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Introduction

Exponential jump-diffusion model

We assume that the stock price process S; in a risk-neutral world
follows an exponential jump-diffusion model

dst/St, = (r—)\C)dt—f—Uth—f—’r]dNt, (1)

where
r : the riskfree interest rate,
o : the volatility,
W; : the Wiener process,
N; : the Poisson process with intensity A,
7 : a random variable of jump size from S;_ to (n + 1)S;_,
( : the expectation E[n)] of the random variable 7.



Introduction

Exponential jump-diffusion model

Example (Jump-diffusion model)

(1) Merton model
In(n + 1) ~ N(py, 3). (2)
(2) Kou model
f(x) = pAre M Lso + (1 — p)A_e Lz, (3)

where f(x) is a density function of In(n + 1).
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PIDE under jump-diffusion models

Under exponential jump-diffusion model, the price of a European
call option C(t,S) satisfies the PIDE below.

oC 02529°C oC
E(t,S)Jr > 852(t5)+r585( S)

. e B
—I—/R[C(t,Se ) = C(£,9) = S(e¥ = 1) 52 (£:S) | v(dx) = 0

—rC(t,S)

on [0, T) x (0, 00) with the terminal condition
C(T.S)=(S— K)™ forall S >0,

where K is a strike price.
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Let
T=T—-t, x=1In(S5/S).

By the change of variables, u(7,x) = C(T — 7, Spe*) satisfies

0 02 0u 2 0
S (rxX) = oS (rx) + (r = T = M) 5 (7x)

—(r+ Nu(r,x) + )\/R u(r,2)f(z — x)dz  (4)
n (0, T] x (—o0, 00) with the initial condition
u(0,x) = (Soe* — K)T for all x € (—o0, 00), (5)

where ¢ = [(e* — 1)f(x)dx with the distribution function of
jumps f(x) and X is the intensity of jumps.



Introduction

Survey of option pricing

In the sense of the viscosity solution,
e Briani, Chioma, and Natalini (2004)
- An explicit difference method.

e Cont and Voltchkova (2005)
- An explicit-implicit method.
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Survey of option pricing

In the sense of the viscosity solution,
e Briani, Chioma, and Natalini (2004)
- An explicit difference method.
e Cont and Voltchkova (2005)
- An explicit-implicit method.
As using an iterative method,
e d'Halluin, Forsyth, and Vetzal (2005)
- An implicit method of the Crank-Nicolson type.

e Almendral and Oosterlee (2005)
- A backward differentiation formula (BDF2).
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Implicit method with three time levels

We shall construct a numerical method with finite differences to
solve the following initial-valued PIDE

%(m) — Lu(r,x) on (0, T] xR, (6)
u(0,x) = (Spe* —K)*, (7)

where

Lu(r,x) =Du(1,x) + Zu(r,x) — (r + N)u(T, x),
o2 9%u o?

o
Du(r,x) =7 55 (7, X) + (r = & — Ag)a—i(r, x),

Zu(T,x) :)\/R u(t, z)f(z — x)dz.



Numerical method for option pricing

Implicit method with three time levels

At first, we have to restrict the domain R of the space variable to
a bounded interval. The asymptotic behavior of the price of a
European call option is described by
lim wu(r,x) =0, lim u(r,x)= Spe* — Ke™'". (8)
X——00 X—00

So, there exists an interval Q := [-X, X], X > 0 such that we can
divide the integral term into two parts

/R u(r, 2)f(z—x)dz = /Q u(r, 2)F(2—x)dz—+ / u(r, 2)F(z—x)dz

R\Q
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Implicit method with three time levels

Let us define R(7, x, X) by R(7,x, X) = fR\Q u(t,z)f(z — x)dz.
In the case of Merton model

R(T, x, X)
o2 _ 2 .
= St T o <X X+ pst "J> — Ke "0 (X X ’“) :
oy gy
where

¢(y):¢127/_; =i

In the case of Kou model

R(’T,X,X) So )\i>\j )\+X—(>\+—1)X _ er—rT—)\_*_(X—X)'
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Implicit method with three time levels

On the truncated domain [0, T] x [-X, X], let A7 = T/N and
Ax =2X/M for M;N > 0. And let 7, = nA7 for n=0,1,..., N
and xm, = =X + mAx for m=0,1,..., M. Let ul, = u(Th, Xm)
and f, j = f(x;j — Xm).

