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Definitions:

p+(x) : Price, at ¢t of zero coupon bond matur-
ing at ¢t 4+ z,

r:(x) . Forward rate, contracted at ¢, maturing
at t + x

R; : Short rate.

ri(z) = —
ox
pi(z) = e Jori(s)ds



Heath-Jarrow-Morton-Musiela

Idea: Model the dynamics for the entire for-
ward rate curve.

The yield curve itself (rather than the short
rate R) is the explanatory variable.

Model forward rates. Use observed forward
rate curve as initial condition.

-dynamics:

dri(x)
ro(x)

ai(x)dt + or(x)dWr,
ro(z), Vz

W d-dimensional Wiener process

One SDE for every fixed zx.



Theorem: (HJMM drift Condition) The fol-
lowing relations must hold, under a martingale
measure Q.

ou(@) = > -ri(a) + @) [ o(s)ds

Moral: Volatility can be specified freely. The
forward rate drift term is then uniquely deter-
mined.



The Interest Rate Model

rt — Tt(')7 O't(CC) — O—(TD ZC)
Heath-Jarrow-Morton-Musiela equation:

dry = po(re)dt + o(ry)dWy

1o (re, ) = (,%m(:v) to(r,2) [ o s)ds

The HIMM equation is an infinite dimen-
sional SDE evolving in the space ‘H of forward
rate curves.



Sometimes you are lucky!

Example:

o(r,z) = ce”

In this case the HJMM equation has a finite di-
mensional state space realization. We have
in fact:

re(x) = B(t,x)Z; — A(t, x)

where Z solves the one-dimensional SDE

dZy = {Cb(t) —aZs} dt + odWy

Furthermore the state process Z can be iden-
tified with the short rate R = r(0).
(A, B and @ are deterministic functions)



A Hilbert Space

Definition:
For each (o, 8) € R?, the space H,, 5 is defined
by

Hap = 1f € C[0,00); || f]l < oo}
where

17117 = Zﬁ [T @] e

where
(n) d"f
VY (x) = dtn( T).

We equip ‘H with the inner product

(f,g)= > B " /OOO £ (2) g (2)e 4y
n=0



Properties of 'H

Proposition:
The following hold.

e [ he linear operator
0
F=—

ox
IS bounded on H

e H is complete, i.e. it is a Hilbert space.

e T he elements in 'H are real analytic func-
tions on R (not only on Ry).

NB: Filipovic and Teichmann!



Stratonovich Integrals

Definition The Stratonovich integral

t
/ X, 0 dY,
0

is defined as

t t 1
/ Xgo0dYs = / XodYs + —(X,Y),
0 0 >

t
<X, Y>t=/OdXde87

Proposition: For any smooth F' we have

F F
AF(LY;) = %—tdt n g_y o dY;



Stratonovich Form of HJMM

dry = p(ry)dt + o(ry) o dWy

where

1d{c, W)

p(re) = po(re) — ST

Main Point:
Using the Stratonovich differential we have no
It0 second order term. Thus we can treat the

SDE above as the ODE

d
= ulr) +o(r) vy

where vy = “white noise”.
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Natural Questions
What do the forward rate curves look like?
What is the support set of the HJMM equation?

When is a given model (e.g. Hull-White) consistent
with a given family (e.g. Nelson-Siegel) of forward
rate curves?

When is the short rate Markov?

When is a finite set of benchmark forward rates
Markov?

When does the interest rate model admit a realiza-
tion in terms of a finite dimensional factor model?

If there exists an FDR how can you construct a
concrete realization?
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Finite Dimensional Realizations

Main Problem:
When does a given interest rate model possess
a finite dimensional realisation, i.e. when can

we write r as

zt = n(z)dt +6(z) o dW (1),
ri(x) = G(z, ),

where z is a finite-dimensional diffusion, and
G:R'xRy —R
or alternatively
G:RY—H

H = the space of forward rate curves
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Examples:

o(r,z) = e,

o(r,r) = xze 7,

o(rz) = e,

1
o(rz) = log (1 ).
14+ z2
>° 2

o(r,z) = /O e °r(s)ds-x“e 7.

