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The aim of these lectures is to give an introduction to the mathematical foundations of finance,
rather than to mathematical finance per se. The reader is assumed to know the basics of stochastic
differential equations and mathematical finance (at the level of Shreve’s textbooks [5], [6]).

1 No-arbitrage for Finite Probability Spaces

The notion of arbitrage will be one of the main themes of the course.

We will start the course by examining models based on finite probability spaces with discrete
time. By studying this toy model we can introduce the necessary ideas and language of func-
tional analysis at a relatively non-technical level. Later we will study models based on arbitrary
probability spaces with continuous time.

In this lecture we shall follow sections 2.1-2 of Delbaen and Schachermayer [2] very closely.

1.1 Finite Model of a Financial Market ([2], §2.1)

The financial market model that we shall consider here is based on a finite probability space
(Q, F,P), where Q@ = wy,...,wy is a finite set, P is a probability measure with P(w) > 0 for
all w € Q, and F is the o-algebra of all subsets of (). In addition, we consider a filtration
Fo C -+ C Fr = F of sub-c-algebras of F with Fy = {0, Q}.

Definition 1.1.1. Asset prices are given by an R%!—valued adapted process S = (S’?, cee S’f)tTZO.

We will assume that 5'8 =1 and 5',? >0forallt=1,---,T.

The requirement of being an adapted process, that is S, is Fi-measurable, simply means that
the prices at t are known at time ¢, despite being uncertain at any earlier time. The first component
SY will play the role of a numeraire, which is a fancy way to call the units used to express the
value of the other assets. In the simplest case we have SY = 1 for all ¢, so we can think of it as a
fixed currency amount, say one Canadian dollar. More generally, S can represent the value of a
bank account accumulating interest as time goes by.

Definition 1.1.2. A trading strategy is an R4t —valued predictable process H = (flto, cee f[{i)thl.

The components of a trading strategy H; are the number of units of an asset being held from
time ¢ — 1 until time ¢. The holding decision is made at ¢ — 1, which explains why H; needs to be
predictable, that is ﬁt is F;_1-measurable.

Given an asset S; and a trading strategy H,, the inner product

is called the portfolio value at time t.



Definition 1.1.3. The trading strategy H is said to be self-financing if
Hy 1S = H, Sy, (2)
foreveryt=1,...,7 — 1.

The left-hand side of (2) corresponds the amount of money necessary to form a portfolio to be
held from time ¢ until time ¢+ 1 at the market prices prevailing at time ¢, whereas the right—hand
side is the amount of money obtained from the portfolio held from time ¢ — 1 until time ¢. In other
words, a trading strategy is self-financing provided there is no injection or withdraw of funds at
any given time. R . A

Given asset prices S; = (SY,...,9%), let S; = (S},...,59%) be the R?valued adapted process
of discounted prices with components
j_ 51

t S,?v
Accordingly, given an R%!—valued trading strategy Hy = (H?, ..., H®), let H, = (H},..., H?) be
the R%valued trading strategy with components

Hl =H!, j=1,....d.

j=1,...,d

Notice that, for every predictable R%valued process H; we can construct a unique RI*1 valued
self-financing trading strategy H, such that H) = H/ for all j = 1,...,d and all t = 1,...,T
simply by setting HY = 0 and finding H inductively for j = 2,...,T using (2). Together with the
next proposition, this construction shows that, as long as we are interested in discounted portfolio
values only, there is no loss of information when we consider the restricted R%valued strategy H;
instead of the R4t! value strategy H,.

Proposition 1.1.4. Let H, be the unique R value self-financing trading strategy associated
with an arbitrary R‘ffvalue strategy H; through the construction above. Then the discounted
portfolio value V; = V;/S? is independent of the scalar process Hy.