M-1

A
/ u(7h, 2)f (2 —xm)dz = = ug fmo + 2 E Ui fmj + U fmm
Q 2 ’ = )



Numerical method for option pricing

Implicit method with three time levels

n ufr;l—‘rl + ufr:)_l n n n n
Duy, =~ Da - ) Zul, =Ipuy,, Lul,~Lauy,
where
2 ,,n n n 2 n n
ot u —2u" +u o u —u
D n _Y m+1 m m—1 — 2\ m—+1 m—1
Allm =7 AX2 =5 AT
M—1
AAX
Tatp === | u§fmo +2 > U+ ufam | + AR, Xm, X),
j=1
Daul, + Zaul, — (r+ Nuh, for n =0,
Lauy, =

n n—1
D (”’"H%) +Zpul, — (r+A)ul, forn>1.
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Implicit method with three time levels

Algorithm of the implicit method with three time levels

(S1)

(S2)

Initial condition:

U2 = max(Spe — K,0) for 0 < m< M,
Boundary condition: for m=0,M and for1 < n< N
Uf = max(0, Soe* — Ke™"),
Forn=0andforl1<m<M-1

Ui Y = DAUR + Talg — (r+ AU,

Foril<n<N-landforl1<m<M-1
n n—1 n n—1
Uil pi = Dp (YY) 4+ TaUp, — (r+ A\ Up,

2AT
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Numerical analysis

Theorem (Consistency)

Let v € C*((0, T] x R) satisfy the asymptotic behavior (8). If AT and Ax are
sufficiently small, Then for any € > O there exists a truncated interval [—X, X]
such that

%(mem) () (V(Tn+17xmi; V(T Xm) EAv(mem)>

= O(AT + Ax® +¢) for n =0, 9)
ov V(Tn+17 Xm) - V(Tn—l,Xm)
E(Tn,xm) — Lv(Tny Xm)— ( SAn — EAV(T,,,X,,,)>

= O(AT? +Ax®+¢)  forn>1, (10)

where (Tn,xm) € (0, T] x [-X, X].
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Numerical analysis

Theorem (Consistency)

Let v € C*((0, T] x R) satisfy the asymptotic behavior (8). If AT and Ax are
sufficiently small, Then for any € > O there exists a truncated interval [—X, X]
such that

%(mem) () (V(Tn+17xmi; V(T Xm) EAv(mem)>

= O(AT + Ax® +¢) for n =0, 9)
ov V(Tn+17 Xm) - V(Tn—l,Xm)
E(Tn,xm) — Lv(Tny Xm)— ( SAn — EAV(T,,,X,,,)>

= O(AT? +Ax®+¢)  forn>1, (10)

where (Tn,xm) € (0, T] x [-X, X].

Theorem (Stability)
The finite difference method (S1)-(S2) is stable in the sense of the Von

. 1
Neumann analysis if AT < HEVE
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Numerical analysis

We shall use a discrete vector norm ||x||,2 defined by
1/2

Ixllee = [ Ax D I
j

Let £" be the error vector on the n-th time level by

& =uy, — Uy, for1<m<M-1,
where u is the unique solution of the initial-valued PIDE in (6)-(7)
and U is the solution of the finite difference approximation in

(S1)-(S2).
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Numerical analysis

Lemma
Let {an}n>0 be a nonnegative sequence such that for n > 2

ap < ap2+ KAta,_1+d,

where AT, K, d are positive constants. If ag = 0, then for n > 2

n—2
an < (1+ KAT)™ lay+d Y (1+KATY.
j=0
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Numerical analysis

Theorem (Convergence)

If AT and Ax are sufficiently small, then there exists a positive
constant K independent of AT and Ax such that for1 < n<N

1
1€ |2 < K(AT + Ax? —I—A 3 €). (11)
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Numerical analysis

Theorem (Convergence)

If AT and Ax are sufficiently small, then there exists a positive
constant K independent of AT and Ax such that for1 < n<N

1
1€, < K(AT2 + Ax® + ) (11)

Corollary

Suppose that all hypotheses in Theorem above are satisfied. If the
conditions of e = O(Ax"/?) and Ax = O(AT) hold, then

l€”ll2 < K(AT2). (12)



Numerical results

Merton model

Example
Under Merton model, parameters used in the simulation were

o =015 r=005 o,=045 u,;=—0.90,
A=010, T =025 K =100.

