Duality for set-valued measures of risk

Andreas H. Hamel

Princeton University & Yeshiva University New York ahamel@princeton.edu, hamel@yu.edu

With: F. Heyde (Halle), B. Rudloff & M. Yankova (Princeton)

| ▶ Basic question.

How to evaluate the risk of $X \in L_d^0 = L^0\left(\Omega, \mathcal{F}, P; \mathbb{R}^d\right)$?

| ▶ Basic question.

How to evaluate the risk of $X \in L_d^0 = L^0(\Omega, \mathcal{F}, P; \mathbb{R}^d)$?

| ▶ Basic problems.

(1) $u^1, u^2 \in \mathbb{R}^d$ compensate for the risk of X, but might not be comparable.

||▶ Basic question.

How to evaluate the risk of $X \in L_d^0 = L^0(\Omega, \mathcal{F}, P; \mathbb{R}^d)$?

|| ▶ Basic problems.

(1) $u^1, u^2 \in \mathbb{R}^d$ compensate for the risk of X, but might not be comparable.

Example. 1-1 exchange rate, 10% transaction costs: neither of

$$u^1 = \begin{pmatrix} 1000 \\ 0 \end{pmatrix}, \quad u^2 = \begin{pmatrix} 0 \\ 1000 \end{pmatrix}$$

is "better".

|| ▶ Basic question.

How to evaluate the risk of $X \in L_d^0 = L^0(\Omega, \mathcal{F}, P; \mathbb{R}^d)$?

|| ▶ Basic problems.

- (1) $u^1, u^2 \in \mathbb{R}^d$ compensate for the risk of X, but might not be comparable.
- (2) $u^1 \in \mathbb{R}^d$ does not compensate for the risk of X, but can be exchanged at initial time into $u^2 \in \mathbb{R}^d$ which does.
- (3) $u \in \mathbb{R}^d$ does not compensate for the risk of X^1 , but X^1 can be exchanged at terminal time into X^2 such that u compensates for X^2 .

|▶ Basic idea.

 $A\subseteq L_d^0$ set of acceptable payoffs: The mapping

$$X \mapsto R_A(X) = \left\{ u \in \mathbb{R}^d \colon X + u \mathbb{I} \in A \right\} \subseteq \mathcal{P}\left(\mathbb{R}^d\right)$$

is understood as a set-valued risk measure $R_A \colon L_d^{\mathsf{O}} o \mathcal{P}\left(\mathbb{R}^d\right)$.

|▶ Basic idea.

 $A \subseteq L_d^0$ set of acceptable payoffs: The mapping

$$X \mapsto R_A(X) = \left\{ u \in \mathbb{R}^d \colon X + u \mathbb{1} \in A \right\} \subseteq \mathcal{P}\left(\mathbb{R}^d\right)$$

is understood as a set-valued risk measure $R_A \colon L_d^0 o \mathcal{P}\left(\mathbb{R}^d\right)$.

| ► References.

Superhedging theorems for markets with transaction costs

(Kabanov 99, Schachermayer 04, Pennanen/Penner 10 ...)

Set-valued risk measure ad hoc: Jouini/Touzi/Meddeb 04

Complete theory, constant cone: Hamel/Heyde 10

Complete theory, random cone: Hamel/Heyde/Rudloff 10+

|| ▶ Rest of the talk.

- Formal definitions and primal representation
- Dual representation and dual variables
- Super-hedging price as a coherent SRM
- A set-valued AV@R: definition and computation

| ► Formal definitions.

Space of eligible portfolios.

ullet $M\subseteq\mathbb{R}^d$ linear subspace, e.g. $M=\mathbb{R}^m imes\{0\}^{d-m}$

|| ► Formal definitions.

Space of eligible portfolios.

 \bullet $M\subseteq\mathbb{R}^d$ linear subspace, e.g. $M=\mathbb{R}^m imes\{0\}^{d-m}$

Acceptance sets. $A \subseteq L_d^p$, $0 \le p \le \infty$, with

(A1)
$$M \mathbb{I} \cap A \neq \emptyset$$
, $M \mathbb{I} \cap \left(L_d^p \backslash A\right) \neq \emptyset$

(A2)
$$A + \left(L_d^p\right)_+ \subseteq A$$
.

|| ► Formal definitions.

