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||» Basic question.
How to evaluate the risk of X € L9 = L0 (Q,]—‘,P;Rd)?

||» Basic problems.

(1) ul,u? € RY compensate for the risk of X, but might not
be comparable.

(2) ul € R? does not compensate for the risk of X, but can be
exchanged at initial time into 2 € R? which does.

(3) u € RY does not compensate for the risk of X1, but X! can
be exchanged at terminal time into X2 such that v compensates

for X2.
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||» References.

Superhedging theorems for markets with transaction costs
(Kabanov 99, Schachermayer 04, Pennanen/Penner 10 ...)
Set-valued risk measure ad hoc: Jouini/Touzi/Meddeb 04
Complete theory, constant cone: Hamel/Heyde 10
Complete theory, random cone: Hamel/Heyde/Rudloff 10+



||» Rest of the talk.
e Formal definitions and primal representation
e Dual representation and dual variables
e Super-hedging price as a coherent SRM

e A set-valued AVGOR: definition and computation
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||» Formal definitions.

Space of eligible portfolios.
e M C R? linear subspace, e.g. M =R™ x {0}¢™

Acceptance sets. A C L, 0 < p < 0o, with
(A1) MINA#(), MIN (LZ\A) £ ()

(A2) A+ (L§)+ C A

Risk measures. Ry: L} — P (M) defined by
Rap(X)={ueM: X+ulec A}, XELZ.

Note. Set-valuedness solves the problem of incomparableness!



Result. The set-valued function X — Ry (X) is
(RO) M-translative, i.e.
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Result. The set-valued function X — Ry (X) is
(RO) M-translative, i.e.
VX e L, Vue M: R(X +ul) = R(X) — .
(R1) finite at zero: R(0) # 0 and R(0) # M.
(R2) (L§>+-monotone, i.e.

X?-Xxte(Lh), = R(X?)2R(X').

M-translative functions and some subsets of LZ are one—to—one via

Ap={Xell:0e R(X)}, Ra(X)={ueM:X+ulecA}
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Conical market models with one period.

At Initial Time.
e K7 CR? a solvency cone: closed convex cone with R% C K; # R?

° K}W = K;N M solvency cone restricted to eligible portfolios
Kj-compatible: X € A, ue KM = X+l € A.

At Terminal Time.
o K{1:Q—7P (Rd) (measurable) solvency cone mapping

Kp-compatible: X ¢ A, X'e Ky as. = X+ X' € A.



One-to-one properties for M-translative functions R and A C LZ:

Ap={Xell:0e R(X)}, Ra(X)={ueM:X+ulcA}

R A
finite at zero R(0) £ 0 MINAZQ
R(0) # M MIN(LIN\A) #=0

market-compatible

L7 (Kp)-monotone
R(X) = R(X)+ K}!

A+ Ly(Kr) C A
A+ kK{1CA

convex

positively homogeneous

subadditive
sublinear
closed images
closed graph

convex
cone

A+ACA

convex cone
directionally closed
closed




||»> Duality.

Result. If a function R: Lg — P (M) is convex (closed), then R(X)
is convex (closed) for all X € Lfl. A closed convex Kj-compatible risk
measure R maps into

G(M)={DCR" D=clco (D+ K{")}.
Here: convexity, closedness in terms of the graph

grR={(X,u) € LHx M:u € R(X)}.



Dual representation theorem. R: LZ — G (M) is a closed con-
vex market-compatible risk measure if and only if there is a penalty
function —a: W7 — G (M) such that for all X € LY

R(X)= () {-a@uw)+ (E?[-X]+G(w))nM}.
(Qw)ewd




Dual representation theorem. R: Lfl — G (M) is a closed con-
vex market-compatible risk measure if and only if there is a penalty
function —a: W7 — G (M) such that for all X € LY

R(X)= [\ {-a@uw)+ (E?[-X]+Gw))nM}.
(Quw)ewn

In this case,

—a(Quw)Cc |J (E?|X|+Gw)nM
X'eAp

with G (w) = {a: cR?%: 0 < 'wT:I:} and

Wi = {(Q,w) e M g x (K \M*+ 4+ M+ : diag (w) ;z_g c LY (K;)}
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A note about the proof. Fenchel-Moreau theorem for set-valued
functions, Hamel 09.