Which of these admit a finite dimensional
realisation?
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Earlier literature
e Cheyette (1996)
e Bhar & Chiarella (1997)
e Chiarella & Kwon (1998)
e Inui & Kijima (1998)
e Ritchken & Sankarasubramanian (1995)
e Carverhill (1994)
e Eberlein & Raible (1999)

o Jeffrey (1995)

All these papers present sufficient conditions
for existence of an FDR.
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Present paper

We would like to obtain:

e Necessary and sufficient conditions.

e A better understanding of the deep struc-
ture of the FDR problem.

e A general theory of FDR for arbitrary infi-
nite dimensional SDEs.

We attack the general problem by viewing it
as a geometrical problem.
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Invariant Manifolds

Def:
Consider an interest rate model

dry = pu(re)dt + o(ry) o dWy

on the space ‘H of forward rate curves. A man-

ifold (surface) G C ‘H is an invariant manifold
if

0 ceg=r€¢
P-a.s. forallt >0
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Main Insight
There exists a finite dimensional realization.
iIff

There exists a finite dimensional invariant
manifold.
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Characterizing Invariant Manifolds

Proposition: (Bjork-Christensen)
Consider an interest rate model on Stratonovich
form

dry = p(ry)dt + o(ry) o dWy
A manifold G is invariant under r if and only if
p(r) € Tg(r),
o(r) € Tg(r),

at all points of G. Here Tgz(r) is the tangent
space of G at the point r € G.
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Main Problem

Given:

e An interest rate model on Stratonovich form

dry = p(ry)dt + o(ry) o dWy

e An inital forward rate curve rq:

x — ro(T)
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Question:
When does there exist a finite dimensional man-
ifold G, such that

TQEQ

and

u(r) € Tg(r),
o(r) € Tg(r),

A manifold satisfying these conditions is called
a tangential manifold.
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Abstract Problem

On the Hilbert space 'H, we are given two vec-
tor fields f1(r) and fo(r). We are also given a
point rg € H.

Problem:
When does there exist a finite dimensional man-
ifold G C 'H such that

e \We have the inclusion

ro € G

e For all points r € G we have the relations

fi(r) € Tg(r),
fo(r) € Tg(r)

We call such a ¢ an tangential manifold.
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Easier Problem

On the space 'H, we are given one vector field
f1(r). We are also given a point rqg € H.

Problem:

When does there exist a finite dimensional man-
ifold G C 'H such that

e \We have the inclusion

ro € G

e \We have the relation

fi(r) € Tg(r)

Answer to Easy Problem:

ALWAYS!
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Proof:
Solve the ODE

dry

E — fl(Tt)

with initial point rg. Denote the solution at
time t by

efltro

Then the integral curve {efltro;te R} solves
the problem, i.e.

g = {efltr(); t € R}
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Furthermore, the mapping
G:R—G
where
G(t) = elllrg
parametrizes G. We have
G = Im[G]

Thus we even have a one dimensional coordi-
nate system

.G —R
for G, given by

p=G!
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Back to original problem:
We are given two vector fields f1(r) and fo(r)
and a point rg € H.

Naive Conjecture:
T here exists a two-dimensional tangential man-
ifold, which is parametrized by the mapping

G:R°— X
where
G(s,t) = el25e1tpg
Generally False!
Argument:

If there exists a 2-dimensional manifold, then
it should also be parametrized by

H(s,t) = el1%e/2tp

Moral:
We need some commutativity.
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Lie Brackets

Given two vector fields f1(r) and f»>(r), their
Lie bracket [f1, fo] is a vector field defined by

[f1, f2l = (Df2) f1 — (Df1)f2

where D is the Frechet derivative (Jacobian).