Space of eligible portfolios.

• $M \subseteq \mathbb{R}^d$ linear subspace, e.g. $M = \mathbb{R}^m \times \{0\}^{d-m}$

Acceptance sets. $A \subseteq L_d^p$, $0 \le p \le \infty$, with

(A1)
$$M \mathbb{I} \cap A \neq \emptyset$$
, $M \mathbb{I} \cap \left(L_d^p \backslash A\right) \neq \emptyset$

(A2)
$$A + \left(L_d^p\right)_+ \subseteq A$$
.

Risk measures. $R_A : L_d^p \to \mathcal{P}(M)$ defined by

$$R_A(X) = \{ u \in M : X + u \mathbb{1} \in A \}, \quad X \in L_d^p.$$

Note. Set-valuedness solves the problem of incomparableness!

Result. The set-valued function $X \mapsto R_A(X)$ is

(R0) M-translative, i.e.

$$\forall X \in L_d^p, \ \forall u \in M : R(X + u\mathbb{1}) = R(X) - u.$$

- **(R1)** finite at zero: $R(0) \neq \emptyset$ and $R(0) \neq M$.
- (R2) $(L_d^p)_+$ -monotone, i.e.

$$X^{2} - X^{1} \in \left(L_{d}^{p}\right)_{+} \Rightarrow R\left(X^{2}\right) \supseteq R\left(X^{1}\right).$$

Result. The set-valued function $X \mapsto R_A(X)$ is

(R0) M-translative, i.e.

$$\forall X \in L_d^p, \ \forall u \in M : R(X + u\mathbb{1}) = R(X) - u.$$

(R1) finite at zero: $R(0) \neq \emptyset$ and $R(0) \neq M$.

(R2) $(L_d^p)_+$ -monotone, i.e.

$$X^{2} - X^{1} \in \left(L_{d}^{p}\right)_{+} \Rightarrow R\left(X^{2}\right) \supseteq R\left(X^{1}\right).$$

 $M ext{-translative functions}$ and some subsets of L^p_d are one-to-one via

$$A_R = \{X \in L_d^p : 0 \in R(X)\}, \quad R_A(X) = \{u \in M : X + u \mathbb{1} \in A\}$$

Conical market models with one period.

At Initial Time.

- ullet $K_I\subseteq\mathbb{R}^d$ a solvency cone: closed convex cone with $\mathbb{R}^d_+\subseteq K_I\neq\mathbb{R}^d$
- \bullet $K_I^M = K_I \cap M$ solvency cone restricted to eligible portfolios

 K_I -compatible: $X \in A$, $u \in K_I^M \Rightarrow X + u\mathbb{1} \in A$.

Conical market models with one period.

At Initial Time.

- ullet $K_I\subseteq\mathbb{R}^d$ a solvency cone: closed convex cone with $\mathbb{R}^d_+\subseteq K_I\neq\mathbb{R}^d$
- \bullet $K_I^M = K_I \cap M$ solvency cone restricted to eligible portfolios

$$K_I$$
-compatible: $X \in A$, $u \in K_I^M \Rightarrow X + u\mathbb{1} \in A$.

At Terminal Time.

ullet $K_T\colon\Omega o\mathcal{P}\left(\mathbb{R}^d
ight)$ (measurable) solvency cone mapping

$$K_T$$
-compatible: $X \in A$, $X' \in K_T$ a.s. $\Rightarrow X + X' \in A$.

One-to-one properties for M-translative functions R and $A \subseteq L_d^p$:

$$A_R = \{X \in L_d^p : 0 \in R(X)\}, \quad R_A(X) = \{u \in M : X + u \mathbb{1} \in A\}$$

	R	A
finite at zero	$R(0) \neq \emptyset$	$M 1 \cap A \neq \emptyset$
	$R(0) \neq M$	$M 1 \cap (L_d^p \backslash A) \neq \emptyset$
market-compatible	$L^p_d(K_T)$ -monotone	$A + L_d^p(K_T) \subseteq A$
	$R(X) = R(X) + K_0^M$	$A + K_0^M 1 \subseteq A$
	convex	convex
	positively homogeneous	cone
	subadditive	$A + A \subseteq A$
	sublinear	convex cone
	closed images	directionally closed
	closed graph	closed

|| ▶ Duality.

