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Introduction

Numerical Methods for Pricing American Option
1. Closed-Form Solution: It is difficult to find a closed-form solution.

2. Lattice Methods: When the condition is simple, the lattice methods
give good approximated solutions.

3. Monte Carlo Simulation: When the condition is complicated, the
Monte Carlo simulation is practical.

Monte Carlo simulation

Lower Bound: A stopping time gives a lower bound.

> The least-square method gives a good stopping time.
Longstaff and Schwartz (2001)

Upper Bound: A martingale gives an upper bound.

>

]



Model and Problem

Setup

The saving account is the numeraire.

TeN . Fixed Maturity
(QF,P,{F;k=0,1,...,T}) : Filtered probability space
Sk (k=0,1,...,7) : Price Process of Risky Asset
He (k=0,1,...,T) . Payoff of American Option
Vi (k=0,1,...,T) : Price of American Option
Assumption

e P is a unique equivalent martingale measure.
o Fy is a natural filtration generated by S. We write Ex[] = E[-|Fk].
e H is an adapted process.

Definition 1 A supersolution is a supermartingale X satisfying

Xe>He, k=0,1,...,T—1

and the maturity condition, that is, X7 = Hr.

> Any supersolution is an upper bound process of the American option.



Model and Problem

Main Problem

Suppose that a supersolution U is given. Note that Uy is an upper bound.
Suppose that the lower bound process L of the continuation value is given.

L < Ex[Vig1]l < V< U, k<T,
—_——

continuation value

Lt = Hr (= Ur).

Chen and Glasserman (2007) proposes an iterative method.
1. Using the supersolution U, a martingale is given by
MY =35 (U — E1[U]), k=0,1,...,T.
2. Using the martingale M, a new supersolution (= upper bound process) is
given by UY = Ex[maxe<i<7(He — Me)] + Mk, k=0,1,..., T.
e The iterative improvement converges to the true price.

e The calculation of the conditional expectation is necessary at all times
and all states for the Doob decomposition.

® The lower bound process is not used.

[We want to find a computationally-efficient improvement method using L.]




Main Results

Basic Result

Let 7% be the set of the stopping times whose values are greater than or
equal to k.

Theorem 1 Let 7,7 € 7° and 71 < 7. Suppose that V satisfies the
martingale property in [0, 1] U [r1 + 1, 72], that is,

Vi = Ek[vk+1]; k e [0,7'1 — 1] U [7'1 + 1,7 — 1]

Martingale Martingale

|0 1 |7'1 +1 )
Let

w(Ti, 72) = E[max(Hy, Er[Un])]-
Then

Vo < w(m,m) < Uo.
———

New Upper Bound




Main Results

Methods 1, 2

We use the mathematical convention the minimum over the empty set is co,
min(0) = +o0.

Lemma 1 Let 77" = min{k > O|Hx > Li} A T. Then V satisfies the martingale
property in [0, 7] , thatis, Vi = Ex[Vi41] for k € [0, 7 — 1].

Corollary 1 Let w} = w(ry, 7). Then Vo < wj < Us.

Corollary 2 Let w} = w(rf, (11 +1) A T). Then Vo < w} < wj < Us.

o w? < w,. --- w}isa better upper bound than w;.
e When Ui = Ex[maxk<e<7(H: — M:)] + My,
WL1 = E[max.rlx SfST(Hf — Mt)],
WL2 = E[max (HTI* N ETl* [max(.rlx+1)A7—§t§7—(Ht - Mt)] + MTI*)]

e w} includes no conditional expectation per path.

e w? requires only one conditional expectation per path.

e The iterated method requires T conditional expectations per path.

The calculations of w} and w? spend much less time than that of the
iterative method.
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Main Results

Method 3

Lemma 2 Let 75 = min{k > 71'|Hx > Ly} A T. Then V satisfies the martingale
property in [r7 + 1,75] , thatis, Vi = Ex[Vi41] for k € [11 + 1,75 —1].

Corollary 3 Let
3 * *
wp = W(’7‘1 s T2 )

Then

Vo <w? <wf < U

e w} is the best upper bound of the three proposed methods.

e When Ui = Ex[maxk<e<7(H: — M:)] + My,
3
w; = E[max <HT1* Erp [Tz*n%?)g(T(Ht — M)+ I\/ITI*)].
When the lower bound process can be

calculated by an analytic formula, the calculation of 75 is not
time-consuming and then



Main Results

Lower Bound Effect

Lemma 3 Let 72,7 € T°. If 7, < 73, then

w(Ta, Ta) > w(Tb, Tb),
w(Ta, (Ta + ) AT) > w(rp, (7 + 1) A T).

Proposition 1 Let L? and L? be lower bound processes. Suppose that

L2< Ll k=0,1,...,T. L”is a better lower bound process than L?.
k ko )y 9
Then
1
Wl}a 2 Wb,
WLQa > Wfb,

W[a 2> Wpp.




Example

European Option Based Model

Let VE be the price process of the European option satisfying VE = Ex[Hr].

M, = VE — V£,
Uk = Ex[ max (H: — M¢)] + M.
k<t<T

We call this model the European option based model.

Proposition 2 Consider the European option based model with L = VE.
7 € T satisfies 7 < 77, then

U = w(r,7) = w(r, (T +1) A T).