Fact:

eflhethfrO — etheflhTo ~ [fl,fQ]h2

Fact:
If G is tangential to f1 and fo, then it is also

tangential to [f1, f2].
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Definition:
Given vector fields f1(r),..., fn(r), the Lie al-
gebra

{f1(r);. s fn(r)}pa

iIs the smallest linear space of vector fields, con-
taining f1(r),..., fn(r), which is closed under
the Lie bracket.

Conjecture:
f1(r),..., fn(r) generates a finite dimensional
tangential manifold iff

dim{f1(r),.... fn(r)}r 4 < o0
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Frobenius’ Theorem:

Given n independent vector fields fq,..., fn.
There will exist an n-dimensional tangential
manifold iff

span{fi,..., n}

IS closed under the Lie-bracket.

Corollary:

Given n vector fields f1,..., fn. Then there ex-
ists exists a finite dimensional tangential man-
ifold iff the Lie-algebra

{f1,-- -, fatra

generated by fq,..., fn has finite dimension at
each point. The dimension of the manifold
equals the dimension of the Lie-algebra.
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Proposition:

Suppose that the vector fields f1,..., fn are in-
dependent and closed under the Lie bracket.
Fix a point rg € X. Then the tangential man-
ifold is parametrized by

G:R"— (¢
where

G(ty,... tn) = elntn ef2t2€f1t1’ro
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Main result

e Given any fixed initial forward rate curve rq,
there exists a finite dimensional invariant
manifold G with rg € G if and only if the
Lie-algebra

L= {/*La O-}LA

is finite dimensional.

e Given any fixed initial forward rate curve rq,
there exists a finite dimensional realization
if and only if the Lie-algebra

L= {/’La O-}LA

is finite dimensional. The dimension of the
realization equals dim {u, o} 4.
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Deterministic Volatility
o(r,z) = o(x)

Consider a deterministic volatility function o(x).
Then the Ito and Stratonovich formulations
are the same:

dr = {Fr 4+ S} dt + ocdW

where
o0

F=— S = a(a;)/o o(s)ds.

The Lie algebra L is generated by the two vec-
tor fields

w(ir)y=Fr+5S, o(r)=oc
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Proposition:
There exists an FDR iff o is "quasi exponen-

tial”, i.e. of the form
mn
o(z) = > pi(x)e*i®
i=1

where p; is a polynomial.
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Constant Direction Volatility

o(r,z) = o(r)A(z)

T heorem

Assume that ¢’ (r)(X\,\) %= 0. Then the model
admits a finite dimensional realization if and
only if X is quasi-exponential. The scalar field
o(r) can be arbitrary.

Note: The degenerate case o(r)’(\,\) = 0O
corresponds to CIR.
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Short Rate Realizations

Question:
When is a given forward rate model realized by
a short rate model?

r(t,x) = G(t, R, )
dR; = a(t, Ry)dt + b(t, Ry) o dW

Answer:
There must exist a 2-dimensional realization.
(With the short rate R and running time ¢ as
states).

Proposition: The model is a short rate model
only if

dim {:Uﬂ U}LA <2

Theorem: The model is a generic short rate
model if and only if

[u,0]//0
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“All short rate models are affine*

Theorem: (Jeffrey) Assume that the forward
rate volatitliy is of the form

O-(Rta .CB)

Then the model is a generic short rate model
if and only if o is of the form
c(R,z) = c (Ho-Lee)
oc(R,x) ce 4% (Hull-White)
oc(R,x) AMz)vaR+b (CIR)

(X solves a certain Ricatti equation)

Slogan:
Ho-Lee, Hull-White and CIR are the only generic
short rate models.

35



Constructing an FDR

Problem:
Suppose that there actually exists an FDR,

l.e. that
dim{p,o}r 4 < oo.

How do you construct a realization?
Good news: There exists a general and easy

theory for this, including a concrete algorithm.
See Bjork & Landen (2001).
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Example: Deterministic Direction
Volatility

Model:
oi(r,x) = e(r)A(z).