Proof. Since S =1 and H? = 0, we have that
Vo="Vo=HSI +-- + HISE.
Using the self-financing condition ﬁtS’t = ﬁt+1gt, we find that the change in V; is
AVigr = Vi1 — WV
= V;%+1/S’?+1 - f/%/svg
= Hy1S041/82 1 — Hi415:/5?

d
=)y (1=1)+) 1 (8],1/58 — 51/57)
j=1
d . .
= Z Htj+1AStJ+1
j=1
= H 1 1AS 1.
Thus V; = Vo + H1ASy + - - - + H;AS;, which is manifestly independent of fl,? O
In particular, using the following standard notation for stochastic integrals (see [3])
T
(H-S)r=(H-S)[, :=)_ HAS,
t=1
we have that
Vr :V()—I—(H-S)T. (3)



1.2 No Arbitrage and the FTAP

Let H be the space of predictable R?%-valued processes H; for a financial market with discounted
asset prices S;. Let L°(Q, F, P) denote the space of all measurable functions on €2, which for finite
sample spaces is canonically isomorphic to RY. Similarly, let L>(, F, P) = RY denote the space
of bounded measurable functions on €.

Definition 1.2.1. The subspace K C L°(Q, F, P) defined by
K:{(H'S)T|HEH},

is called the set of attainable claims at price 0, whereas the convex cone C C L*°(Q, F, P) defined
by
C={geL>*(Q,F,P)|g<fforsome feK}

is called the set of super-replicable claims at price 0. (We say “super-replicable” since such claims
are dominated by attainable claims — the terminology is not ideal!) For a € R, the sets K, = a+ K
and C, = a + C are respectively the sets of attainable and super—replicable claims at price a.

Remark 1.2.2. Observe that we can write C = K + L% . It then follows that C is a closed set,
since K is closed (being a linear subspace of RY) and L° is a closed polyhedral cone. This is one
of the many instances where working with finite-dimensional vector spaces simplifies the analysis
tremendously.

Definition 1.2.3. A financial market S satisfies the no arbitrage condition (NA) if
KnLY(QF,P)={0}.

or equivalently
CNLEQ,F,P)={0}.

Because this is the central concept in this notes, it deserves further explanation. In view of
(3), the set K consists of random variables that coincide with the discounted terminal values of
self-financing trading strategies starting at zero initial value. On the other hand, Lg is the set of
non-negative vectors in RY. Thus, an arbitrage is a self-financing trading strategy starting with
zero initial value and with terminal value given by a random variable that is non—negative and not
identically equal to zero. That, an arbitrage is a strategy that starts at zero, never loses money,
and has a strictly positive probability of making money.

Proposition 1.2.4. The condition (NA) implies that C N (-C) = K.

Proof. Clearly K C CN(—C). For the reverse inclusion, consider an element g € CN(—C). It then
follows from Remark 1.2.2 that we can write g = f1 — hy = fo + ho for some elements f, fo € K
and hy, ho € LE{. But then f; — fo = h; + ho is in KﬁLg, which is 0 by (NA). Thus Ay = he =0
and so g € K. O

Definition 1.2.5. A probability measure @ on (2, F) is an equivalent martingale measure (EMM)
for S if @ ~ P (that is, Qwy] > 0 for all n) and S is a Q-martingale, that is

Eq[Si41 | Fi] = St t=0,1,..., 7T —1.
The set of EMM’s for S is denoted M®(S).
Lemma 1.2.6. For a probability measure @ on ({2, F), the following are equivalent:
(i) S is a Q—martingale.
(ii) Eg[f]=0forall f € K.
(ili) Eglg] <0 for all g € C.



Proof. We shall prove only that (i) < (i7), since (it) < (iii) is obvious. First observe that for a
(Q—martingale S and a predictable trading strategy H; we have

H](S] — S]_ | Fea]

M=

EqQ[H AS|Fi—1] = Eg|

=1

<
Il

=Y H{Eq[S! = S_1|Fia] = 0.

j=1
But this shows that (H - .S); is also a @Q—martingale, since

t—1
Eq[(H - S)e| Fi1] = E[Y | HAAS, + H{AS,|Fy 1] = (H - S)i1.

s=1

In particular, Eq[(H - S)r] = (H - S)o = 0, which shows that (1) = (2). Conversely, let A be
an arbitrary F; j-measurable set and consider the strategy H(w,s) = 1a(w)l—1,4(s). Then
(H-S)r =14(St — S;—1) and (i¢) implies that

EQ[IA(St — Stfl)] =0

which is equivalent to
EQ[StU:t—l] = Si-1,

which in turn means that S is a @—martingale. O

We are now in a position to prove the following theorem, known as the Fundamental Theorem
of Asset Pricing.

