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Introduction

A key result

In general financial markets, the indifference price is (except for the
sign) a convex risk measure on the Orlicz space LY naturally
induced by the utility function u of the agent.

It is continuous and subdifferential on the interior B of its proper
domain, which is considerably large as it coincides with
—int(Dom(/,)), i.e. the opposite of the interior in L” of the proper
domain of the integral functional /,(f) = E[u(f)].
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Introduction

The optimization problem with random endowment

Consider the maximization problem

sup Efu(x+(H-S)r—B)]
HeHW

1) u: R —-RU{—o0} is concave and increasing (but not
constant on R)
2) S is a general RY—valued cadlag semimartingale

3) B is a F1 measurable rv, the payoff of a claim; x € R

4) A predictable S-integrable proc. H is in H" if there is ¢ > 0

(H-S)e>—-cW Vt<T.
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Introduction

Key aspects

m S is not necessarily locally bounded

m Control of the integrals by a loss bound random variable
W e Lg_ :

t
/ HodS, = (H-S)e > —cW vt<T.
0

m Weak assumptions on the claim B

m Orlicz space duality.
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Introduction

Generic notations

In order to present some key issues related to the utility
maximization problem, for the moment we generically set:

m 7 is the class of admissible integrands
m K={(H.S);|HeH}

m M is the convex set of pricing measures (martingale
probability measures)
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Introduction

Key issues

m Duality relation and optimal @* € M of the dual problem

sup Eu(B+(H.S)7) = _min {AQ(B) tE [‘D (A‘ﬁ)”

HeH A>0, QeM
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Introduction

Key issues

m Duality relation and optimal @* € M of the dual problem
sup Eu(B+(H.S)-) in {roB)+E |0 (1%

u . = min
i T/~ o0 QeM Adp

m Optimal f* € K D K of the primal problem

sup Eu(B+ (H.S);) = sup Eu(B + k) = Eu(B + f*)
HeH keK
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Introduction

continues

m Representation of f* as stochastic integral

f*=(H".S); where H* e HD H
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Introduction

continues

m Representation of f* as stochastic integral

f*=(H".S); where H* e HD H

m Supermartingale property of the optimal wealth process
(H*.S) is a Q— supermartingale wrt all Q € M and a
Q*—martingale

Marco Frittelli, Second Part Utility Maximization



Introduction

continues

m Representation of f* as stochastic integral

f*=(H".S); where H* e HD H

m Supermartingale property of the optimal wealth process
(H*.S) is a Q— supermartingale wrt all Q € M and a
Q*—martingale

m Indifference Price
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Introduction

Steps to solve the utility maximization problem

1) Find a “good” H and set:
K={(H-S)r| HeH}
2) Find a “good” Topological Vector Space L, such that:

sup E[u(B + k)] = sup E[u(B + k)]
keK keC

where
CE(K-LY)NL

3) Apply the duality (L, L"), compute the polar C° C L’ and solve
the dual problem over C°.
4) Using (3), solve the primal problem.
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Orlicz spaces

Orlicz duality

MESSAGE

The good topological vector space is the Orlicz space L”
associated to the utility function u.

The good duality is the Orlicz space duality (L%, (L¥)").
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Orlicz spaces

How and why Orlicz spaces

Very simple observation: u is concave, so the steepest behavior is
on the left tail.

Economically, this reflects the risk aversion of the agent: the losses
are weighted in a more severe way than the gains.

We will turn the left tail of u into a Young function .

Then, T gives rise to an Orlicz space L, naturally associated to
our problem, which allows for an unified treatment of Utility
Maximization.
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Orlicz spaces

Heuristic

Let W be a positive random variable. We will control the losses in

the following way:
(HS)t Z —cW

and we will require:
E[u(=W)] > —0

If we set: U(x) := —u(—|x|) + u(0) then
E[u(W)] < o0

which means that W e LY, the Orlicz space induced by the utility
function w.
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Orlicz spaces

Orlicz function spaces on a probability space

A Young function W is an even, convex function
V:R — RU{4o0}

with the properties:
1-v(0)=0

2- V(0) = +00

3- ¥ < 400 in a neighborhood of 0.
The Orlicz space LY on (Q, F, P) is then

LY ={f e % 3a>0E[V(af)] < +oo}

It is a Banach space with the gauge norm

oo (9] 1
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Orlicz spaces

The subspace MV

Consider the closed subspace of LY
M"’:{fe L°%(P) | E[W(af)] < +oo Vo > 0}
m In general,
MY S LY.