Result. If a function $R: L^p_d \to \mathcal{P}(M)$ is convex (closed), then R(X) is convex (closed) for all $X \in L^p_d$. A closed convex K_I -compatible risk measure R maps into

$$\mathbb{G}(M) = \{ D \subseteq \mathbb{R}^d \colon D = \operatorname{clco}\left(D + K_I^M\right) \}.$$

Here: convexity, closedness in terms of the graph

$$\operatorname{gr} R = \left\{ (X, u) \in L_d^p \times M : u \in R(X) \right\}.$$

Dual representation theorem. $R \colon L^p_d \to \mathbb{G}(M)$ is a closed convex market-compatible risk measure if and only if there is a penalty function $-\alpha \colon \mathcal{W}^q \to \mathbb{G}(M)$ such that for all $X \in L^p_d$

$$R(X) = \bigcap_{(Q,w)\in\mathcal{W}^q} \left\{ -\alpha(Q,w) + \left(E^Q[-X] + G(w) \right) \cap M \right\}.$$

Dual representation theorem. $R \colon L^p_d \to \mathbb{G}(M)$ is a closed convex market-compatible risk measure if and only if there is a penalty function $-\alpha \colon \mathcal{W}^q \to \mathbb{G}(M)$ such that for all $X \in L^p_d$

$$R(X) = \bigcap_{(Q,w)\in\mathcal{W}^q} \left\{ -\alpha(Q,w) + \left(E^Q[-X] + G(w) \right) \cap M \right\}.$$

In this case,

$$-\alpha\left(Q,w\right)\subseteq\operatorname{CI}\bigcup_{X'\in A_{R}}\left(E^{Q}\left[X'\right]+G\left(w\right)\right)\cap M$$

with $G(w) = \left\{ x \in \mathbb{R}^d \colon 0 \le w^T x \right\}$ and

$$\mathcal{W}^q = \left\{ (Q, w) \in \mathcal{M}_{1,d}^P \times \left(K_I^+ \backslash M^\perp + M^\perp \right) : \operatorname{diag}\left(w\right) \frac{dQ}{dP} \in L_d^q\left(K_T^+\right) \right\}.$$

A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about dual variables. Assume $M = \mathbb{R}^d$. Then

$$\mathcal{W}^{q} = \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times K_{I}^{+} \setminus \{0\} : \operatorname{diag}(w) \frac{dQ}{dP} \in L_{d}^{q}(K_{T}^{+}) \right\}.$$

A note about the proof. Fenchel-Moreau theorem for set-valued functions, Hamel 09.

A note about dual variables. Assume $M = \mathbb{R}^d$. Then

$$\mathcal{W}^{q} = \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times K_{I}^{+} \setminus \{0\} : \operatorname{diag}(w) \frac{dQ}{dP} \in L_{d}^{q}(K_{T}^{+}) \right\}.$$

Transformation of variables. $Y = \text{diag}(w) \frac{dQ}{dP}$, $E[Y] = w \in K_I^+ \setminus \{0\}$.

This gives: The pair (Y, w) is a consistent pricing process for the one-period market $(K_I, K_T = K_T(\omega))$.

The coherent case. R additionally positively homogeneous:

$$\forall X \in L_d^p \colon R(X) = \bigcap_{(Q,w) \in \mathcal{W}_R^q} \left(E^Q \left[-X \right] + G(w) \right) \cap M.$$

with

$$\mathcal{W}_{R}^{q} \subseteq \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times \left(K_{I}^{+} \backslash M^{\perp} + M^{\perp} \right) : \operatorname{diag}\left(w\right) \frac{dQ}{dP} \in A_{R}^{+} \right\}.$$