Theorem 1.2.7 (FTAP). For a financial market modeled on a finite probability space (2, F, P; F;),
the following are equivalent:

1. S satisfies (NA).
2. Me(S) #0.

Proof. (2) = (1) (easy part): Suppose @ € M®(S). By Lemma 1.2.6, Eglg] <0 for all g € C. On
the other hand, if there were a non-zero element g € C'NLS°, then we would have Eg[g] > 0, since
Q ~ P. So necessarily S must satisfy (NA).

(1) = (2) (interesting part): By the condition (NA), K N LY = {0}, and so K and LY are
disjoint convex sets. Let B = {}° pnle, | ptn >0, > pn = 1}. Then B C LS° is a convex
compact set which is disjoint from K. Now, by the separating hyperplane theorem (take the
proof in [4, Theorem V.4] and eliminate the use of Hahn-Banach), there is a linear functional
Q € (L>™)" = L' separating B and K. This means that we can find numbers o < 3 such that

QlflI<a<pB<Qlg], forall feK,geB.

Since K is linear, we have > 0, and without loss of generality we can take it to be 0, which
implies that 8 > 0. Let e, be the n-th canonical basis vector of RY. Since e, € B we have that
Q(en) > 0. Moreover, let I = (1,...,1). Then by linearity Q[I] > 0. Normalizing so that Q[I] = 1,
we can associate () with a probability measure equivalent to P satisfying property (ii) of Lemma
1.2.6. Then Q € M*(95). O

Corollary 1.2.8. Let S satisfy (NA) and let f =a+ (H - S)r for some H € H and a € R. Then
a and H are uniquely determined by this expression and, moreover, a = Eg[f] and a+ (H - S); =

EQ[f | ]:t]'



Proof. For uniqueness, suppose that f = ay + (Hy - S)r = a2 + (Haz - S)r, and say a; > as. Then
((Hy — Hy) - S)T = aj —az > 0 is an arbitrage. But since we are assuming that S satisfy (NA),
we must have a; = as. Next suppose that Hy # Hs and define

A=A{w[(Hy-8) = (Hz-5) >0},

for some ¢t. Then H := (Hy 4 — Hg)t)lAl(O_’t] is an arbitrage trading strategy because (H - S)r =0
outside A, while (H - S)r = (Hy-S)¢ — (Hz-S): > 0 on A. But again, since we are assuming that
S satisfy (NA), we must have H; = Hs.

The last part follows from the fact (already established) the stochastic integral (H - S); is a

@Q-martingale.
O

1.2.1 Convex cones and polar sets

Using a standard definition in convex analysis, let the polar set of our cone C' of super-replicable
claims be given by

C°={feL'(F, P)|E[fg] <0VfeC}
According to the bipolar theorem (for a very general version, see [1]), the bipolar set C°° := (C°)°
coincides with the closed convex hull of C. But by virtue of Remark 1.2.2, we know that C is
already a closed set, from which we conclude that C°° = C.

Now denote by M?S the set absolutely continuous martingale measures for S, that is probability
measures ) which are absolutely continuous with respect to P and such that S is a Q—martingale.
Consider the cone generated by M?S, that is,

dQ

a — 2% > a
cone(M?S) {f /\dP,)\_O,QE./\/l S}

The next proposition establishes a perfect polar relation between C' and M?S.

Proposition 1.2.9. Suppose S satisfies (NA). Then C° = cone M?(S), and M*(S) is dense
in M?(S).

Proof. Since S satisfies (NA), M®(S) # 0 by the FTAP. Pick any Q* € M*(S). Then for all
Q € M*(S) and 0 < p < 1, we have pQ* + (1 — u)Q € M®(S), since (1 — p)Q is absolutely
continuous with respect to M°(S). In particular, M?(S) is arbitrarily close to M¢®(S), which
proves the density statement.

