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Introduction
Exponential jump-diffusion model

We assume that the stock price process St in a risk-neutral world
follows an exponential jump-diffusion model

dSt/St− = (r − λζ)dt + σdWt + ηdNt , (1)

where

r : the riskfree interest rate,

σ : the volatility,

Wt : the Wiener process,

Nt : the Poisson process with intensity λ,

η : a random variable of jump size from St− to (η + 1)St−,

ζ : the expectation E[η] of the random variable η.
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Exponential jump-diffusion model

Example (Jump-diffusion model)

(1) Merton model
ln(η + 1) ∼ N(µJ , σ

2
J). (2)

(2) Kou model

f (x) = pλ+e−λ+x1x≥0 + (1− p)λ−eλ−x1x<0, (3)

where f (x) is a density function of ln(η + 1).



Introduction
PIDE under jump-diffusion models

Under exponential jump-diffusion model, the price of a European
call option C (t, S) satisfies the PIDE below.

∂C

∂t
(t,S) +

σ2S2

2

∂2C

∂S2
(t, S) + rS

∂C

∂S
(t,S)− rC (t,S)

+

∫
R

[
C (t, Sex)− C (t,S)− S(ex − 1)

∂C

∂S
(t, S)

]
ν(dx) = 0

on [0,T )× (0,∞) with the terminal condition

C (T ,S) = (S − K )+ for all S > 0,

where K is a strike price.
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Let
τ = T − t, x = ln(S/S0).

By the change of variables, u(τ, x) = C (T − τ,S0ex) satisfies

∂u

∂τ
(τ, x) =

σ2

2

∂2u

∂x2
(τ, x) + (r − σ2

2
− λζ)

∂u

∂x
(τ, x)

−(r + λ)u(τ, x) + λ

∫
R

u(τ, z)f (z − x)dz (4)

on (0,T ]× (−∞,∞) with the initial condition

u(0, x) = (S0ex − K )+ for all x ∈ (−∞,∞), (5)

where ζ =
∫

R(ex − 1)f (x)dx with the distribution function of
jumps f (x) and λ is the intensity of jumps.
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Survey of option pricing

In the sense of the viscosity solution,

• Briani, Chioma, and Natalini (2004)
- An explicit difference method.

• Cont and Voltchkova (2005)
- An explicit-implicit method.

As using an iterative method,

• d’Halluin, Forsyth, and Vetzal (2005)
- An implicit method of the Crank-Nicolson type.

• Almendral and Oosterlee (2005)
- A backward differentiation formula (BDF2).
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Numerical method for option pricing
Implicit method with three time levels

We shall construct a numerical method with finite differences to
solve the following initial-valued PIDE

∂u

∂τ
(τ, x) = Lu(τ, x) on (0,T ]× R, (6)

u(0, x) = (S0ex − K )+, (7)

where

Lu(τ, x) =Du(τ, x) + Iu(τ, x)− (r + λ)u(τ, x),

Du(τ, x) =
σ2

2

∂2u

∂x2
(τ, x) + (r − σ2

2
− λζ)

∂u

∂x
(τ, x),

Iu(τ, x) =λ

∫
R

u(τ, z)f (z − x)dz .
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Implicit method with three time levels

At first, we have to restrict the domain R of the space variable to
a bounded interval. The asymptotic behavior of the price of a
European call option is described by

lim
x→−∞

u(τ, x) = 0, lim
x→∞

u(τ, x) = S0ex − Ke−rτ . (8)

So, there exists an interval Ω := [−X ,X ],X > 0 such that we can
divide the integral term into two parts∫

R
u(τ, z)f (z−x)dz =

∫
Ω

u(τ, z)f (z−x)dz+

∫
R\Ω

u(τ, z)f (z−x)dz
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Implicit method with three time levels

Let us define R(τ, x ,X ) by R(τ, x ,X ) =
∫

R\Ω u(τ, z)f (z − x)dz .
In the case of Merton model

R(τ, x ,X )

= S0ex+µJ+
σ2

J
2 Φ

(
x − X + µJ + σ2

J

σJ

)
− Ke−rτΦ

(
x − X + µJ

σJ

)
,

where

Φ(y) =
1√
2π

∫ y

−∞
e−

x2

2 dx .