The coherent case. R additionally positively homogeneous:

$$\forall X \in L_d^p \colon R(X) = \bigcap_{(Q,w) \in \mathcal{W}_R^q} \left(E^Q \left[-X \right] + G(w) \right) \cap M.$$

with

$$\mathcal{W}_{R}^{q} \subseteq \left\{ (Q,w) \in \mathcal{M}_{1,d}^{P} \times \left(K_{I}^{+} \backslash M^{\perp} + M^{\perp} \right) : \operatorname{diag}\left(w\right) \frac{dQ}{dP} \in A_{R}^{+} \right\}.$$

The coherent case with $M = \mathbb{R}^d$.

$$\mathcal{W}_{R}^{q} \subseteq \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times K_{I}^{+} \setminus \{0\} : \operatorname{diag}(w) \frac{dQ}{dP} \in A_{R}^{+} \right\}.$$

|| ▶ Super-hedging price.

- $\Theta = \{t_0 = 0, t_1, \dots, t_N = T\}, (\Omega, (\mathcal{F}_t)_{t \in \Theta}, \mathcal{F}, P), \mathcal{F}_T = \mathcal{F};$
- $(K_t(\omega))_{t\in\Theta}$ cone-valued process with $\mathbb{R}^d_+\subseteq K_t(\omega)\subseteq\mathbb{R}^d$, $K_t(\omega)\neq\mathbb{R}^d$ closed convex P-a.s. for all $t\in\Theta$;
- Self-financing portfolio process: adapted \mathbb{R}^d -valued process $V = (V_t)_{t \in \Theta}$ with $(V_{t-1} = 0)$

$$V_{t_n} - V_{t_{n-1}} \in -K_{t_n}$$
 a.s., $n = 1, ..., N-1$

• The attainable set

 $A_t = \{V_t \colon V \text{ is a self-financing portfolio process}\}, \ t \in \Theta$ is a convex cone in $L^0\left(\Omega, \mathcal{F}_t, P; \mathbb{R}^d\right)$.

Result. Assume (NA^r). Then $X \mapsto \{u \in \mathbb{R}^d : X + u\mathbb{1} \in -A_T\}$ is a closed coherent market-compatible risk measure with $K_I = K_0$.

Note.
$$-A_T = K_0 \mathbb{I} + L_d^0(K_{t_1}) + \ldots + L_d^0(K_T)$$
.

Result. Assume (NA^r) . Then $X \mapsto \{u \in \mathbb{R}^d : X + u\mathbb{1} \in -A_T\}$ is a closed coherent market-compatible risk measure with $K_I = K_0$.

Note.
$$-A_T = K_0 \mathbb{I} + L_d^0(K_{t_1}) + \ldots + L_d^0(K_T)$$
.

Super-hedging theorem. $X \in L_d^1$, $v \in \mathbb{R}^d$

$$X - v \mathbb{1} \in A_T \quad \Leftrightarrow \quad \forall Z \in SCPP \colon E\left[X^T Z_T\right] \le v^T Z_0.$$

This produces the dual representation of the super-hedging price in terms of (Q, w) via the following transformation of variables.

Transformation of variables. Set $w = E[Z_T] = Z_0 \in K_0^+ \setminus \{0\}$ and

$$\frac{dQ_i}{dP} = \frac{1}{w_i} (Z_T)_i \quad \text{if } w_i > 0,$$

and choose $\frac{dQ_i}{dP}$ as density in L^{∞}_+ if $w_i=0$. Then

$$(Q, w) \in \mathcal{M}_{1,d}^P \times K_0^+ \setminus \{0\}$$

$$E\left[\operatorname{diag}\left(w\right)\frac{dQ}{dP}|\mathcal{F}_{t}\right]\in L_{d}^{p}\left(K_{t}^{+}\right),\ t\in\Theta$$

In particular, diag (w) $\frac{dQ}{dP} \in K_T^+$ P-a.s. Moreover, $E\left[X^TZ_T\right] = w^TE^Q\left[X\right]$ and $Z_0^Tu = w^Tu$, hence the following result.