Now let @ € M?(S) and let A > 0. Then by Lemma 1.2.6, we have

Q

— = < .
E [/\dpg} AEQlgl <0, VgeC

This shows that cone(M?(S)) C C°. For the converse, observe first that L> C C because 0 is
achievable, which implies that C° C L. This means that f € C° C L can be written as f = )\%
for some A > 0 and some probability measure ). But then

0> E[fg] = AEqlgl, vgeC
which means that @ € M?(S), by Lemma 1.2.6. Thus C° C cone(M?*(S5)). O
In view of Lemma 1.2.6, another way to formulate the proposition is as follows.
Proposition 1.2.10. For all g € L*°(Q), F, P), the following are equivalent:
1. geC.
2. Eglg] <0 for all Q € M?(S).
3. Eglg] <0 for all Q € M°(9).



2 Utility Maximization in Finite Probability Spaces
Consider
U:R—RU{-o0},
satisfying
(i) U is increasing on R;

)
(ii) U is continuous on dom(U) = {z/U(x) > —c0};
(iii) U is strictly concave on the interior of dom(U);
(iv) U'(o0) = 0.

Regarding negative wealth, we assume:

eCasel Vv Ux)=—o00,z<0;

U(z) > —o0, x > 0;

U'(0) = +o0;

Examples: U(z) = log(z), U(x) = %p,p € (—oo, 1)\{0}.

o Case 2 U(z) > —o0, z € R;
U'(00) = oo

v Example: U(z) = —

NN

e 7%

~

, v > 0.

The utility maximization we are interested in is:

u(zx) := sup E[U(z+ (H-9S)r)], =€ dom(U) (4)
HeH

Before tackling this problem, it is convenient to define the conjugate function V' by

V(y) = S‘QE(U(‘”) —zy), y>0,

which can be seen as the Legendre transform of —U(—x). It follows that V satisfies the following
properties:

(i) V:R — R is finite valued;
(ii) V is differentiable and strictly convex on (0, 4+00);
(ifi) V'(0) = —c0.
Moreover,
e Case 1 V(o0) = limg, o U(x) and V' (c0) = 0;
e Case 2 V(o0) = +00 and V'(00) = 400.
In addition, U(z) = inf,~o[V (y) + yz] and —=V’(U’(z)) = z. In other words, I := (U')~! = -V".



2.1 The complete market case

Assume that M*¢(S) = {Q} and consider the Arrow-Debreux securities 1y, y so that Eq[l,, ] =
Q(wn) = @n and because the market is complete, 1(, 1 = ¢n + (H™ - S) for some H" € H. It

follows from the previous lemmas that a random variable f € L satisfies f < x + (H

- S)r for

some H € H iff Eg(f) < x. Therefore, in this finite, complete case, we can rewrite (4) as the

following concave optimization with a linear constraint:

u(r) = sup  E[U(f)]
feRN
Eqfl<=

N
= sup anU(fn)
(f17“'7fn) n=1
22]21 fngn <

To solve this problem, let us introduce the Lagrangian:

L(fl, veey fn,y)

N N
anU(fn) - y(z frnln — :E)
n=1 n=1

N

dn
an(U(fn) —y—fn) + Y.
1 Dn
It follows from the saddle point theorem that a solution to (5) is given by a saddle point (fl,
of L, that is,

L(flv "'7fNa:7J) < L(fla afNaz/j) < (fla -'-avay)a vf € RN, Yy > 0.
To see this, define
¢(f17 0y fN) = ;I;%L(flv "'7fN7y>a fn € dom(U)

and

V) = 0f L(fise fo0): 20,

7fN7§)

Now notice that if f = (fi,.., fn) satisfies Eq[f] < z, then ¢(fi1,.., fn) = L(f1,..., fn,0) =

Zﬁ;l prU(frn). Conversely, if Eq(f) > x, then ¢(f1,.., fnv) = —oo. Therefore,

N
sup ¢(f1,. fx) = sup Y paU(fn) = u(2).
fERN ferRY 5
Eglfl <z

Moreover, observe that for fixed y > 0, the optimization over RV appearing in the definition of
¥ (y) splits into N separate one dimensional optimization problems. Explicitly, using the definition

of V', we see that:

N
vy) = anwyg—")my
n=1 n
dQ
Vap
= o(y) + zy.