) . —y
When WV is continuous on R, we have MV = [

m But when W satisfies the A, growth-condition (as il the LP
case) the two spaces coincide:

MY =Y.
and LY = {f | E[V(f)] < +oo} = [®".
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Orlicz spaces

The Orlicz space L”

Given u : (a,4+00) — R with —oco < a < 0, define the function
U:R— RU{+c0}

u(x) £ —u(—|x|) + u(0)
it is a Young function, so
LY = {f € L°(P) | 3a > 0 E[G(af)] < +o0}

and
MY £ {f e L7 | E[i(af)] < +ooVa > 0},

are well defined.
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Orlicz spaces

~

®, the convex conjugate of U

S0 2w — Sl)Y — 0 iflyl <p
®(y) = sup iy — 1)} {¢(|y!)—¢(6) if ly| > 5

®(y) £ sup {u(x) — xy}
xeR

L® and M® are the Orlicz spaces associated to o,

Note: 5 > 0 is the point where ¢ attains the minimum
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Orlicz spaces

The case v : (a,+00) — R with a < 0 and a finite

If ais finite, then we always have:
u(x) = +o0 if |x| > a.

Hence: ~ ~
LY=L M"={0}

and - .
L*=Mm® =1

A specific example: if u(x) =+/1+ x then
1—1—|x]—3x| if[x]<1
+o0 if x| >1
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Orlicz spaces

The interesting case u : (—oo, +o0) > R (a = —00)

When v : (—o0, +00) — R then the function u: R — R
i(x) £ —u(=|x]) + u(0)
is a regular Young function (it does not jump to +00), and
ME = {f € L7 | E[t(af)] < +ooVa > 0} = [©°,

and LY are well defined.

Marco Frittelli, Second Part Utility Maximization



Orlicz spaces

X

Example: u(x) = —e”

In this case, ®(y) =ylIny —y + 1,
U(x)=eMl — x| -1

®ly) =1+ yl)In(1+[y]) -1yl
and therefore

L0 = {f € L%P)|3a >0st. E [ea‘f‘] < +oo}

ME = {f € LOP) |Va >0 E [ea‘f‘] < +oo}

while: L% ={g | E[ (1 +|g| ) In(lg| +1) ] < +o0} = M®

Also,
aQ 5 _p[dQ, (da
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Orlicz spaces

References (general utility, selected topics)
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Orlicz spaces

References (general utility, selected topics)

u:(a,0)—R u:R>R(a=-x)

S general Sloc. bdd | S general
xeR[Bel’[[xeR[Bel® xeR BelY
ZE L

Duality KS99 | CSWO01 | BFOO | BF0OO | BFO5 | BFO8 | BFGO8

Optimal || KS99 | CSW01 | SO01 0z07 | BFO5 | BFO8 | BFGO8

(H*.S)7 || KS99 | CSW01 | S0I | OZ07 | BFO5

Supermart. S03 0z07 | BF0O7

KS99=Kramkov-Schachermayer;  BF00=Bellini-Frittelli;
CSWO01=Cvitanic-Schachermayer-Wang; = S01=Schachermayer;
S03=Schachermayer; OZ07=0wen-Zitkovic;

BF05 & BF07 & BF08=Biagini-Frittelli;
BFG08=Biagini-Frittelli-Grasselli 2008.
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Utility maximization

Definition of W —admissible strategies

Let W € L9 (P) be a fixed positive random variable.