Result. $X \in L^1_d$. Then,

$$R_{-A_T}(-X) = \bigcap_{(Q,w) \in \mathcal{W}_{SCPP}^{\infty}} \left(E^Q[X] + G(w) \right)$$

with

$$\mathcal{W}_{SCPP}^{\infty} = \left\{ (Q, w) \in \mathcal{M}_{1,d}^{P} \times K_{0}^{+} \setminus \{0\} : \\ \forall t \in \Theta : E \left[\operatorname{diag}(w) \frac{dQ}{dP} | \mathcal{F}_{t} \right] \in L_{d}^{p} \left(K_{t}^{+} \right) \right\}.$$

Summary. Set-valued duality covers both super-hedging theorems and dual representation of risk measures in conical market models.

||▶ AV@R.

Recall (from dual representation theorem for $q = \infty$)

$$\mathcal{W}^{\infty} = \left\{ (Q, w) \in \mathcal{M}_{1, d}^{P} \times \left(K_{I}^{+} \backslash M^{\perp} + M^{\perp} \right) : \operatorname{diag}\left(w\right) \frac{dQ}{dP} \in L_{d}^{\infty}\left(K_{T}^{+}\right) \right\}.$$

If $\alpha \in (0,1]^d$,

$$\mathcal{W}_{\alpha}^{\infty} = \left\{ (Q, w) \in \mathcal{W}^{\infty} : \operatorname{diag}(w) \left(\alpha \mathbb{I} - \frac{dQ}{dP} \right) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \right\}$$

then

$$AV@R_{\alpha}(X) = \bigcap_{(Q,w) \in \mathcal{W}_{\alpha}^{\infty}} \left(E^{Q} \left[-X \right] + G(w) \right) \cap M$$

defines a market-compatible sublinear (coherent) risk measure on \mathcal{L}_d^1 .

Note. This is a "dual-way" definition! And a new one, by the way.

Questions.

- 1. Computing values $AV@R_{\alpha}(X)$?
- 2. Minimizing $AV@R_{\alpha}(X)$ over $X \in C \subseteq L_d^1$?

Fact 1.

$$AV@R_{\alpha}(X) = \bigcap_{(Q,w) \in \mathcal{W}_{\alpha}^{\infty}} \left(E^{Q} \left[-X \right] + G(w) \right) \cap M$$
$$= \bigcap_{(Y,v) \in \mathcal{Y}_{\alpha}} \left\{ u \in M : E \left[-Y^{T}X \right] \leq v^{T}u \right\}$$

with

$$\mathcal{Y}_{\alpha} = \left\{ (Y, v) \in L_{d}^{\infty} \times M \setminus \{0\} : \begin{array}{l} v \in \left(E\left[Y\right] + M^{\perp}\right) \cap \left(K_{I}^{+} + M^{\perp}\right) \\ Y \in K_{T}^{+} \setminus \{0\} \\ \operatorname{diag}\left(\alpha\right) E\left[Y\right] - Y \in K_{T}^{+} \end{array} \right\}.$$

Note. Linear in (Y, v).

Fact 2. If $M = \mathbb{R}^d$ this simplifies to

$$AV@R_{\alpha}(X) = \bigcap_{(Q,w) \in \mathcal{W}_{\alpha}^{\infty}} \left(E^{Q} \left[-X \right] + G(w) \right)$$
$$= \bigcap_{(Y,v) \in \mathcal{Y}_{\alpha}^{d}} \left\{ u \in \mathbb{R}^{d} : E \left[-Y^{T}X \right] \leq v^{T}u \right\}$$

with

$$\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \setminus \{0\} : \right.$$

$$v = E[Y], \operatorname{diag}(\alpha) v - Y \in L_{d}^{\infty} \left(K_{T}^{+} \right) \right\}.$$

Further assumptions.

- $\bullet |\Omega|$, $M = \mathbb{R}^d$,
- \bullet K_I is spanned by h^1, \ldots, h^{J_I}
- $K_T(\omega)$ is spanned by $k^1(\omega), \ldots, k^{J_T(\omega)}$

Note.

- $Y \in K_T^+ \iff Y \ge 0$
- diag $(\alpha) v Y \in K_T^+$ P-a.s. $\longleftrightarrow Y \leq \text{diag}(\alpha) v$
- ∩ ← sup
- $\bullet \ X \mapsto \left\{u \in \mathbb{R}^d \colon E\left[-Y^TX\right] \leq v^Tu\right\} \text{ "almost linear"}$

Analyzing the constraints.