= EV(y—>5) +zy

Observe that v(y) inherits all the proprieties of V. In particular, for z € dom(U), there exists a
unique ¥ = y(x) > 0 such that ' (y(r)) = —x, which is therefore the unique optimizer for ¢ (y).



Fixing y(z), we see that the function (fl, o fN) = L(f1,.., fn,7) achieves its maximum at
(f1, .-y f) satistying U'(f,) = §(z s fo = Iz )>) which implies that

inf (y)

y>0

;gg(v(y) + xy)
= (A(w)) + 2y ()
= Z oV + :vy( )

= 23@1 ﬁz—wM)Z)+wﬁ®

n

= (fla"'afNuy)'

Notice that fn is 1n the interior of dom(U), which means that L is continuously differentiable at
(fl, . ,fN, Y) and |f 5= 0s0 that the constraint is binding, that is Zn 1 qnfn =1z

Finally, it is clear that Z —1DPn U(f,) < u(x). Conversely, for all (fi, .., f,) satisfying Eqlf] <
x, we have

N
Zm (fn) S L(f1 oo I3 0) < L1y o Fo D) = > paU (F).-
n=1

Therefore, u(z) = v(y(z)) + 2y(x) = v’ = y(x). So that u inherits all the properties from U.

Theorem 2.1.1. For a finite complete case, define u(z) = supyey E[U(X7)], € dom(u),
Xr=z+(H-8S)r, and v(z) = E[V(y%)], y > 0. Then,

(i) w and v are conjugates and inherit the proprieties of U and V;

(i) Xy (wn) = I(y%) (or equivalent U’()?T (wn)) = y% (wy)) is optimal wealth, where y satisfies
u'(x) =y (or equivalently v'(y) = —z).

Notes:

(1) U'(Xr(wn)) = yLx, where U’ represents the marginal utility, X7 (wy) is the optimal wealth,
and ¢, is the prlce of the Arrow-Debrew security 1¢,, ; with a probability of its success py,.

(2) Observe that /(z) =y and U'(Xr) = y9%2 implies that u'(z) = E[U’(Xr)].

Consider an agent with x + € as an initial endowment who uses x to finance XT =z+ (ﬁ - S

for some H € # and ¢ to buy the numeraire. Thereby ending with Xr+eatT. Comparing this
by the optimal wealth X7.7¢ gives:

u(z +€) —u(z) E[U'(X7") - U'(X$)]

lim = lim
e—0t € e—0t €
1Y _ 1Y
o PIURE 40— U(R5)
e—0+ €
= E[U'(X7)).

The argument with e < 0 implies that v'(z) = E[U’ ()?%)] = the agent is indifferent. Similarly, we
can prove that zu'(z) = E[XFU'(X7)].



3 The Dalang—Morton—Willinger Theorem

3.1 The closedness of '
Let X = AS; = 51 — Sp and its corresponding subspaces:

X ={H :Q — R? Fo-measurable and X - H =0 a.s} and
HX = {f:Q — R? Fp-measurable and Pf = f},

where P = I— P’ and P’ being the projection associated to EX. Observe that H-X = H-(S1—S)) =
(H.S);. Define:

I: L%, %0, P;RY) — £2(Q,F0, P)

Definition 3.1.1. We say H is a canonical form for S if H € H¥X, where X = AS.

Lemma 3.1.2. The kernel of I is EX. The restriction of I to HX is injective, linear and has full
range.

Proof. The first statement follows from the definition of EX. For the second, let H and H' € HX
with I(H) = I(H'). Then X - (H - H') =0 as = (H— H') € EX. But (H — H') € H¥, then
(H-H)e EXNHX={0}= H=H' as. O

Proposition 3.1.3. Let (S;)}_, be adapted to (£, (F+)i_o, P) and let (H™)2°; be a sequence in
L£°(2,Fo, P;RY) in canonical form. Then:

(i) (H™)$2, is bounded iff (H™ - AS)S2, is.
(if) (H™)$2, converges a.s iff (H™ - AS)$2 ; does.
If, in addition, S satisfies (NA), then
() (H™)$%, is bounded iff ((H™ - AS)_)22, is.
(ii") (H™)22; converges to zero a.s iff ((H™ - AS)_)$2, does.