In the case of Kou model

R(τ, x ,X ) = S0
pλ+

λ+ − 1
eλ+x−(λ+−1)X − Kpe−rτ−λ+(X−x).
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Implicit method with three time levels

On the truncated domain [0,T ]× [−X ,X ], let ∆τ = T/N and
∆x = 2X/M for M,N > 0. And let τn = n∆τ for n = 0, 1, . . . ,N
and xm = −X + m∆x for m = 0, 1, . . . ,M. Let un

m = u(τn, xm)
and fm,j = f (xj − xm).

∫
Ω

u(τn, z)f (z−xm)dz ≈ ∆x

2

un
0 fm,0 + 2

M−1∑
j=1

un
j fm,j + un

M fm,M

 .
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Dun
m ≈ D∆

(
un+1
m + un−1

m

2

)
, Iun

m ≈ I∆un
m, Lun

m ≈ L∆un
m,

where

D∆un
m =

σ2

2

un
m+1 − 2un

m + un
m−1

∆x2
+ (r − σ2

2
− λζ)

un
m+1 − un

m−1

2∆x
,

I∆un
m =

λ∆x

2

un
0 fm,0 + 2

M−1∑
j=1

un
j fm,j + un

M fm,M

+ λR(τn, xm,X ),

L∆un
m =

 D∆un
m + I∆un

m − (r + λ)un
m for n = 0,

D∆

(
un+1

m +un−1
m

2

)
+ I∆un

m − (r + λ)un
m for n ≥ 1.
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Algorithm of the implicit method with three time levels

Initial condition:

U0
m = max(S0exm − K , 0) for 0 ≤ m ≤ M,

Boundary condition: for m = 0,M and for 1 ≤ n ≤ N

Un
m = max(0, S0exm − Ke−rτn),

(S1) For n = 0 and for 1 ≤ m ≤ M − 1
Un+1

m −Un
m

∆τ = D∆Un
m + I∆Un

m − (r + λ)Un
m,

(S2) For 1 ≤ n ≤ N − 1 and for 1 ≤ m ≤ M − 1

Un+1
m −Un−1

m

2∆τ = D∆

(
Un+1

m +Un−1
m

2

)
+ I∆Un

m − (r + λ)Un
m.
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Numerical analysis

Theorem (Consistency)

Let v ∈ C∞((0,T ]×R) satisfy the asymptotic behavior (8). If ∆τ and ∆x are
sufficiently small, Then for any ε > 0 there exists a truncated interval [−X ,X ]
such that

∂v

∂τ
(τn, xm)− Lv(τn, xm)−

(
v(τn+1, xm)− v(τn, xm)

∆τ
− L∆v(τn, xm)

)
= O(∆τ + ∆x2 + ε) for n = 0, (9)

∂v

∂τ
(τn, xm)− Lv(τn, xm)−

(
v(τn+1, xm)− v(τn−1, xm)

2∆τ
− L∆v(τn, xm)

)
= O(∆τ2 + ∆x2 + ε) for n ≥ 1, (10)

where (τn, xm) ∈ (0,T ]× [−X ,X ].

Theorem (Stability)

The finite difference method (S1)-(S2) is stable in the sense of the Von
Neumann analysis if ∆τ < 1

2(r+2λ) .
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We shall use a discrete vector norm ‖x‖`2 defined by

‖x‖`2 =

∆x
∑

j

|xj |2
1/2

.

Let ξn be the error vector on the n-th time level by

ξnm = un
m − Un

m for 1 ≤ m ≤ M − 1,

where u is the unique solution of the initial-valued PIDE in (6)-(7)
and U is the solution of the finite difference approximation in
(S1)-(S2).
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Numerical analysis

Lemma
Let {an}n≥0 be a nonnegative sequence such that for n ≥ 2

an ≤ an−2 + K ∆τan−1 + d ,

where ∆τ , K , d are positive constants. If a0 = 0, then for n ≥ 2

an ≤ (1 + K ∆τ)n−1a1 + d
n−2∑
j=0

(1 + K ∆τ)j .
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Theorem (Convergence)

If ∆τ and ∆x are sufficiently small, then there exists a positive
constant K independent of ∆τ and ∆x such that for 1 ≤ n ≤ N

‖ξn‖`2 ≤ K (∆τ2 + ∆x2 +
1

∆x3/2
ε). (11)

Corollary

Suppose that all hypotheses in Theorem above are satisfied. If the
conditions of ε = O(∆x7/2) and ∆x = O(∆τ) hold, then

‖ξn‖`2 ≤ K (∆τ2). (12)
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Merton model

Example

Under Merton model, parameters used in the simulation were

σ = 0.15, r = 0.05, σJ = 0.45, µJ = −0.90,

λ = 0.10, T = 0.25, K = 100.