• $Y \in K_T^+$: $y_{in} = Y_i(\omega_n), i = 1, ..., d, n = 1, ..., N$

$$\forall j = 1, ..., J_T, \forall n = 1, ..., N: \sum_{i=1}^{d} y_{in} k_{in}^{j} \ge 0$$

with $k_{in}^{j} = k_{i}^{j}(\omega_{n})$. This gives NJ_{T} linear inequality constraints.

Analyzing the constraints.

• diag $(\alpha) v - Y \in K_T^+$:

$$\forall j = 1, \dots, J_T, \forall n = 1, \dots, N: \sum_{i=1}^d y_{in} k_{in}^j \leq \sum_{i=1}^d \alpha_i k_{in}^j v_i.$$

This gives another NJ_T linear inequality constraints.

Analyzing the constraints.

• diag $(\alpha) v - Y \in K_T^+$:

$$\forall j = 1, \dots, J_T, \forall n = 1, \dots, N: \sum_{i=1}^d y_{in} k_{in}^j \leq \sum_{i=1}^d \alpha_i k_{in}^j v_i.$$

This gives another NJ_T linear inequality constraints.

• v = E[Y]:

$$\forall i = 1, ..., d: \sum_{n=1}^{N} p_n y_{in} = v_i.$$

This gives d linear equations.

Analyzing the objective.

 $\bullet \ \left\{ u \in \mathbb{R}^d \colon E\left[-Y^TX\right] \le v^Tu \right\} :$

$$E[-Y^TX] = -\sum_{i=1}^{d} \sum_{n=1}^{N} p_n x_{in} y_{in},$$

therefore the objective becomes

$$S_{(\widehat{D}\widehat{y},-v)}(-\widehat{x}) = \left\{ u \in \mathbb{R}^d : -\widehat{x}^T \widehat{D}\widehat{y} \leq v^T u \right\}.$$

Analyzing the objective.

 $\bullet \ \left\{ u \in \mathbb{R}^d \colon E\left[-Y^TX\right] \le v^Tu \right\} :$

$$E[-Y^TX] = -\sum_{i=1}^{d} \sum_{n=1}^{N} p_n x_{in} y_{in},$$

therefore the objective becomes

$$S_{(\widehat{D}\widehat{y},-v)}(-\widehat{x}) = \left\{ u \in \mathbb{R}^d : -\widehat{x}^T \widehat{D}\widehat{y} \leq v^T u \right\}.$$

Altogether.

$$AV@R_{\alpha}(X) = \bigcap \left\{ S_{(\widehat{D}\widehat{y}, -v)}(-\widehat{x}) : A_{1}^{T}\widehat{y} \leq -C_{1}^{T}v, \ A_{2}^{T}\widehat{y} = -C_{2}^{T}v, \ v \in K_{I}^{+} \right\}$$

with suitable matrices A_1 , A_2 , C_1 , C_2 , \widehat{D} , \widehat{x}, \widehat{y} .

Reference. Yankova 10, JP, P.U.

Constructing the primal.

The problem

$$\bigcap \left\{ S_{(\widehat{D}\widehat{y},-v)}(-\widehat{x}) : A_1^T \widehat{y} \le -C_1^T v, \ A_2^T \widehat{y} = -C_2^T v, \ v \in K_I^+ \right\}$$

is the set-valued dual of the following set-valued linear program

$$\inf_{\mathbb{G}(\mathbb{R}^d)} \left\{ C_1 x^1 + C_2 x^2 \colon A_1 x^1 + A_2 x^2 = -\hat{x}, \ x^1 \ge 0 \right\}.$$

Constructing the primal.

