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Hedging Error

Arbitrage Theory in Continuous Time: In a complete market setting
every contingent claim can be replicated by continuously trade in the
underlying.

In practice: Continuous trading is impossible.

⇓

Hedging error R, i.e. the value of the hedge portfolio differ by some
amount R from the value of the derivative.
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Setting

Risky asset under Q: dX(t) = rX(t)dt + σ(X(t))X(t)dW(t).
Bank account: dB(t) = rB(t)dt.
Derivative prices: Fi(t,X(t)) = e−r(Ti−t)E[Φi(X(Ti))|Ft] , i ∈ {1, 2}.

Assumptions:
Let σ̃(y) = σ(ey).
A1. (i) There is a positive constant σ0 such that σ̃(y) ≥ σ0 for all y ∈ R.

(ii) The function σ̃ is bounded, uniformly Lipschitz continuous in
compact subsets of R and uniformly Hölder continuous.

A2. The functions (∂k/∂yk)σ̃(y), i ∈ {1, 2, 3, 4}, are bounded.
A3. Φ1(x) = (x− K1)+, Φ2(x) = (x− K2)+ and T2 > T1.
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∆-hedging

Find a self-financing portfolio {hX, hB} such that

hX(t)X(t) + hBB(t) = F1(t,X(t))

for all t ∈ [0,T1].

Solution: let hX(t) = ∂F1
∂x (t,X(t)) = F1,x(t,X(t)).
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Γ-Hedging
Introduce one more derivative: F2 with Φ2 and T2 > T1.
Form a hedge-portfolio {hX, hF2 , hB} and match the first and second
derivatives w.r.t. X:

F1(t,X(t)) = hX(t)X(t) + hF2(t)F2(t,X(t)) + hB(t)B(t) ,

∆F1(t,X(t)) = hX(t) + hF2(t)∆F2(t,X(t)) ,

ΓF1(t,X(t))) = hF2(t)ΓF2(t,X(t)) .

This yields the portfolio

hX(t) = ∆F1(t,X(t))− ΓF1(t,X(t))
ΓF2(t,X(t))

∆F2(t,X(t)) ,

hF2(t) =
ΓF1(t,X(t))
ΓF2(t,X(t))

,

hB(t) =
F1(t,X(t))− hX(t)X(t)− hF2(t)F2(t,X(t))

B(t)
.
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Discrete Time Hedging

Since the portfolio processes in both the ∆-hedging and the Γ-hedging
case are continuous processes the hedge portfolio must be rebalanced
at every time instant in order for the hedging error to equal zero.

In practice this is not possible.
Re-balance at an equidistant time grid, i.e. ti = i/n.
Let R(n) denote the hedging error using an equidistant time grid
with n re-balancing points. What properties of R(n) do we get?
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Numerical experiment: ∆-hedging

Model: Black and Scholes. Parameters: s0 = 100, K1 = 100, K2 = 120,
T1 = 0.5, T2 = 1.5, r = 0.03 and σ = 0.2.
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Figure: ∆-hedging. Blue line: n = 10,
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Figure: ∆-hedging. Blue line: n = 10, green line: n = 20.

Magnus Wiktorsson Higher Order Hedging Schemes Bachelier June 23, 2010 8 / 17



Introduction Setting Numerical Experiment Results Conclusions References

Numerical experiment: Γ-hedging
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Figure: Γ-hedging. Blue line: n = 10,
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Numerical experiment: order of convergence

Assume that: E[R2(n)] = Cnα then
log10(E[R2(n)]) = log10(C) + α log10(n).
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Figure: Squares (2): ∆-hedging,
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Figure: Squares (2): ∆-hedging, circles (◦): Γ-hedging.
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Previous results

∆-Hedging
Equidistant time grid, i.e. ti = i/n

European options (Zhang, 1999): Order of convergence 1/
√

n, i.e.
limn→∞ nE[R2(n)] = C.
Digital options (Gobet and Temam, 2001): Order of convergence
1/n1/4.

Nonuniform time grid
Digital options (Geiss, 2002): Order of convergence 1/

√
n.

Γ-Hedging
For the standard Black-Scholes model Gobet and Makhlouf
(2009) gives non-sharp lower bounds for convergence rates for
both equidistant and non-equidistant grids.
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Results

Γ-hedging of an European option on an equidistant time grid (Brodén
and Wiktorsson, 2009): Order of convergence 1/n3/4.

Recall that the assumptions A1-A3 are:
Let σ̃(y) = σ(ey).
A1. (i) There is a positive constant σ0 such that σ̃(y) ≥ σ0 for all y ∈ R.

(ii) The function σ̃ is bounded, uniformly Lipschitz continuous in
compact subsets of R and uniformly Hölder continuous.

A2. The functions (∂k/∂yk)σ̃(y), i ∈ {1, 2, 3, 4}, are bounded.
A3. Φ1(x) = (x− K1)+, Φ2(x) = (x− K2)+ and T2 > T1.
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Results

Γ-hedging of an European option on an equidistant time grid (Brodén
and Wiktorsson, 2009): Order of convergence 1/n3/4.

Theorem
If A1-A3 hold, then

E[R2
Γ(n)] = n−3/2T3/2

1 C 3
2

lim
t↑T1

g(t) + o
(

n−3/2
)

= n−3/2T3/2
1 C 3

2
e−2rT1

K3
1σ

3(K1)
4
√
π

PX(T1)|X(0)=x0(K1) + o
(

n−3/2
)
,

where

g(t) = (T1 − t)3/2E
[
e−2rtF2

1,xxx(t,Xt)X6
t σ

6(Xt)|X(0) = x0
]
,C3/2 ≈ 0.62881,

and PX(T1)|X(0)=x0(K1) is X:s transition density.

Detail
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Results
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Figure: Log mean squared error as a function of the log number of
re-balancings n, for the Black and Scholes model. Parameters K1 = 100,
T1 = 0.5, s0 = 100, r = 0.03, σ = 0.3 and NMC = 105. Dash-dotted line:
estimate from the Theorem, MC estimate with: squares: K2 = 80, triangles:
K2 = 100 and circles: K2 = 120.

Magnus Wiktorsson Higher Order Hedging Schemes Bachelier June 23, 2010 13 / 17



Introduction Setting Numerical Experiment Results Conclusions References

Conclusions
We have shown that when Γ-hedging a European option on an
equidistant time grid the order of convergence is 1/n3/4.
An explicit expression for the leading term of the second moment
of the hedging error is derived.
The expression serves as a good approximation of the real
second moment of the hedging error also for n <∞.

Further research
Investigate higher order terms in the expansion of the hedging
mean squared error in order to find an optimal choice of hedge
instrument in a collection of possible hedge instruments.
Hedging schemes using an arbitrary number of hedge
instruments.
More complicated market models.
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Thanks for the attention!

Questions ??

Magnus Wiktorsson Higher Order Hedging Schemes Bachelier June 23, 2010 16 / 17



Introduction Setting Numerical Experiment Results Conclusions References

Supplementary

Ca =
∞∑

k=1

∫ 1

0

∫ x

0

∫ w

0

1
(k − v)a dv dw dx =

∫ ∞
0

et − 1− t − t2
2

Γ(a)ta+1(et − 1)
dt .

which is well defined for 0 < a < 2.

Back
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