The order q of convergence rate was computed by

q = log2
‖U(∆τ,∆x)− U(∆τ/2,∆x/2)‖`2

‖U(∆τ/2,∆x/2)− U(∆τ/4,∆x/4)‖`2

. (13)
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Merton model

Table: Values of European call options obtained by the implicit method with
three time levels under the Merton model. The reference values are 0.527638 at
S = 90, 4.391246 at S = 100, and 12.643406 at S = 110. The truncated domain
is [−1.5, 1.5]. N is the number of time steps and M is the number of space steps.

S = 90 S = 100 S = 110
N M Value Error Value Error Value Error

25 128 0.525183 0.002455 4.355963 0.035283 12.635554 0.007852

50 256 0.527098 0.000540 4.382389 0.008857 12.641354 0.002052

100 512 0.527497 0.000141 4.389039 0.002207 12.642889 0.000517

200 1024 0.527602 0.000036 4.390695 0.000551 12.643277 0.000129

400 2048 0.527629 0.000009 4.391108 0.000138 12.643373 0.000033

800 4096 0.527636 0.000002 4.391211 0.000035 12.643398 0.000008
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Table: The rate of `2-errors obtained by the implicit method with three time
levels under the Merton model. The truncated domain is [−1.5, 1.5]. N is the
number of time steps and M is the number of space steps. q is the rate of
convergence defined by (13).

N M ‖U(∆τ,∆x)− U(∆τ/2,∆x/2)‖`2 q

25 128
0.008401099831144 -

50 256
0.002125993690576 1.982

100 512
0.000530484616757 2.003

200 1024
0.000132558327520 2.001

400 2048
0.000033135663449 2.000

800 4096



Numerical results
Kou model

Example

Under Kou model, parameters used in the simulation were

σ = 0.15, r = 0.05, λ+ = 3.0465, λ− = 3.0775,

p = 0.3445, λ = 0.10, T = 0.25, K = 100.
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Table: Values of European call options obtained by the implicit method with
three time levels under the Kou model. The reference values are 0.672677 at
S = 90, 3.973479 at S = 100, and 11.794583 at S = 110. The truncated domain
is [−1.5, 1.5]. N is the number of time steps and M is the number of space steps.

S = 90 S = 100 S = 110
N M Value Error Value Error Value Error

25 128 0.669157 0.003520 3.939036 0.034443 11.786790 0.007793

50 256 0.671823 0.000854 3.964816 0.008663 11.792574 0.002009

100 512 0.672459 0.000218 3.971320 0.002159 11.794077 0.000506

200 1024 0.672622 0.000055 3.972939 0.000540 11.794456 0.000127

400 2048 0.672663 0.000014 3.973344 0.000135 11.794551 0.000032

800 4096 0.672674 0.000003 3.973445 0.000034 11.794575 0.000008
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Table: The rate of `2-errors obtained by the implicit method with three time
levels under the Kou model. The truncated domain is [−1.5, 1.5]. N is the
number of time steps and M is the number of space steps. q is the rate of
convergence defined by (13).

N M ‖U(∆τ,∆x)− U(∆τ/2,∆x/2)‖`2 q

25 128
0.008325398037870 -

50 256
0.002108106087901 1.982

100 512
0.000526070487931 2.003

200 1024
0.000131458391065 2.001

400 2048
0.000032860923201 2.000

800 4096



Conclusions

1 The finite difference method with three time levels to solve
the PIDE.

2 Consistency and stability.

3 The second-order convergence in the discrete `2-norm with a
constant ratio ∆τ/∆x .



Thank you for your attention.
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