A note about dual variables. Assume M = R%, Then
| dQ
WA — {(Q,w) e ML 4 x K\ {0} : diag (w) 7= € L (K;:)}.

Transformation of variables. Y = diag (w) Z—g, ElY] =w € KIJF\ {0}.

This gives: The pair (Y,w) is a consistent pricing process for the
one-period market (K;, Kt = K7 (w)).



The coherent case. R additionally positively homogeneous:

vXelh: R(X)= [ (EY[-X]4+Gw))nM,
(Q,w)EW%
with
dQ

W4 C {(Q,w) e MY g x (K \M*+ 4+ M*) : diag (w) € Ajg}.



T he coherent case. R additionally positively homogeneous:

vXelh:R(X)= [ (EY[-X]4+Gw))nM.
(Qw)eW}
with
q P +\ gL LY o aQ _  +
Wi C {(Q,w) € MY 4 X (KI \M+ + M ) - diag (w) — = € AR}.

The coherent case with M = R¢,
dQ

WY, C {(Q,w) e MLy x K;H\ {0} : diag (w) = € A;;}.



||» Super-hedging price.

¢ ©={tg=0,t1,....,ty =T}, (2 (F)co.F.P), Fr=7F;

o (Kt (w))ieco cone-valued process with RY C K; (w) C R,
K; (w) #= R? closed convex P-a.s. for all t € ©:

e Self—financing portfolio process: adapted R—valued Process
V = (Vt)te@ with (‘/;5_1 =0)

Vip, — VW, 1€ K, as,n=1...,N—1
e [ he attainable set
Ay = {V;: V is a self-financing portfolio process}, t € ©

is a convex cone in LY (Q,ft,P;Rd).



Result. Assume (NA"). Then X — {ueRd: X+ ulle —AT} is a
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Result. Assume (NA"). Then X — {ueRd: X+ ulle —AT} is a
closed coherent market-compatible risk measure with K; = K.

Note. —Ap = Kol + LY (Kyy) + ... + L3 (K7).

Super-hedging theorem. X ¢ L}, v ¢ R
X-vle€Apr & VZeSCPP:E|X"Zp| <v"2.

This produces the dual representation of the super-hedging price in
terms of (Q,w) via the following transformation of variables.



Transformation of variables. Set w = E [Z7] = Zg € KC‘)F\ {0} and

dQ; _ 1 :
= Zmr), ifw; >0,
dP ws ( T)z wy
and choose Cfi%' as density in L3 if w; = 0. Then

(Q,w) € MY 4 x K&\ {0}
E |diag (w) Z—i!]—}]e LZ (Kj), te o

In particular, diag (w) 9% € K& P-a.s. Moreover, E |XTZp| = wTE?[X]
and Z3'uw = wlu, hence the following result.



Result. X € L. Then,

Roa(-X)= [ (E9X]+G W)

(Quw)EWSepp

with

Wsopp = {(Q,’w) S /\/lfd X KSL\ {0} :

, d
Vt € ©: F |diag (w)d—%}"t] c LZ (K{")}

Summary. Set-valued duality covers both super-hedging theorems
and dual representation of risk measures in conical market models.



I» AVER.

Recall (from dual representation theorem for ¢ = oo)

W = {(Q,w) e ML, % (Kﬁ\ML + ML) . diag (w) Z—f__{ c L (K;)} |

If o € (0,1]9,
W = {(Q,w) c W : diag (w) <a]I— Z—?)) € Ly (Ki':)}
then
AVORy (X)= [ (E9[-X]+Gw))nM
(Q,w)EWE®

defines a market-compatible sublinear (coherent) risk measure on Lclz-

Note. This is a "dual-way"” definition! And a new one, by the way.



Questions.
1. Computing values AVQR, (X)7?

2. Minimizing AV@R, (X) over X € C C L7



|» Computing the value AVQR, (X).

Fact 1.
AVORa(X)= (| (E?[-X]+Gw))nM
(Q,w)eEWge
= ﬂ {u e M: E [—YTX] < ’UT’LL}
(Y,’U)Eya
with

\

' ve (BE[Y]+ M) n (Kf + Mt
Yo =1 (Y,v) € LT x M\{0}: Y € K\ {0}
diag (a) E[Y] - Y € K}

\

Note. Linear in (Y,v).



||[» Computing the value AVOR, (X).