Minimal Realization:

p

dZo = dt,

dZg = leoZy +ve*(G(2))]dt + ¢(G(Z))dWr,
dzd = (ez} + 72 )at, i=1,...,n,

dzg = [doZg + ¢*(G(2)dt,

dzf — (djzg+zj2_1)dt, ji=1,...,q.
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Stochastic Volatility

Forward rate equation:
dry po(re, ye)dt + o (re, ye)dWr,
dyr = a(yg)dt 4+ b(ye) o dV;

Here W and V are independent Wiener and y
is a finite dimensional diffusion living on R*.

0 x
po = a—?“t(iv)-l-ﬁ(?“t,yt,w)/ o(re, yt, s)ds
X 0]

Problem: When does there exist an FDR?

Good news: This can be solved completely
using the Lie algebra approach. See Bjork-
Landen-Svensson (2002).
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Point Process Extensions

Including a driving point process leads to hard
problems. More precisely

e [ he equivalence between existence of an
FDR and existence of an invariant manifold
still holds.

e [ he characterization of an invariant man-
ifold as a tangential manifold is no longer
true.

e [ his is because a point process act glob-
ally whereas a Wiener process act locally,
thereby allowing differential calculus.

e Including a driving point process requires,
for a general theory, completely different
arguments. The picture is very unclear.
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Point Processes: Special Cases

e Chiarella & Nikitopoulos Sklibosios (2003)
Sufficient Conditions

e Tappe (2007)
Necessary Conditions using Lie algebra tech-
inques.

e Elhouar (2008)
Wiener driven models with point process
driven volatilities using Lie algebra techin-
ques.

40



Bjork, T. & Christensen, B.J. (1999) Interest rate
dynamics and consistent forward rate curves. Mathe-
matical Finance, 9, No. 4, 323-348.

Bjork, T. & Gombani A. (1997) Minimal realization
of interest rate models. Finance and Stochastics, 3,
No. 4, 413-432.

Bjork, T. & Svensson, L. (2001) On the existence
of finite dimensional nonlinear realizations for nonlinear
forward rate rate models. Mathematical Finance, 11,
205-243.

Bjork, T. (2001) A geometric view of interest rate the-
ory. In Option Pricing, Interst Rates and Risk Mange-
ment. Cambridge University Press.

Bjork, T. & Landen C. (2001) On the construction
of finite dimensional nonlinear realizations for nonlinear
forward rate models. Finance and Stochastics.

Bjork, T. & Landen C. & Svenssom, L. (2002) On
finite Markovian realizations for stochastic volatility for-
ward rate models. Proc. Royal Soc.

Filipovic, D. & Teichmann, J. (2001) Finite dimen-
sional realizations for stochastic equations in the HJM
framework. Journal of Functional Analysis.

41



Earlier literature

Cheyette, O. (1996) Markov representation of the Heath-
Jarrow-Morton model. Working paper. BARRA Inc,
Berkeley.

Bhar, R. & Chiarella, C. (1997) Transformation of
Heath-Jarrow-Morton models to markovian systems. Eu-
ropean Journal of Finance, 3, No. 1, 1-26.

Chiarella, C & Kwon, K. (1998) Forward rate depen-
dent Markovian transformations of the Heath-Jarrow-
Morton term structure model. Finance and Stochastics,
5, 236-257.

Inui, K. & Kijima, M. (1998) A markovian framework
in multi-factor Heath-Jarrow-Morton models. JFQA 333
no. 3, 423-440.

Ritchken, P. & Sankarasubramanian, L. (1995) Volatil-
ity structures of forward rates and the dynamics of the
term structure. Mathematical Finance, 5, no. 1, 55-72.

Carverhill, A. (1994) When is the spot rate Markovian?
Mathematical Finance, , 305-312.

Eberlein, E. & Raible, S. (1999) Term structure mod-
els driven by general Levy processes. Mathematical Fi-
nance, 9, No 1, 31-53.

Jeffrey, A. (1995) Single factor Heath-Jarrow-Morton
term structure models based on Markovian spot interest
rates. JFQA 30 no.4, 619-642.

42