The RY—valued predictable S—integrable process H is
W —admissible, or it belongs to HW | if there exists a ¢ > 0 such
that, P— as.,

(H-S);>—cW Vt<T.

The class of these W —admissible processes is denoted by

fHW
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Utility maximization

Definition: W is suitable with S

The dual variables are going to be good pricing measures under the
following condition on the random variable W:

W is S—suitable if W > 1 and for all 1 < < d there exists a
process H' € L(S') such that:

m the paths of H' a.s. never touch zero:
P({w|3t>0H(w)=0})=0
m for all t € [0, T],

~W<(H-S), <W P-as.
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Utility maximization

Compatibility conditions

Let W € L% W > 0 and consider the conditions
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Utility maximization

Compatibility conditions

Let W € L% W > 0 and consider the conditions

W e >
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Utility maximization

Compatibility conditions

Let W € L% W > 0 and consider the conditions

We >
Va > 0 E[u(—aW)] > =00 (W € M¥)

Marco Frittelli, Second Part Utility Maximization



Utility maximization

Compatibility conditions

Let W € L% W > 0 and consider the conditions

We L*®
Va > 0 E[u(—aW)] > =00 (W € M¥)
Ja > 0 E[u(—aW)] > —c0 (W € LY)

Obviously: ~ R
Wel*=WeM'=Wel
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Utility maximization

Example for the condition E[u(— W)] > —o¢

One period market, single underlying S = (Sp, S1) with Sp = 0 and

1
S1 2-sided exponentially distributed: ps, (x) = Ee_lx_”

Then S is non locally bounded and
(H-S)1:h51, heR
Hence #H' = {0}.
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Utility maximization

Example for the condition E[u(— W)] > —o¢

One period market, single underlying S = (Sp, S1) with Sp = 0 and

1
S1 2-sided exponentially distributed: ps, (x) = Ee_lx_”

Then S is non locally bounded and
(H-S)1=hS, heR
Hence #H' = {0}. But
HYW =R if we select W = |S;].
If uis exponential, W = |51] is (only) weakly compatible:

1
Elu(—aW)] =3 / —e®e P dx > —o0 only if a < 1 (and NOT Va)
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Utility maximization

Example: the optimal wealth increases if we maximize over
HY =R

max E |:_e—(x+h51):| — _e X 1 e_h*
heHW=R 4h*
> —e = max E [—e_(“'hsl)]
heH1={0}

where h* =+1/2 — 1 and
the optimal claim is f, = x + h*S;

the optimal measure is Q* ox e~ "1
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Utility maximization

The assumption on W

There exists a suitable W, which is in LY
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Utility maximization

The assumption on W

There exists a suitable W, which is in LY

Remarks

m In the locally bounded case the constant 1 is suitable and
trivially is in LY and so the assumption above is automatically
satisfied = This theory generalizes the locally bounded case !
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Utility maximization

The assumption on W

There exists a suitable W, which is in LY

Remarks

m In the locally bounded case the constant 1 is suitable and
trivially is in LY and so the assumption above is automatically
satisfied = This theory generalizes the locally bounded case !

m The compatibility condition W € LY puts some restrictions on
the jumps (as shown in the example).
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Utility maximization

The domain in the utility maximization problem

Fix a suitable W € LY and set

KWV ={H-S)r|HeHn"}, "&KW -L1%nL"
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Utility maximization

The domain in the utility maximization problem

Fix a suitable W € LY and set
KWV ={H-S)r|HeHn"}, "&KW -L1%nL"
Then

UY(B)2 sup E[u(B + k)] = sup E[u(B + k)]
keKW keCcW

We can formulate the maximization over the Banach lattice LY
naturally induced by the problem!
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Utility maximization

u:(—oo0,+00) = R

To simplify the notations, from now on we assume that
u:(—o0,+00) = R,
but the results hold also for utility functions
u:(a,+o00) >R

with a < 0 and finite.