Fact 2. If M = R? this simplifies to

AVORa (X)= () (E9[-X]+G(w))
(Q,w)eWSP
= N {u cRe: E [—YTX} < vTu}
(Y,v)eyd

with

Vvi={wv) e Ly (Kf) x K"\ {0}:
v=E[Y], diag(a)v-Y € L (K )}.



|» Computing the value AVOR, (X).

Further assumptions.

o ||, M =R%

e K; is spanned by hl ... RJI

e K7 (w) is spanned by kil (w),..., kT (w)

Note.

e YEKS «» Y>0

e diag (a)v—Y € K P-as. «~ Y <diag(a)v

e (] «~ sup

o X i {u cR: E [—YTX} < fvTu} " almost linear”



|» Computing the value AVQOR, (X).

Analyzing the constraints.
oY €Kl yy=Yi(wp), i=1,....d, n=1,...,N

d .
Vi=1,...,Jp,Vn=1,...,N: > ypp,kl >0
=1

with k/ = k! (wn). This gives N.Jr linear inequality constraints.
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||» Computing the value AVQ@R, (X).

Analyzing the constraints.
e diag (@)v—Y € K

d . d .
\V/j:].,...,JT,\V/n:l,...,NI Zymkgng Zaik,{nvi.
1=1 1=1

This gives another NJp linear inequality constraints.

o v=FI[Y]:
N
Vi=1,...,d: Z PnYin = ;-
n=1

This gives d linear equations.
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||l» Computing the value AVOR, (X).

Analyzing the objective.
° {u c R E [—YTX} < vTu}:

d N
E [—YTX] == > PnZTinYin,
i=1n=1
therefore the objective becomes

S(f)@,—v) (—z) = {u eR": —2'Dj < UTU} '
Altogether.
AVOR (X) =) {S(ng_v) (—2) : A1§ < —C{v, A3§=—Cav, v € K}'_}

with suitable matrices A1, Ao, Cq1, Co, D, Z,7.
Reference. Yankova 10, JP, P.U.



||l» Computing the value AVOR, (X).
Constructing the primal.

The problem
ﬂ {S(Dg,—fu) (_f) ) A{@ < —C,{’U, Ag@ — —Cgv, v € K}I_}
IS the set-valued dual of the following set-valued linear program

inf {Clxl + C'szi Alxl + AQCE‘Q = —TI, ! > O}.
G(R4)



||l» Computing the value AVOR, (X).
Constructing the primal.

The problem
ﬂ {S(Dg,—fu) (_f) ) A{@ < —C,{’U, Ag@ — —Cgv, v € K}I_}

IS the set-valued dual of the following set-valued linear program

inf {Clxl + 02:1:2: Alxl + Agajz = —TI, ! > O}.
G(R4)
Interpretation as vector optimization problem. Look for minimal

points of
{diag () E[2] —2: Z € LY(Kr), Z — 21+ X € LY(Kr), z € RY}
with respect to the order relation in R? generated by Kj.

Reference. Hamel 10+



||l» Computing the value AVOR, (X).
Under the additional assumptions and M = R¢
AV@R, (X)
= {diag (@) E[Z] —2z: Z € LY (Kr), Z — 21+ X € LY (Kr), z € R}
= m {u cRY: E [—YTX} < vTu}
(Yv)eyd
with
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||l» Computing the value AVOR, (X).

Under the additional assumptions and M = R¢
AV@R, (X)
= {diag (@) E[Z] —2z: Z € LY (Kr), Z — 21+ X € LY (Kr), z € R}
= m {u cRY: E [—YTX} < vTu}
(Yv)eyd
with
Vi = {(Y,v) e LY (K}f) x K7\ {0} : v=E[Y], diag (a)v — Y € K;:}

Good news. There are already efficient algorithms for such (vector)
problems (Benson 1998, Ehrgott/L6hne/Shao 2007).

Summary. Computation of values of a set-valued risk measure is a
vector/set optimization problem. Set-valued duality provides tools.
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e Computing super-hedging prices and values of AVOR.
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T hanks for coming.