If

If L is smaller than V£, it fails to improve the upper bound.

Proposition 3 In the European option based model, if L = V£, then we have

1. 2
Up = wi>wi = wi.

e VE is the worst lower bound which may improve the upper bound.

o We check whether w7 = w} generated by VE can improve the upper
bound by the numerical analysis.
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Simulation Condition

e The price process is given by the Black Scholes Model, that is,

Sk = Sk—1exp <—%2At—|— a\/Eﬁk) s k=1,...,T,
Hi = max (Ke_rkAt — Sk,O) , k=0,1,...,T,
where &1, ..., &7 are independent and standard normally distributed.
e Let L= V", thatis,
Ly = K&(d(k, T, K,0)) — Se®(d(k, T,K,0%)), k=0,1,...,T—1
where ®(+) is the standard normal distribution function and

d(k, T,K,r) = ﬁ <|og S—Kk — <r — %gz) (T - k)At) .

e The number of paths for calculating the expectation is 2, 500.
e The number of paths for calculating the conditional expectation is 500.
® The antithetic sampling is used.
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Example

Better Lower Bound
o Let L3 =15 =Hrandfork=0,1,..., T —1,
Ly = max< sup Ek[HT]> , L= sup Ex[H-]
to>k TETrU,T TeTk+1

where 7;, 7 is the set of the stopping times whose values are to or T.

e [? can be calculated by the analytic formula since

sup Ey[H:] = K&(d(to,t1,5;,0)) — S ®(d(to, t1, Sr, 07))
TETfLT
+ K(DQ(_d(tOv t1,5:1,0),d(t0, T7 K7 0)v ;1—_ ZO)
— o
— Su®a(=d(to,t1,S;,0%), d(to, T, K, 07) 5—2)
— o

where ®,(-,-; p) is the standard bivariate normal distribution function.
S;, is a solution of

Ko(d(t, T, K,0)) — S &(d(t1, T, K,0%)) = Ke M4F — S

Note that L? can be calculated by the lattice tree.
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Numerical Result (Lower Bound Effect)

Example

K =90 (OTM)

T Uy WL3 WEa Wfb Vo
50 | 3.471(0.002) | 3.469(0.002) | 3.465(0.002) | 3.463(0.002) | 3.460
100 | 5.861(0.006) | 5.856(0.006) | 5.845(0.006) | 5.821(0.006) | 5.806
150 | 7.618(0.010) | 7.612(0.009) | 7.584(0.010) | 7.542(0.010) | 7.509

K =100 (ATM)

T U WL3 W A Wfb Vo
50 7.612(0.004) 7.608(0.004) 7.596(0.004) 7.581(0.004) 7.579
100 | 10.334(0.009) | 10.327(0.008) | 10.299(0.009) | 10.254(0.009) | 10.223
150 | 12.274(0.015) | 12.268(0.013) | 12.225(0.014) | 12.123(0.014) | 12.064

K =110 (ITM)

T Uy WL3 W a W3 Vo
50 | 13.704(0.006) | 13.696(0.006) | 13.671(0.006) | 13.629 (O 006) | 13.616
100 | 16.253(0.013) | 16.241(0.011) | 16.195(0.012) | 16.089(0.012) | 16.037
150 | 18.151(0.019) | 18.145(0.016) | 18.066(0.018) | 17.888(0.019) | 17.782

L U >w>wi >w) > Vo o

L < L*< L Lower Bound Effect

2. WL3,, > V4. The proposed methods can improve the upper bound efficiently

but
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Example

Bermudan Max Call Option on five Assets
Suppose that the price processes S’ for i = 1,...,5 are given by Sj = S,

2
Sl =5 _,exp <<—q— %) At—|—0\/At£L) , k=1,...,T.

Hi = max (maxi<i<s Sj — Ke_’kAt,O) , k=0,1,..., T.

The number of paths for calculating the expectation and the conditional
expectation are 250, 000 and 500 respectively.

An upper bound process is generated by the single European options.
A lower bound process is based on the least square method.

The true price V is the point estimate in Broadie and Glasserman (2004).

At So U W,} WE Vo

1/2 90 | 17.572

0.015 16.866 (0.015 16.496 (0.014 16.474

1/2 | 100 | 28.038

0.019) | 26.645 (0.020) | 25.997 (0.019) | 25.920

1/2 | 110 | 39.721

0.023) | 37.545 (0.024) | 36.615 (0.023) | 36.497

1/3 | 100 | 28.296

0.018) | 26.855 (0.018) | 26.264 (0.017) | 26.158

1/3 | 110 | 39.956

(0.015) (0.015) (0.014)
(0.019) (0.020) (0.019)
(0.023) (0.024) (0.023)

1/3 | 90 | 17.804 (0.014) | 17.033 (0.014) | 16.677 (0.013) | 16.659
(0.018) (0.018) (0.017)
(0.021) (0.022) (0.021)

0.021) | 37.816 (0.022) | 36.994 (0.021) | 36.782
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Concluding Remarks

We have proposed a simple and computationally tractable improvement
method for the upper bound of American options.

e The method is based on two stopping times. The stopping times are
generated from a lower bound process of the continuation value.

e A better, namely higher lower bound process gives a greater
improvement of the upper bound.

e Our method can be used together with the approximation of lower
bound process by the least square method.
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