The problem

$$\bigcap \left\{ S_{(\widehat{D}\widehat{y},-v)}(-\widehat{x}) : A_1^T \widehat{y} \le -C_1^T v, \ A_2^T \widehat{y} = -C_2^T v, \ v \in K_I^+ \right\}$$

is the set-valued dual of the following set-valued linear program

$$\inf_{\mathbb{G}(\mathbb{R}^d)} \left\{ C_1 x^1 + C_2 x^2 \colon A_1 x^1 + A_2 x^2 = -\hat{x}, \ x^1 \ge 0 \right\}.$$

Interpretation as vector optimization problem. Look for minimal points of

$$\left\{\operatorname{diag}\left(\alpha\right)E\left[Z\right]-z\colon Z\in L_{d}^{q}\left(K_{T}\right),\; Z-z\mathbb{1}+X\in L_{d}^{q}\left(K_{T}\right),\; z\in\mathbb{R}^{d}\right\}$$

with respect to the order relation in \mathbb{R}^d generated by K_I .

Reference. Hamel 10+

Under the additional assumptions and $M = \mathbb{R}^d$

$$\begin{split} &AV@R_{\alpha}\left(X\right)\\ &=\left\{\operatorname{diag}\left(\alpha\right)E\left[Z\right]-z\colon Z\in L_{d}^{q}\left(K_{T}\right),\;Z-z\mathbb{1}+X\in L_{d}^{q}\left(K_{T}\right),\;z\in\mathbb{R}^{d}\right\}\\ &=\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}^{d}}\left\{u\in\mathbb{R}^{d}\colon E\left[-Y^{T}X\right]\leq v^{T}u\right\} \end{split}$$

with

$$\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \setminus \left\{ 0 \right\} : v = E\left[Y \right], \, \operatorname{diag}\left(\alpha \right) v - Y \in K_{T}^{+} \right\}$$

Under the additional assumptions and $M = \mathbb{R}^d$

$$\begin{split} &AV@R_{\alpha}\left(X\right)\\ &=\left\{\operatorname{diag}\left(\alpha\right)E\left[Z\right]-z\colon Z\in L_{d}^{q}\left(K_{T}\right),\;Z-z\mathbb{1}+X\in L_{d}^{q}\left(K_{T}\right),\;z\in\mathbb{R}^{d}\right\}\\ &=\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}^{d}}\left\{u\in\mathbb{R}^{d}\colon E\left[-Y^{T}X\right]\leq v^{T}u\right\} \end{split}$$

with

$$\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \setminus \{0\} : v = E[Y], \operatorname{diag}(\alpha) v - Y \in K_{T}^{+} \right\}$$

Good news. There are already efficient algorithms for such (vector) problems (Benson 1998, Ehrgott/Löhne/Shao 2007).

Under the additional assumptions and $M = \mathbb{R}^d$

$$\begin{split} &AV@R_{\alpha}\left(X\right)\\ &=\left\{\operatorname{diag}\left(\alpha\right)E\left[Z\right]-z\colon Z\in L_{d}^{q}\left(K_{T}\right),\;Z-z\mathbb{1}+X\in L_{d}^{q}\left(K_{T}\right),\;z\in\mathbb{R}^{d}\right\}\\ &=\bigcap_{(Y,v)\in\mathcal{Y}_{\alpha}^{d}}\left\{u\in\mathbb{R}^{d}\colon E\left[-Y^{T}X\right]\leq v^{T}u\right\} \end{split}$$

with

$$\mathcal{Y}_{\alpha}^{d} = \left\{ (Y, v) \in L_{d}^{\infty} \left(K_{T}^{+} \right) \times K_{I}^{+} \setminus \{0\} : v = E[Y], \operatorname{diag}(\alpha) v - Y \in K_{T}^{+} \right\}$$

Good news. There are already efficient algorithms for such (vector) problems (Benson 1998, Ehrgott/Löhne/Shao 2007).

Summary. Computation of values of a set-valued risk measure is a vector/set optimization problem. Set-valued duality provides tools.

|| ▶ What's next?

- Computing super-hedging prices and values of AV@R.
- Set-valued optimization problems for set-valued risk measures.
- Law invariance of set-valued risk measures.

|| ▶ What's next?

- Computing super-hedging prices and values of AV@R.
- Set-valued optimization problems for set-valued risk measures.
- Law invariance of set-valued risk measures.

Thanks for coming.