Marco Frittelli, Second Part Utility Maximization



Utility maximization

u:(—oo0,+00) = R

To simplify the notations, from now on we assume that
u:(—o0,+00) = R,
but the results hold also for utility functions
u:(a,+o00) >R
with a < 0 and finite.

To define the pricing measures we will need the polar of CW:
(CW)° ={ze(y |2 <ovrec?}

and so we recall the dual (L)’
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Utility maximization

On the dual (LY

iFrom the general theory of Banach lattices
(Lﬁ)/ — L<T> ® (Mﬁ)l
( ® is the conjugate of T )

m L® is the band of order-continuous linear functionals (the
regular ones)

m (MY)" is the band of those singular ones, which are lattice
orthogonal to the functionals in L®.
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Utility maximization

Decomposition of the dual space

(Lﬁ)/ _ L<T> ® (Mﬁ)i
Hence: if @ € (L¥) then
Q - Qr + 057

with
Qe A]Qs| =0

dQr
dpP

el®C Ll Quf)=0VFfe Ml
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Utility maximization

The dual variables

(CW>O - {Q e (L7, | Q(f) <0 Vf € CW}
The set of pricing functionals is:
mWelqe (CW)° Qi) =1}

_ [ Qe(L%) | Q(lg) =1 and Q(f) <0
Tl Vfellst f<(H-S)7, HEHY [~
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Utility maximization

On the dual variables

Qla) =1iff Q.(lg) =1,
since Qs is null over L* and Q(f) = Eg,[f] + Qs(f)

Q e MW = @, is a true probability.
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Utility maximization

On the dual variables

Qla) =1iff Q.(lg) =1,
since Qs is null over L* and Q(f) = Eg,[f] + Qs(f)

Q e MW = @, is a true probability.

Lemma:
The norm of a nonnegative singular element Qs € (MY)" satisfies

1Qlley == sup Q)= sup  Qu(—1).
N5 (f)<1 feDom(/y)
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Utility maximization

o— martingale measures

Proposition: ~ ~
MY L =M, N L®

i.e. the regular elements in M"W are exactly M, N L® where

M, ={Q < P | S is a 0 — martingale w.r.to Q}

Definition:
The semimartingale S is a o-martingale if there exist:

1) a d-dimensional martingale M

2) a positive (scalar) predlctable process , which is
M’ —integrable for all i = 1---d and such that S" = ¢ - M',
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Utility maximization

The (weak) assumptions on the claim

sup E[u(~B + (H- S)7)]
HeH

We say that B € [°(F7) is admissible if it satisfies
E[u(—(14€)BT)] > —o0, for some € > 0,
Elu(f — B)] < oo, for all f € L”

- We only require that Bt € L” not necessarily B € LV

- By Jensen inequality, if B~ € L, then condition 2 holds

- If u is bounded from above (as the exponential utility), then the
condition 2 is satisfied by any claims.
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Utility maximization

Assumptions

In all subsequent results it is assumed that:

m u: R — R is concave, increasing (not constant on R )
m W € LU is suitable

m B is admissible.
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Utility maximization

Theorem

Suppose that W satisfies

U .= sup E[u(—B+ (H-S)7] < u(+0).
HenW

Then MY is not empty and

sup E[u(—B+ (H-S)7)]

HeHW
_ . Y dQ,
el ()] )

If We MY and B € MY then MY can be replaced by M, N L®
and no singular terms appear.

Marco Frittelli, Second Part Utility Maximization



Utility maximization

Further results

Under stronger regularity conditions on the utility v and on W
there are results also on:

m the existence of the optimal solution to the primal utility
maximization problem,

m on the representation of the optimal solution as a stochastic
integral,

m on the supermartingale property of the optimal wealth process.
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Indifference price

Indifference price

The real number 7(B) solution of the equation

sup Eu(x+ (H-S)1)= sup Eu(x+n(B)—-B+(H-S)1)
HeHW HeHW

is called the seller indifference price of the claim B
i From the previous results, we now obtain the dual representation
of m(B) and we show that the indifference price is, except for

the sign, a convex risk measures on LY
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Indifference price