Proof. We consider just the ”if” part of each statement.

(i) and (i’): Suppose that (H™)2 ; is not bounded. Let K = R?U{oco} and take 2y = 0o € K.
Since (H™)32; diverges to oo on a set B of positive measure, there exists a subsequence (LF)% | =
(H™ )%, such that (Lk( )52, diverges to oo on B.

Now put L*F = IHBQ{|LH>1} so that |Lk( )] =1 for w € B and k sufficiently large.

IL"
By passing to a subsequence again, we may suppose that (Zk) ne, converges to Z which is in
canonical form and satisfies |L| = 1 on B. Therefore we assume that (H" AS) >, is bounded.
Then (L" AS)S2 | necessarily goes to zero a.s. But then L-AS =limgoo L - AS =0 a.s and
since L is in canonical form, this implies that L=0as (contradiction).
In addition, suppose that S satisfies (NA). Then if we assume that ((H"-AS)-)7Z, is bounded.
So, L-AS_ = limj_,00 L*-AS_ = 0 a.s. (NA) implies L-AS_ = 0 a.s = L = 0 a.s (contradiction).
(i) and (i’): Suppose that (H™)%2; does not converge a.s, but (H™ - AS)>2; does. Then,
(H™ - AS)22, is bounded a.s. Therefore (H™),—100 is also bounded a.s from the previous item.
Using again the compact set K = R? U {o0}; we can find a subsequence (H™)$, comparing
to some HY € HX. Since (H™)%, itself does not converge, we can find another subsequence
(H*)p2, converging to some HY with P[H® # H°] > 0. But since (H™ - AS)>2, converge, we
must have (H° — ﬁo) “AS = limj_yo0 H™ - AS — limp_y00 H7* - AS = 0 a.s. Therefore, H® = HP°.
Assume (NA) and also that (H™)22; does not converge to zero but ((H™-AS)_)52; does. We
can again find a convergent subsequence (H?*)? | converging to some HO such that P(ﬁ 0£0) >
0. But H°-AS_ = limg 00 H* - AS_ = 0 a.s. which, together with (NA), means that H° =0
a.s. O



Theorem 3.1.4. Let (S¢);_, be a one step process.
(i) K ={H-AS/H € L°(Q, 50, P;R%)} is closed in L°(Q, F1, P).
(ii) If S satisfies (NA), then C=K-L9 (2, §1, P) is also closed.

Proof. (i)let (fn) = (H™-AS)%, be a sequence in K converging to fo € L°(£,F1, P), with each
H™ in canonical form. By passing to a subsequence, we can suppose that (f,)3%; converges to fo
a.s. Then, (H™)32, converges a.s to some H® € L%(Q,Fo, P;RY) so that fo = H® - AS € K.

(ii) Let f,, = gn — hy, be a sequence in C converging to fo € L°(, §1, P), where g, = H" - AS
for H™ in canonical form and h, € LY (Q, §1, P).

Again by passing to a subsequence, we can assume that (f,,) converges to fy a.s. Since g, < f,
we have that g,_ is bounded. Because of (NA), we then have that (H™)S2, is also bounded a.s.
By passing to a convergent subsequence (H™)2° ,, we may suppose that g,, = H™ - AS converges
astogo = H°-AS, H® = L°(Q,Fo, P;R?). Since (f,,) still converge a.s to fy, we have that
hr, = gr, — fr, converges a.s to hg > 0. Thus fo = go — ho € C. O

3.2 The DMW Theorem for T =1

Theorem 3.2.1. Let (S;);{_, be a one-step price process adapted to (2, (F¢)i_o, P) satisfying the
(NA) condition. Then, 3 an equivalent probability measure @ such that:

(l) S(), Sl 6 Ll(Qagva;Rd);
(ii) Eq[S1 | So] = So;

(iii) % is bounded.