The order g of convergence rate was computed by

|U(AT, Ax) — U(AT/2, Ax/2)||s ‘
|U(AT/2,Ax/2) — U(AT /4, Ax/8)||,

q = log, (13)



Numerical results

Merton model

Table: Values of European call options obtained by the implicit method with
three time levels under the Merton model. The reference values are 0.527638 at
S =090, 4.391246 at S =100, and 12.643406 at S = 110. The truncated domain
is [-1.5,1.5]. N is the number of time steps and M is the number of space steps.

5=90 5 =100 5 =110

N M Value [ Error Value [ Error Value [ Error

25 128 | 0.525183 | 0.002455 | 4.355963 | 0.035283 | 12.635554 | 0.007852

50 256 | 0.527098 | 0.000540 | 4.382389 | 0.008857 | 12.641354 | 0.002052

100 | 512 | 0.527497 | 0.000141 | 4.389039 | 0.002207 | 12.642889 | 0.000517

200 | 1024 | 0.527602 | 0.000036 | 4.390695 | 0.000551 | 12.643277 | 0.000129

400 | 2048 | 0.527629 | 0.000009 | 4.391108 | 0.000138 | 12.643373 | 0.000033

800 | 4096 | 0.527636 | 0.000002 | 4.391211 | 0.000035 | 12.643398 | 0.000008




Numerical results

Merton model

Table: The rate of £2-errors obtained by the implicit method with three time
levels under the Merton model. The truncated domain is [-1.5,1.5]. N is the
number of time steps and M is the number of space steps. q is the rate of
convergence defined by (13).

N T M TJUATAX)—UAT/2,Ax/2)l2 [ g

25 128

0.008401099831144 -
50 256

0.002125993690576 1.982
100 | 512

0.000530484616757 2.003
200 | 1024

0.000132558327520 2.001
400 | 2048

0.000033135663449 2.000
800 | 4096




Numerical results

Kou model

Example
Under Kou model, parameters used in the simulation were

c=015 r=005 A, =3.0465, A_ =3.0775,
p=03445 X=0.10, T =025 K = 100.



Numerical results

Kou model

Table: Values of European call options obtained by the implicit method with
three time levels under the Kou model. The reference values are 0.672677 at
S =090, 3.973479 at S =100, and 11.794583 at S = 110. The truncated domain
is [-1.5,1.5]. N is the number of time steps and M is the number of space steps.

5=90 5 =100 5 =110

N M Value [ Error Value [ Error Value [ Error

25 128 | 0.669157 | 0.003520 | 3.939036 | 0.034443 | 11.786790 | 0.007793

50 256 | 0.671823 | 0.000854 | 3.964816 | 0.008663 | 11.792574 | 0.002009

100 | 512 | 0.672459 | 0.000218 | 3.971320 | 0.002159 | 11.794077 | 0.000506

200 | 1024 | 0.672622 | 0.000055 | 3.972939 | 0.000540 | 11.794456 | 0.000127

400 | 2048 | 0.672663 | 0.000014 | 3.973344 | 0.000135 | 11.794551 | 0.000032

800 | 4096 | 0.672674 | 0.000003 | 3.973445 | 0.000034 | 11.794575 | 0.000008




Numerical results

Kou model

Table: The rate of £2-errors obtained by the implicit method with three time
levels under the Kou model. The truncated domain is [—1.5,1.5]. N is the
number of time steps and M is the number of space steps. ¢ is the rate of
convergence defined by (13).

N T M TJUATAX)—UAT/2,Ax/2)l2 [ g

25 128

0.008325398037870 -
50 256

0.002108106087901 1.982
100 | 512

0.000526070487931 2.003
200 | 1024

0.000131458391065 2.001
400 | 2048

0.000032860923201 2.000
800 | 4096




Conclusions

1 The finite difference method with three time levels to solve
the PIDE.

2 Consistency and stability.

3 The second-order convergence in the discrete £2-norm with a
constant ratio A7/Ax.



Thank you for your attention.
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