The domain of the indifference price functional

Define: 1,(f) = E[u(f)] and
B:= {B el¥|3e>0: Eu(—(1+¢)BT) > —oo}
LEMMA:
B={Bel"|(—B) e int(Dom(/,))}

is an open convex set in LY containing MY and thus [

Marco Frittelli, Second Part Utility Maximization



Indifference price

Proposition

If the initial wealth x € R satisfies
UW = supyeqyw E[u(x + (H - S)7] < u(+00), then the seller’s
indifference price

m:B—=R
7 is well a defined, norm continuous, subdifferentiable, convex,
monotone, translation invariance map on 5 and it admits the
representation

m(B) = max {Q(B)—a(Q)}
QemW
where the (minimal) penalty term «(Q) is given by

{ E[eOG N - U } |

a(Q):x+||QsH+Air;% S

Marco Frittelli, Second Part Utility Maximization



Indifference price

Corollary

If UV < u(400), the seller’s indifference price 7 defines a convex
risk measure p(B) = w(—B) on B, with the following
representation:

p(B) =m(—=B) = max {Q(-B)—(Q)}.

QeMW

If both the loss control W and the claim B are in MY, then no
singular terms appear in the representation and this risk measure
has the Fatou property. In terms of m, this means

B, 1 B = m(B,) 1 7(B)
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Indifference price

Example: set u(x) = —e™ 7, v >0

PROPOSITION:
Suppose that B € LV satisfies E[e7(17)5"] < oo, for some & > 0,

and W € LY is suitable. If MW is not empty
then the indifference price is

my(B) = max {Q(B)—,lyH(Q P)}

QReMW

where the penalty term is given by

H(Q. P) = H(@r. P) + 71 Qulp — _min, (H(Qr.P) + 7l p)
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Indifference price

Continuing the Example: u(x) = —e ™, v >0

If both the loss control W and the claim B are in MY, then no
singular terms appear in the representation and

p(B)i=m(~B) = max {Eol~E] - “H(Q.P))
QeM, nL®

where

H(Q,P)=H(Q,P)— min {H(Q,P)}

QEM,NL®

is a convex risk measures on Orlicz space
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Indifference price

New Assumption

Assumption

The utility function u : R — R is strictly increasing, strictly
concave, continuously differentiable and

Ijm v (x) = +oo, IiTm u'(x) =0 (Inada conditions)

Moreover, for any probability Q@ < P, the conjugate function ®
satisfies

d@ ) d@
E [QD (dP)] < +o0 iff E [d> </\dP>} < +oo forall A\ >0
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Indifference price

The new domain of the optimization problem

MY ={Qe MW |E [d) (dQ’)] < 400}

dP

K = {f e L] f e LNQ), Eqlfl < @(~B)+Q°, ¥@ € MY},
and the corresponding optimization problem
UY = sup E[u(f — B)].

feky
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Indifference price

Existence of the optimal solution

The maximum Ugv is attained over K)B/V and the unique maximizer

1S

dQg
dP
The relation between primal and dual optimizers is given by:

fo = —®'(\g

)+ B.

Eqlfe] = Qa(=B) + | Qzl-
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Indifference price

The next proposition gives a priori bounds for this singular
contribution Q°(—B) appearing in the duality relation:

Proposition

For any B € B, let
L:=sup{B8 > 0| E[u(BBT)] < +oc}and | := sup{a > 0| E[u(aB7)] <

Then, for any fixed Q € MY,
1 S} S 1 S
1) < @*(-8) < 1@

and in particular we recover again Q*(B) =0 when B € M".
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Indifference price

On the representation as stochastic integral

The result in the Theorem does not guarantee in full generality
that the optimal random variable fg € K,g’v can be represented as
terminal value from an investment strategy in L(S), that is,

T
fB - fO thSt.

The next proposition presents a partial result in this direction.

Proposition

Suppose that B € B, Q3 =0 and Qg ~ P. Then fg can be
represented as terminal wealth from a suitable strategy H.
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