · dWs, (11.17)

where the process X is the Markov diffucion defined by the stochastic differential
equation:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (11.18)

As in Theorem 11.4, we assume µ and σ to be continuous and Lipschitz in x.
Similarly, we assume that F is continuous and Lipschitz in (x, y, z) uniformly
in t.

We denote by Xn the Euler discretization of the process X. Using the
notations of the previous section, Xn is defined by

Xn
0 := X0 and Xn

ti+1
:= X̂

ti,X
n
ti

h .

Under the above conditions, the following standard estimate holds true:

max
0≤i≤n−1

E
[
|Xti −Xn

ti |
2
]
≤ C

n

(
1 + |X0|2

)
, (11.19)

for some constant C, see e.g. [?], Theorem 10.2.2. The PDE discretization
introduced in (11.7) can now be viewed as a time-discretization of the BSDE
(11.17). To see this, we recall the operator Ri := Rti introduced in the previous
section:

Rig(x) := Eti,x
[
g
(
Xπ
ti+1

)]
(11.20)

+n−1f
(
ti, x,Eti,x

[
g
(
Xn
ti+1

)]
nEti,x

[
g
(
Xn
ti+1

)
∆Wi+1

])
.

In particular, Rn−1g(x) = Th[vh](tn−1, x). We next introduce the composition
of these operators:

Ri,j :=

{
Ri . . . Rj for 0 ≤ i ≤ j < n,

1 for i > j,
(11.21)

where 1 denotes the identity operator. Then, the discrete-time approximation
of Y is defined by: defined recursively by:

Y ntn := g
(
Xn
tn

)
(11.22)
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and for 0 ≤ i < n:

Y nti := Ri,n−1g
(
Xn
ti

)
, Znti := nEti,Xnti

[
Y nti+1

∆Wi+1

]
, (11.23)

where ∆Wi+1 := Wti+1
−Wti . The main objective of this section is to prove

the following estimate.

Theorem 11.13. Assume that µ, σ are uniformly Lipschitz in x, F is uniformly
Lipschitz in (x, y, z), and let g be a Lipschitz function. Then:

lim sup
n→∞

nE
[

max
0≤i≤n

|Yti − Y nti |
2 +

1

n

∑
0≤i<n

|Zti − Znti |
2
]

< ∞.

Let us observe that Rig can be defined in the same manner for a larger class
of functions, for example for every function g : Rd → R with polynomial growth.
However, we are only concerned with the definition of the operators Ri on the
set CLip(Rd). Indeed, by Proposition 2 of [?] or the proof of Theorem 6.1 of [?]
for any g ∈ CLip(Rd) we have that

max
0≤i≤n−1

sup
x, y∈Rd
x6=y

|Ri,n−1g(x)−Ri,n−1g(y)|
|x− y|

<∞, (11.24)

i.e., the composition of the family of operators {Ri, i = 0, ..., n− 1} applied to a
Lipschitz function, produces a sequence of uniformly (in i) Lipschitz functions.
Moreover, for any p > 1 and for sufficiently small |π| (such that |π| < 1/K),
the following Lipschitz-type property of the operators Ri is crucially used in [?],
although not outlined in a clear statement:

|Rig1 −Rig2| (x) ≤ 1 + C∆i+1

1−K∆i+1
‖g1 − g2‖Lp(Pxti,ti+1

) , (11.25)

where C is a constant depending on d, p, and K, the Lipschitz constant of f ,
and

‖f‖Lp(Pxti,tj ) :=
(
E[|f(Xπ

tj )|
p|Xπ

ti = x]
)1/p

.

For completeness, we report in Appendix the proof of (11.25). By direct iteration
of (11.25), we see that

|R0,ig −R0,ih| (x) ≤
i+1∏
j=1

1 + C∆j

1−K∆j
‖g − h‖Lp(Pxt0,ti+1

) , for all 0 ≤ i < n.

(11.26)
Let (Y π, Zπ) be the pair of processes