Proof. First construct P, given by:

P _isi—liSol
dP = Cce y

so that P, ~ P, & dP is bounded, Sy, S; € L(€, gl,Pl,Rd) Next, take O = CNLY(Q, 1, Pr;RY).
Then it is easy to show that C; is closed in L'(Q, &1, P1; R?), because C is closed in L°(€2, 1, P; RY) =
L°(, 31, P1;RY). Moreover, C; is a convex cone because C' is a convex cone and by (NA),
C1 N LY (2,31, Pi;RY) = {0}. It then follows from the Hahn-Banach Theorem (see the gen-

eral version next lecture!) that we can find an equivalent probability measure @ such that jQ

apP; 1S

bounded and Eg[f] < 0 for all f € C;. We then have that Sp, S1 € L'(Q,§1,Q; R?) and that
Zg %% is bounded.

For the martingale property, observe that for each component j =i, ..,d and each A € §o, we

have that 14(S7 — S7) € C; and —I4(S} — SJ) € C;. Therefore, EQ[]IA(S] S7) | Fo] = 0 and so

Eq[la(S1 — So) | o] = 0. 0

3.3 Proof of the DMW theorem for 7" > 1

Let us use induction on the number of intervals necessary to reach T

For T =1, the result holds.

Suppose that it holds for n = T — 1, that is, consider ¢ = 1,...,7" and the process (S;)L_;
adapted to (€, (F¢)7_,, P; R?) for which there exists on equivalence probability measure Q* on Fr
such that:

(i) % is bounded;

(i) Si,.... St € LY, §r, QL RY);
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(iii) (S¢)L; is a Q'-martingale.

Using the one-step DMW Theorem for (S;)i_; and (2, (F:)i o, @5 RY), we can find a bounded
function fi such that fi is §1-measurable, fi > 0, Eqgi[fi1] = 1, Eg1[| S1 | fi] < oo, Egi[| So |

f1] < oo and for all A € Fo:
/ Sof1dQ = / Sy f1dQ*.
A A

Now define Q on §7 by Q[A] = [, f1dQ', A € Fr. That is, % = fl% is bounded and % > 0.
So @~ P.

Moreover, for t = 0,...,T, we have [, [5:/dQ = [, |S¢|f1dQ" < oo.

Finally, for the martingale property, observe that for all A € §p, we have:

/ SodQ :/ S f1dQ" = / Sy f1dQ* :/ S1dQ.
A A A A
So that Eg[S1 | §o] = So, for t > 1, let A € §y, then

/AStdQ /AStfldQl

_ / Spi1 f1dQ"
A

/ St1dQ.
A

SO, EQ[St+1 | St] = St.

4 No-arbitrage in continuous time

4.1 Stochastic integrals for semimartingales

Recall that we have defined the stochastic integral H — (H.W); pathwise for bounded simples
strategies and used the isometry

| H ||L2oxr, P, ren=| (H.8) ||2(0,5,P)

to extend it by continuity to the entire space L?(Q x R, ,P, P® \), in such way that (H.W); is an
L?-bounded martingale, that is, sup, || (H.W); ||12(0,5,p)< 00. When H is locally in L?*(P ® A)
(which is equivalent to fg H2ds < o0), the same construction yields a local martingale (H.W),
which is locally L2—bounded.

Recall also that for an L2—bounded martingale S;, we define the quadratic variation measure
on P as:

d[S](”T, o‘”) = E(|SU _ S~r|2)
and the following isometry holds for bounded simple integrand H:

| H ||2oxry p.dsn=I (H.S)eo l2(0,5,P)

we can then extend H ~ (H.S); to the entire space L?(2 x Ry, P, d[S]) by continuity in such a

way that (H.S); is also an L? bounded martingale. We can use again localization to extend this

to a locally L? integrand H and locally L? bounded local martingale. Since every continuous local

martingale S is automatically locally L2-bounded, this is the right degree of generality for this

class. To include integrators with jumps, we will extend the theory even beyond local martingales.
Suppose first that S is a cadlag adapted process of bounded variation, that is,

n

|S|t = sup Z |Sti+1 - Sti

0<to<ti <. <tn <t g

< o0 a.s for all t < oco.
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Then for almost all w € €, the path (S¢(w))o<t<oo is of bounded variation on compact subsets of
R, by dS(w)(Ja,b]) = Sp(w) — Sa(w). So that the stochastic integral (H.S):(w) = fg H,(w)dSy(w)
is well defined as a Lebesgue-Sieltjes integral for each process H such that (Hy(w))o<u< is dS(w)-
integrable. We have then led to investigate process of the form

S=M+A (6)

where M is a bounded martingale and A is locally of bounded variation.
For that, let us define S as the class of bounded simple integrands H with the topology of
uniform convergence which is given by the norm:

| H [loo=sup{ll He [[>@,5..p) \t € R+} (7)

For this class, we can define the stochastic integral as before:
I(H):(H'S)W:Zfi—l(sﬂ_Sﬂ'fl) (8)
i=1

for any cadlag process S.

Definition 4.1.1. S is a strict semi-martingale if the map:

I: S — L°(w,F0, P) (9)
Hw— I(H)=(H- 9% (10)

is continuous for the topologies of |||« on S and convergence in probability on L°.

(i) S is a semi-martingale if it is locally a strict semi-martingale.

Theorem 4.1.2 (Bicheteler-Dellacherie). S is a semi-martingale in the sense of the definition
above if and only if it can be decomposed as S = M + A as in (6).
We say that S is a special semi-martingale if in addition the process A is predictable.

It is relatively easy to show that (H.S); is a semi-martingale, even when H is only locally in
S. To extend for H beyond L*° -bounded simple, consider the semi-martingale topology induced
on the set of one-dimensional semi-martingale by the distance:

DIS] = 2 "sup{E[| (K — S), | A1/K <1}

n=1

where K is a predictable process. This means that S™ — 0 iff (K - S™); — 0 uniformly in ¢ and K.
One can show that this space is complete. We then say that an R%valued process H is S-integrable
(L(S)) w.r.t a semi-martingale S if (Hlpy<, - S)3%, is a cauchy sequence. We define (H - S), as
the limit of the sequence. o

Notice (H - S); is a semi-martingale and can be decomposed to a local martingale M; + A; that
are different from (H - M); and (H - .A); resp.

Remark 4.1.3. One can construct examples where S = M + A is a special semi-martingale, H is
S—integral, so that (H - S); exists, but (H - A) does not exist.

Lemma 4.1.4. Let S be a special semi-martingale with decomposition S = M + A and H be
an RY—valued predictable process. If the stochastic integral (H - S) is itself special, then (H - A)
exists as a Lebesgue-Stieltjes integral.

One can find examples of a martingale M; and an M —integrable process H such that (H - M);
is not a local martingale.
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Lemma 4.1.5. Let M be an R?—valued local martingale and let H be an R?—valued M —integarble
process. Then (H - M), is a local martingale if there exists a sequence of stopping times 7,, / 0o
and integrable function ¢,, € L' with ¢, <0s.t < H,AM >7 > ¢,.

Theorem 4.1.6. If S is a special semi-martingale with canonical decomposition S = M + A and
if H is S—integrable then (H.S) is special martingale iff:

i (H-M) is defined as an integral in local martingale sense

ii (H-A) is defined as a Lesbegue-Stieltjes integral.

Proof. Let H be S—integrable. If (H - S) is special then (H - A) exists as a L-S integrable by
Lemma 1, which gives (ii). Moreover, (H - .S) is a special, it must be locally integrable, that is,
there is a sequence 7, — oo and ¢,, € L' s.t (H - S)™ > ,,. Now let o, be stopping times such
that (f;" | Hs | dAs) € L* (which must exist since (H - A) is a regular L-S integral). Then for each
n, (H-M)™"" >, — [ | Hy | dAs and Lemma 2 shows that (H - M) is a local martingale.
Conversely, if (¢) and (i7) hold, then (H - S) is the sum of a local martingale and a predictable
bounded variation process (H - A) and therefore special. (]
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